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Accelerating Expansion of the Universe
Type Ia Supernova Data
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Accelerating Expansion of the Universe

According to the cosmological principle and the observation,
the universe is homogeneous and isotropic on large scales
(> 100 Mpc).

FRW metric:

ds2 = −dt2 + a(t)2

(
dr 2

1− kr 2
+ r 2dΩ2

)

scale factor curvature of the space

⇒ a spatially homogeneous and isotropic universe expanding
as a function of time



Accelerating Expansion of the Universe

Friedmann Equations(
ȧ

a

)2

=
8πG

3
ρ− k

a2

ä

a
= −4πG

3
(ρ + 3P)

if P < −1
3
ρ⇒ ä > 0 : acceleration (Dark Energy)

Fluid Equation
energy-momentum conservation:

ρ̇ + 3
ȧ

a
(ρ + P) = 0

for P = wρ⇒ ρ(a) = ρ0a
−3(1+w)



Accelerating Expansion of the Universe

Scanned by CamScanner

(B. Ryden, Introduction to Cosmology (2002))



Structure Formation

Bottom-Up Structure Formation:
The small galaxies form and attract each other by gravity
and merge to form larger galaxies, and then cluster
together to form clusters.

(https:// www.astro.ufl.edu/∼guzman/ ast1002/ class notes/ Ch15/ Ch15b.html)

Gravity←→ Universe Expansion

https://www.astro.ufl.edu/~guzman/ast1002/class_notes/Ch15/Ch15b.html


Structure Formation

expand to Rmax

turn around

collapse to form
structures

⇒ We use spherical collapse model to explore the nonlinear
gravitational collapse in matter.



Structure Formation

Background Universe

ä

a
= −4πG

3
[ρ̄m + (1 + 3w)ρ̄de]

˙̄ρm + 3

(
ȧ

a

)
ρ̄m = 0

˙̄ρde + 3(1 + w)

(
ȧ

a

)
ρ̄de = 0

Spherical Overdensity

R̈

R
= −4πG

3
[ρm + (1 + 3w)ρde]

ρ̇m + 3

(
Ṙ

R

)
ρm = 0

ρ̇de + 3(1 + w)

(
Ṙ

R

)
ρde = αΓ,

where Γ = 3(1 + w)
(

Ṙ
R
− ȧ

a

)
ρde

with 0 ≤ α ≤ 1



Structure Formation

ρ̇de + 3(1 + w)

(
Ṙ

R

)
ρde = αΓ,

where Γ = 3(1 + w)
(

Ṙ
R −

ȧ
a

)
ρde with 0 ≤ α ≤ 1

α = 1 (non-clustering DE)

ρ̇de + 3(1 + w)

(
ȧ

a

)
ρde = 0⇒ ρde = ρ̄de

DE is homogeneous.
Energy does not conserve within the overdensity.

α = 0 (clustering DE)

ρ̇de + 3(1 + w)

(
Ṙ

R

)
ρde = 0⇒ ρde 6= ρ̄de

DE is inhomogeneous.
The spherical overdensity is considered an isolated system
satisfying the law of energy conservation.



Structure Formation
non-clustering DE (α = 1), ρde = ρ̄de (Lee and Ng, JCAP 10 (2010) 028)
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Structure Formation
clustering DE (α = 0), ρde 6= ρ̄de

Difficulties:
ρde within the spherical overdensity is unknown.

⇒ model DE by various types of scalar fields

I Creminelli et al., JCAP 03 (2010) 027

I Nunes and Mota, MNRAS 368 (2006) 751

I Mota and Bruck, Astron. Astrophys 421 (2004) 71

⇒ Might it oversimplify the property of DE?
(e.g. early DE model)

I Huey et al., PRD 59 (1999) 063005

I Doran and Lilley, MNRAS 330 (2001) 965

I Bean et al., PRD 64 (2001) 103508

I Lee and Ng, PRD 67 (2003) 107302



Structure Formation
clustering DE (α = 0), ρde 6= ρ̄de

dx

dτ
=

√
x−1 +

1

Qta

x−3w−1

⇒ τta =
2

3
F

[
1

2
,− 1

2w
, 1− 1

2w
,−Q−1

ta

]
d2y

dτ 2
= −1

2

[
ζy−2 + (1 + 3w)

1

Qcta

y−3(1+w)+1

]
ζ : ρm =? ⇒ y(τc) = y(2τta) = 0

Qcta : ρde =? ⇒ Assuming δNL
de,ta = rδNL

m,ta

⇒ Qcta =
Qta

1 + r [ζ(w , zta, r)− 1]

*dτ ≡ Hta

√
Ωm(xta)dt , x ≡ a

ata
, y ≡ R

Rta
, ζ ≡ ρm

ρ̄m

∣∣∣
zta

,

Qta ≡ ρ̄m
ρ̄de

∣∣∣
zta

= Ω0
m

Ω0
de

(1 + zta)−3w , Qcta ≡ ρ̄m
ρde

∣∣∣
zta

,

δNL
m ≡ ρm/ρ̄m − 1 , and δNL

de ≡ ρde/ρ̄de − 1



Structure Formation
clustering DE (α = 0), ρde 6= ρ̄de
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Virialization
(Maor and Lahav, Astropart. Phys. 07 (2005) 003)

virial theorem and energy conservation:
[
U + R

2
∂U
∂R

]
vir

= Uta

U =
1

2

∫ R

0
ρmΦmdV +

1

2

∫ R

0
ρdeΦmdV +

1

2

∫ R

0
ρmΦdedV +

1

2

∫ R

0
ρdeΦdedV

whole system virializing

[1 + (2 + 3w)q + (1 + 3w)q2]yvir

−1

2
(2 + 3w)(1− 3w)qy−3w

vir −
1

2
(1 + 3w)(1− 6w)q2y−6w

vir =
1

2

only matter virializing

(1 + q)yvir −
q

2
(1− 3w)y−3w

vir =
1

2
EdS universe

yvir =
1

2

* q ≡ ρde
ρm

∣∣∣
zta

=

(
δNL
de,ta+1

δNL
m,ta+1

)
1−Ωm,0

Ωm,0
(1 + zta)3w =

(
r(ζ−1)+1

ζ

)
1−Ωm,0

Ωm,0
(1 + zta)3w



Virialization
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Complete Journey of Matter Density Perturbation

continuity eq.:

ρ̇x +
−→
∇ · [(ρx + Px)~v ] = 0

Euler eq.:

~̇v + (~v ·
−→
∇)~v = −

−→
∇Φ

I adding small perturbations:

ρx = ρ̄x(1 + δx), −→v = H−→x +−→u

Poisson eq.:

−→
∇2δΦ = 4πG (δρm + δρde + 3δPde) a

2



Complete Journey of Matter Density Perturbation
δ in Linear Regime

(* x̃ ≡ a/a0, η ≡
√

Ωm,0H0t)

background universe

dx̃

dη
=

1√
x̃Ωm(x̃)

with Ωm(x̃) =

(
1 +

1− Ω0
m

Ω0
m

x̃−3w

)−1

matter dominated universe: x̃i = (3ηi/2)2/3

density perturbation

d2δm
dη2

+
2

x̃

d x̃

dη

dδm
dη

=
3

2x̃3

[
δm +

1− Ω0
m

Ω0
m

(1 + 3w)x̃−3wδde

]
dδde
dη

= (1 + w)
dδm
dη
⇒ δde = (1 + w)δm

matter dominated universe:
δm ∝ a⇒ dδm/dη|i = 2δm,i/(3ηi)



Complete Journey of Matter Density Perturbation
δ in Non-Linear Regime (Creminelli et al., JCAP 03 (2010) 027)

background universe dx̃
dη

= 1√
x̃Ωm(x̃)

spherical overdense region

d2ỹ

dη2
+

1

2

[
1 + δm,i

x̃3
i

1

ỹ 2
+ (1 + 3w)(1 + δNL

de )
1− Ω0

m

Ω0
m

ỹ

x̃3(1+w)

]
= 0

ỹ(ηi) = ỹi = 1 for ỹ ≡ R
Ri

density contrast

dδNL
de

dη
+ 3(1 + w)(1 + δNL

de )

(
1

ỹ

d ỹ

dη
− 1

x̃

d x̃

dη

)
= 0

linear in early time: δNL
de,i ≈ δde,i = (1 + w)δm,i

dδNL
m

dη
+ 3(1 + δNL

m )

(
1

ỹ

d ỹ

dη
− 1

x̃

d x̃

dη

)
= 0

linear in early time:
dỹ/dη|i ≈ 2(1− δm,i/3)/(3ηi) (δm ∝ x̃ ∝ η2/3)



Complete Journey of Matter Density Perturbation
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Complete Journey of Matter Density Perturbation

I II

ρm
introduce ζ ≡ ρm

ρ̄m

∣∣∣
zta give a large enough δm,i

satisfying y(τc) = y(2τta) = 0
ρde introduce r with δNL

de,ta = rδNL
m,ta δNL

de,i ≈ δde,i = (1 + w)δm,i
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Complete Journey of Matter Density Perturbation
(Crook et al., ApJ 655 (2007) 790)
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Structure Formation with Time-Varying w

CPL (Chevallier-Polarski-Linder) model:

w(a) = w0 + w1(1− a)

to be excluded. Other dark energy models which predict
w ��1 remain acceptable. It is interesting to note that
simplest quintessence solutions with w>�1 are more
acceptable if tensors are present at a level predicted by
some inflationary models (r� 0:2).

We also ran a MCMC simulation exploring a nonconst-
ant equation of state. We use a second order expansion

w � w0 � �a� 1�w1 � �a� 1�2w2; (14)

where a � 1=�1 � z� is the expansion factor [69]. The
advantage of this expansion is that it is well behaved
throughout the history of the universe from early times,
when a� 0, to today (a � 1). This is in contrast to the
often adopted expansion in terms of the redshift, w �
w0 � w0z, which diverges at high redshift and so can
give artificially tight constraints on w0 if CMB (or even
BBN) constraints at high redshift are used, without actually
saying much about the time dependence of w in the rele-
vant regime 0< z< 1. In contrast, using our expansion
0< z< 1 covers half of the full range of w so w1 is being
constrained in the regime of interest. If we impose w2 � 0
then the best fit values and errors we find using all the data
are

w0 ��0:981�0:193�0:384�0:568
�0:193�0:373�0:521 w1 � 0:05�0:83�1:92�2:88

�0:65�1:13�1:38:

(15)

We find that w0 � �1, w1 � 0 is well within 1-� contour
and very close to the best fit model (Fig. 9).

The parameters w0, w1 and w2 are strongly correlated, as
shown in Fig. 9 for the first two, so the error on w0 has
expanded by a factor of 2 compared to the constant equa-
tion of state case. We can explore less model dependent
constraints on w�z� by computing the median and 1, 2-�
intervals from MCMC outputs at any redshift. Over a
narrow range of redshift these contours will be nearly
model independent as long as the equation of state is a

relatively smooth function of redshift. We find that the data
constrain best the equation of state w at z � 0:3, where we
find w�z � 0:3� � �1:011�0:095�0:176�0:264

�0:099�0:215�0:357: Thus z � 0:3
is the pivot point for the current measurements of equation
of state and the constraint here is nearly model indepen-
dent. This is confirmed by our analysis with w2. In this case
we find severe degeneracies among the 3 parameters, but
the value at z � 0:3 is

w �z � 0:3� � �0:981�0:106�0:205�0:269
�0:120�0:249�0:386; (16)

which is nearly the same as for the two parameter analysis
with w2 � 0. These constraints are shown in Fig. 10.

The corresponding constraint at z � 1 for two parameter
(w0, w1) analysis is w�z � 1� � �1:00�0:17�0:27�0:33

�0:28�0:66�1:00.
Adding w2 we find

w �z � 1� � �1:03�0:21�0:39�0:52
�0:28�0:58�0:85; (17)

so 1-� contours are nearly the same, while 2 and 3-�
contours expand in the positive direction and shrink in
the negative direction compared to 2-parameter analysis.
This value is thus also relatively independent of
parametrization.

Adding tensors and running to the 3-parameter expan-
sion of w gives,

w �z � 0:3� � �0:914�0:089�0:169�0:229
�0:106�0:225�0:343 (18)

and

w �z � 1:0� � �0:93�0:21�0:35�0:48
�0:25�0:56�0:90: (19)

This is shown in Fig. 11. Thus, in either case, there is no
evidence for any time dependence of the equation of state
and its value is remarkably close to �1 even at z � 1. As
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UROŠ SELJAK et al. PHYSICAL REVIEW D 71, 103515 (2005)

103515-14

(U. Seljak et al., PRD 71, 103515 (2005))



Structure Formation with Time-Varying w

CPL (Chevallier-Polarski-Linder) model:

w(a) = w0 + w1(1− a)

= [w0 + w1(1− ata)] + w1ata

(
1− a

ata

)
= wta + w1,ta

(
1− a

ata

)

wb

(
a

ata

)
= wta + w1,ta

(
1− a

ata

)
wc

(
R

Rta

)
= wta + w1,ta

(
1− R

Rta

)
In this way, wc = wb = wta at t = tta.

wta = w0 + w1(1− ata)

= w0 +
w1zta

1 + zta

w1,ta = w1ata =
w1

1 + zta



Structure Formation with Time-Varying w

Background Universe
ä

a
= −4πG

3
[ρ̄m + (1 + 3wb)ρ̄de]

˙̄ρm + 3

(
ȧ

a

)
ρ̄m = 0

˙̄ρde + 3(1 + wb)

(
ȧ

a

)
ρ̄de = 0

Spherical Overdensity

R̈

R
= −4πG

3
[ρm + (1 + 3wc)ρde]

ρ̇m + 3

(
Ṙ

R

)
ρm = 0

ρ̇de + 3(1 + wc)

(
Ṙ

R

)
ρde = 0

⇒ ρ̄de
ρ̄de,ta

= exp

[
3

∫ 1

a/ata

1 + wb(u)

u
du

]
= f

(
a

ata

)
= x−3(1+w0+w1)e−3w1(1−x)/(1+zta)

⇒ ρde
ρde,ta

= exp

[
3

∫ 1

R/Rta

1 + wc(u)

u
du

]
= f

(
R

Rta

)
= y−3(1+w0+w1)e−3w1(1−y)/(1+zta)



Structure Formation with Time-Varying w

dx

dτ
=

√
x−1 +

1

Qta
f

(
a

ata

)
x2

=

√
x−1 +

1

Qta
x−1−3(w0+w1)e−3w1(1−x)/(1+zta)

⇒ τta =

∫ 1

0

dx ′√
x ′−1 + 1

Qta
x ′−1−3(w0+w1)e−3w1(1−x ′)/(1+zta)

d2y

dτ2
= −1

2

[
ζy−2 +

(
1 + 3wc

Qcta

)
f

(
R

Rta

)
y

]
= −1

2

{
ζy−2 +

1

Qcta

[
1 + 3w0 + 3w1

(
1− y

1 + zta

)]
y−2−3(w0+w1)e−3w1(1−y)/(1+zta)

}
?Qta ≡

ρ̄m

ρ̄de

∣∣∣∣∣
zta

=
Ωm,0

Ωde,0

(1 + zta)−3(w0+w1)e3w1zta/(1+zta)

?Qcta ≡
ρ̄m

ρde

∣∣∣∣∣
zta

=
Qta

1 + r [ζ(w0,w1, zta, r)− 1]



Structure Formation with Time-Varying w
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Conclusions
We presuppose δNL

de,ta = rδNL
m,ta to remove the difficulty with

clustered DE in the SCM.

We treat the overdense region as an isolate system and determin
yvir(= Rvir/Rta) and the nonlinear overdensity ∆vir. Also we
distinguish ΛCDM from the clustering model of DE with w = −1.

∆vir in ΛCDM reaches the maximum value while for other clustered
DE models the amplitude of ∆vir is proportional to w .

We track down the complete evolution of the clustered matter and
DE by combining SCM with the linear evolution of density
perturbation at early times, equivalent to introducing the new
parameter r .

We have found that the criterion δm,i ≥ 2.2× 10−4 ∼ 2.5× 10−4

depending on w has to be fulfilled to form a cosmic structure.

The ratio r is less dependent on the initial matter density contrast
for cases with δm,i ≥ 5× 10−4.

We use observational data of galaxy clusters to constrain the
parameter r .

Our method can be extended to DE with time-varying w following
from the CPL model.


