Dynamical Gauge-Higgs Unification in Randall-Sundrum Spacetime

(based on HH, hep-Xh/0610XXX)

Hisaki Hatanaka (Chung-Yuan Christian Univerisy)

October 9, 2006

Plan of this Talk

- 1. Introduction to Gauge-Higgs Unification
- 2. Hosotani Mechanism on RS
- (a) SU(2) model
- (b) SU(3) model (Application for Dynamical Gauge Higgs Unification on RS)
- 3. Summary/Discussion

1. Introduction

Gauge Hierarchy problem

- ullet Difficulty in keeping Large Difference between M_{EW} (Electroweak Scale, Higgs mass scale $\sim O(100 {
 m GeV})$) and $M_{GUT}, M_{pl} > 10^{15} {
 m GeV}$ (GUT/Planck Scales)
- Triplet Doublet Problem in GUT theories
- Quadratic divergence of Higgs mass correction

$$m_h^2 = m_{h,0}^2 + \lambda \Lambda^2 \tag{1}$$

$$\simeq \lambda \Lambda^2 \qquad \Lambda : \text{cutoff scale} \qquad \qquad (2)$$

This is finetuning if $m_{h,0}, \Lambda \sim M_{pl,GUT}$.

Solution to the Gauge Hierarchy Problem

In 4-dimensional world

- Supersymmetry
- Dynamical Symmetry Breaking(technicolor, top-condensation)
- pseudo Nambu-Goldstone boson (PNGB), Little Higgs

In higher-dimension

- Large Extra Dimension Arkani-Hamed et al 1998
- Warped Extra Dimension Randall, Sundrum 1999
- Gauge Higgs Unification N.S.Manton, D.B.Fairlie (1979) (next slide)

Gauge-Higgs Unification

Gauge-Higgs Unification – Basic Idea

- ullet Consider Gauge Theory in Higher-Dimensional (D>4) space-time
- ullet regard extra component of gauge fields as higgs field in 4D

$$(A^{\mu}, A^{y} = H) \tag{3}$$

Higgs Potential can be induced dynamically
 "Dynamical Gauge-Higgs Unification"
 ("Hosotani mechanism" play a lore of generating effective potential,
 like "Coleman-Weinberg mechanism" in 4D Higgs theory)

Hosotani Mechanism

If the topology of the extra dimension allow the non-contractible loop along it,

- ullet Wilson line $W=\oint dygA_y$ becomes the non-integrable phase
- ullet In non-abelian gauge theory, W may break the gauge symmetry
- ullet In 5D theory, no potential term for A_y at tree level

Effective potential(flat extra dimension)

massless field (suppression factor $\sim e^{-mR}$ appear for massive field)

$$F(\theta) \equiv \frac{3}{128\pi^7 R^5} \operatorname{Re} \operatorname{Li}_5(e^{i\theta}), \operatorname{Re} \operatorname{Li}_5(e^{i\theta}) = \sum_{n=1}^{\infty} \frac{\cos n\theta}{n^5} \sim \cos \theta$$
 (4)

$$V_{eff}^{fd} = f(5) \sum_{i=1}^{N_c} F(\theta_i), \quad (N_c \text{fermion})$$
 (5)

$$V_{eff}^{ad} = f(5) \sum_{i=1}^{N_c} F(\theta_i), \text{ (adjoint fermion)}$$
 (6)

$$V_{eff}^{g+gh} = -(5-2)\sum_{i=1}^{N_c} F(\theta_i), \text{ (gauge + ghost)}$$

$$\tag{7}$$

here
$$\langle A_y \rangle = \frac{1}{2\pi gR} \operatorname{diag}(\theta_1 \cdots \theta_{N_c})$$

"Weirdness" of EWGHU

However, Naive models of GHU have several "weired" features.

1. "Yukawa" coupling

$$\int dy \, (\bar{\psi}_f g A_y \psi_f) \tag{8}$$

naively looks flavor-universal. It seems defficult to get mass hierarchy and mixing in this model

2. mass of fermions

$$m_f \sim \sqrt{\frac{\theta^2}{R^2} + m_{f,0}^2} \gtrsim \frac{\theta}{R}$$
 (9)

 θ : Wilson-line phase,

R: size of compactification

If mass of electron (or up,down quark) was generated by this mechanism, $R^{-1} \sim m_e$ (too large extra dimension), otherwise $|\theta| << 1$ (fine tuning)

3. Higgs mass is coming from second derivative of the effective potential (: no bare mass term for "Higgs" in DGHU)

$$m_H^2 = \frac{\partial^2 V(\langle H \rangle)}{\partial \langle H \rangle^2} \bigg|_{\langle H \rangle = \langle H \rangle_{min}} \simeq \sqrt{\alpha_W} m_W / \theta_W$$
 (10)

$$(m_W = 80.4 {\rm GeV}, \ \alpha_W = g_{SU(2)4D}^2/4\pi), \ \to \ m_H \sim 10 {\rm GeV}.$$

→ "Unbearable Lightness of Higgs"

4. Hosotani mechanism in flat space is very different from 4D Higgs (Coleman-Weinberg) mechanism:

contribution to the symmetry breaking

	4D Higgs(CW)	HM - flat		
fermions with	decouple	large effect		
small mass	(small Yukawa)	$e^{-mR} \sim 1$		
fermions with	large effect	decouple		
large mass	(large Yukawa)	$e^{-mR} \ll 1$		
1loop $V_{ m eff}$	include Λ	finite		

- 5. The Weinberg angle is determined by the gauge group ${\cal G}$
- 6. For most of the group G, $\sin^2 \theta_W$ is much different from experimental balue 0.23.

G	$\sin^2 \theta_W$
$\overline{SU(3)}$	$\overline{3/4}$
SO(5)	1/2
G_2	1/4

Within the non-warped extra dimension,

- 1. tuning small θ (Haba-Takenaga-Yamashita 2005) (Sakamoto Takenaga 2006)
- 2. geometrical hierarchy (Murayama etal 2002, Ibanez PLB181-269(1986))
- 3. introducing extra U(1) to tune $\sin^2 \theta_W$.

We hope some of these problems will be cured when the Hosotani mechanism be considered in Randall-Sundrum Warped Space... (next chapter)

Recent Topics of Electroweak Gauge-Higgs Unification

- Proof of Higher-loop finiteness
 - Two-loop (Maru et.al,)
 - Any higher-loop (Hosotani, 2006)
 - in deconstruction theory (Arkani-Hamed et.al, Phys.Lett. (2002)))
- ullet Mass correction for simply connected (S^2) case
 - scalar QED on $M^d \times S^2$ (HH-Inami-Lim(d=0), Maru-Yamashita(general d))
- EWGHU on Warped spacetime (Next Chapter)

Gauge-Higgs Unification on RS spacetime

Outline of EWGHU on RS

- ullet consider the Gauge theory $G\supset SU(2)\times U(1)$ on RS
- Gauge and Fermionic fields are living both on branes and in the bulk
- Hierarchy between EWPT and the Fundamental scale are obtained by RS mechanism
- EWPT is caused by the Hosotani mechanism (dynamical gauge higgs unification) – Higgs mass is stabilized by 5D gauge symmetry

DGHU on RS – Advantages

- 1. Orbifold (S^1/Z_2) topology ... Z_2 projection yields chiral fermion, and SU(2) fundamental Higgs from adjoint gauge field
- 2. Fermion mass hierarchy is obtained order-one tuning of bulk mass parameters
- 3. "Higgs mass" is enhanced by warp index "kR"
- 4. "Higgs" is naturally localized on TeV brane

Recent Works for GHU on Warped Spacetime

- ullet dual picture and phenomenology (Contino and Nomura 2003, Contino) utilizing AdS/CFT correspondence to consider composite Higgs model
- Hosotani mechanism
 - fermion part without bulk mass (Toms,)
 - gauge boson loop (Weiler-Oda, 2004)
 - Higgs mass and various phenomenology
 - * SU(3) model, W-boson coupling (Hosotan etal,05)
 - * $SO(5) \times U(1)$, WWZ,WWH,ZZH-couplings (Sakamura etal, 06)

2. Hosotani Mechanism on RS

Preliminary

Details on this part will appear on HEP preprint server (arXiv.org) soonly...

3. Summary and Discussion

Summary

- calculate the effective potential for fermion with bulk mass
- ullet apply to the SU(3) model again. Numerically analyzed the dynamical gauge-Higgs unification in the model

SU(3) model				
	flat	warped $(kR = 12.0)$		
Z-boson mass	$2m_W = 160 \text{GeV}$	$0\sim75{\sf GeV}$		
	(fixed)	depends on $ heta$		
fermion mass tuning	(hierarchical)	$\mathcal{O}(1)$ tuning		
Higgs mass	$\sim 10 {\rm GeV}$	$70\sim250{ m GeV}$		

Hosotani mechanism in warped space has good compatibility with 4D Higgs (Coleman-Weinberg) mechanism

contribution to the symmetry breaking

	4D Higgs(CW)	HM - flat	HM - warped
fermions with	decouple	large effect	decouple
small 4D-mass	(small Yukawa)	$e^{-mR} \sim 1$	(small overlap)
fermions with	large effect	decouple	large effect
large 4D-mass	(large Yukawa)	$e^{-mR} \ll 1$	(large overlap)
1-loop $V_{ m eff}$	include Λ	finite	finite

To be done...

- 1. How to get realistic $\sin^2 \theta_W$?
- 2. How to give masses to down-type quarks?
- 3. How to forbid massless fermions ("bino"," higgsino")?
- 4. This SU(3) model doesn't have custodial symmetry...
- 5. Something happneing on m_Z/m_W side. How about g_2/g_1 side?