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States with perfect correlation

I continuous system: EPR state (1935)

Ψ(x1, x2) =

∫ ∞
−∞

e(2πi/h)(x1−x2+x0)pdp

I finite-dimensional system: Bohm state (1951)

1√
2

(|01〉 − |10〉)
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Comparison of EPR state and Bohm state
I common:

• bi-partite systems.
• perfectly correlated.

I differences:
• Bohm state is well-defined;

EPR state is not well-defined.
• all states with perfect correlation on C2 ⊗ C2 are

unitarily equivalent to Bohm state;
for continuous system it is unknown.
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Problems:

I a well-defined formulation of EPR state

I rotated EPR states

I entanglement properties

I measurement of individual particles
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EPR states

The observable algebra of a particle is given by A(R2):

A(R2) =


n∑

j=1

cjW (uj)
∣∣∣ uj = (aj , bj) ∈ R2


In Schrödinger representation L(R)
W (u) can be represented as

πS(W (u)) = e i(aq̂+bp̂)

with

q̂ : position operator

p̂ : momentum operator
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EPR states

W (u) satisfies
the canonical commutation relation (CCR):

W (u)W (v) = e−iσ(u,v)/2W (u + v) (1)

with
σ(u, v) = u1v2 − u2v1, u, v ∈ R2. (2)
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EPR states

In A(R2) we have ∗-operation:

W (u)∗ = W (−u)

An observable associated with an measurement procedure
corresponds to an element A ∈ A(R2) with

A = A∗.

A state ω of a particle is given by a linear positive functional
on A(R2) with norm one:

ω : A(R2)→ C.
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EPR states

Let A = B = A(R2).
The observable algebra of two particles is then given by

A⊗ B ∼= A(R4)

where the elements W (u) ∈ A(R4) satisfy CCR similarly as
(1) with

σ2 = σ ⊕ σ.

In Schrödinger representation L(R2):

πS(W (a, 0,−a, 0)) = e ia(q̂1−q̂2), relative position

πS(W (0, b, 0, b)) = e ib(p̂1+p̂2), total momentum.
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EPR states

Halvorson (2000):
ωepr is a state on A(R4) that assigns
a dispersion-free value λ0 to q̂1 − q̂2 and
a dispersion-free value µ0 to p̂1 + p̂2.

ωepr (W (a, b, c , d)) = δ(a + c)δ(b − d)e i(aλ0+bµ0). (3)
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C ∗-algebraic formulation of quantum mechanics

C ∗-algebraic formulation of quantum mechanics:

1. A physical system is a C ∗-algebra A:
• ∗: A→ A∗

• C∗-norm: ‖A∗A‖ = ‖A‖2
• an observable: A = A∗

A is called the observable algebra.

2. A state ω of a physical system A is a positive linear
functional on A with norm one.

3. ω(A): the expectation value of A in ω.

4. The dynamics of a physical system A is a
∗-automorphism of A.
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C ∗-algebraic formulation of quantum mechanics

Examples:

1. Systems with finite dimensions:

A = Mn

ρ(A) = tr(ρA), ρ ≤ 0, trρ = 1

2. systems of infinitely many dimensions:

A = B(L(R))

ρ(A) = 〈Ω,AΩ〉, Ω ∈ L(R), ‖Ω‖ = 1
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C ∗-algebraic formulation of quantum mechanics

Examples:

1. Systems with finite dimensions:
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C ∗-algebraic formulation of quantum mechanics

I C ∗-algebra formulation of quantum mechanics is a
Heisenberg picture.

I For systems with finite degrees of freedom:

Heisenberg picture ≈ Schrödinger picture

I For systems with infinitely many degrees of freedom:

Heisenberg picture 6≈ Schrödinger picture
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EPR representations

Halvorson (2000):
Let l2(R2) be the Hilbert space of square-summable
functions from R2 to C:

f : R2 → C,

〈f |g〉 =
∑

f (λ, µ)g(λ, µ),

‖f ‖ = (
∑
|f (x)|2)1/2.
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EPR representations

ξ(λ,µ): the characteristic function of the set {(λ, µ)}:

ξ(λ,µ)(x , y) =

{
1 (x , y) = (λ, µ)

0 (x , y) 6= (λ, µ)

Define a linear mapping πepr : A(R4)→ B(l2(R2))

πepr (W (a, 0,−a, 0))ξ(λ,µ) = e iaλξ(λ,µ),

πepr (W (0, b/2, 0,−b/2))ξ(λ,µ) = ξ(λ−b,µ),

πepr (W (c/2, 0, c/2, 0))ξ(λ,µ) = ξ(λ,µ+c),

πepr (W (0, d , 0, d))ξ(λ,µ) = e idµξ(λ,µ).
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EPR representation

(l2(R2), πepr , ξ(0,0)) has properties:

I ξ(0,0) is cyclic for π(A⊗ B):

{π(A⊗ B)ξ(0,0)} = l2(R2)

I ωepr is represented as a vector state ξ(0,0):

ωepr (A) = (ξ(0,0), πepr (A)ξ(0,0)), ∀A ∈ A⊗ B

(l2(R2), πepr , ξ(0,0)) is called a GNS representation of ωepr .
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Rotated EPR states

Bohr (1935): in EPR states (q̂, p̂) cab be replaced (Q̂, P̂)

Q̂1 = q̂1 cos θ + q̂2 sin θ, Q̂2 = −q̂1 sin θ + q̂2 cos θ,

P̂1 = p̂1 cos θ + p̂2 sin θ, P̂2 = −p̂1 sin θ + p̂2 cos θ.

1. This corresponds to a rotation R in phase space.

2. The commutation relation remains, i.e.,

[Q̂j , P̂j ] = i , j = 1, 2.
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Rotated EPR states

Remark of Bohr (1935) + ωepr by Halvorson (2000)

⇒ rotated EPR states (Huang, 2007)
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Rotated EPR states

Introduce a new basis E = [u1, v1, u2, v2] for R4,

u1 = (cos θ, 0, sin θ, 0) v1 = (0, cos θ, 0, sin θ),

u2 = (− sin θ, 0, cos θ, 0), v2 = (0,− sin θ, 0, cos θ).

W (u1)⇔ Q̂1 W (v1)⇔ P̂1

W (u2)⇔ Q̂2, W (v2)⇔ P̂2.



Rotated EPR
States

Huang, Siendong

Outline

EPR states

EPR
representations

Rotated EPR
states

Perfect correlation

Summary

Rotated EPR states

I A state which assigns share values to W (u1) and W (v2)
has the same perfect correlation as the EPR states.

I Let (a, b, c , d)θ denote the coordinate vector of an
element x with respect to the new ordered basis
E = [u1, v1, u2, v2].

I A rotated EPR state ωθ such that Q̂1 and P̂2 have the
sharp value 0 can then be defined as

ωθ(W (a, b, c , d)θ) = δb,0δc,0 (4)
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Rotated EPR states

I σ2 is invariant under this rotation R:

RTσ2R = σ2

I ωθ is connected with the original EPR state ωepr :

ωθ = ωepr ◦ τR
ωθ(W (u)) = ωepr (W (Ru))

I τR is a ∗-automorphism,

τR(W (u)) = W (Ru)
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Rotated EPR states

Define πθ : A(R4)→ B(l2(R2)):

πθ(W (a, 0, 0, 0))ξ(λ,µ) = e ia cos θλξ(λ,µ−a sin θ),

πθ(W (0, b, 0, 0))ξ(λ,µ) = e−ib sin θµξ(λ−b cos θ,µ),

πθ(W (0, 0, c , 0))ξ(λ,µ) = e ic sin θλξ(λ,µ+c cos θ),

πθ(W (0, 0, 0, d))ξ(λ,µ) = e id cos θµξ(λ−d sin θ,µ).

ξ(0,0) has the following properties:

{πθ(A⊗ B)ξ(0,0)} = l2(R2)

ωθ(A) = (ξ(0,0), πθ(A)ξ(0,0))

(l2(R2), πθ, ξ(0,0)): GNS representation of ωθ
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Rotated EPR representation

Property I:
ξ(0,0) has the entanglement property:

{πθ(A)ξ(0,0)} = {πθ(B)ξ(0,0)} = l2(R2).
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Rotated EPR representation

Property (II):

Halvorson (2000):
ωepr maximally violate Bell’s inequalities.

Here: similar arguments as Halvorson (2000),
ωθ maximally violate Bell’s inequalities.



Rotated EPR
States

Huang, Siendong

Outline

EPR states

EPR
representations

Rotated EPR
states

Perfect correlation

Summary

Rotated EPR states

Property (II):

ωθ has the perfect correlation:

If the outcome of one measurement on one subsystem is
obtained, then the outcome of some measurement on the
other subsystem can be predicted with certain.
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Rotated EPR states

Property (IV):

No information about individual particle can be obtained!

I The operator q̂1 does not exist.
Due to the weak discontinuity of ωθ(W (a, 0, 0, 0))

ωθ(W (a, 0, 0, 0)) = 〈ξ(0,0), π(W (a, 0, 0, 0))ξ(0,0)〉

=

{
1, a = 0

0, a 6= 0
,

the limit does not exist!

lim
a→0

W (a, 0, 0, 0)− I
a

ξ(0,0) =: i q̂ ξ(0,0)

I Similarly, q̂2, p̂1 and p̂2 does not exist.
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Rotated EPR states

I Keyl, Schlingemann, and Werner (2003):
In an EPR states the probability of finding a particle at
infinity is one!

I Halvorson (2004):
In any representation where the position operator has
eigenstates, there is no momentum operator, and vice
versa.
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Rotated EPR states

Property (V):

The uncertainty principle implies that two representations πθ
and πθ′ are not unitarily equivalent if θ 6= θ′ + nπ or
θ 6= θ′ + (n + 1/2)π, i.e., there is no unitary operator U on
l2(R2) such that

πθ(W (x)) = U†πθ′(W (x))U

ξ(0,0) = Uξ(0,0)
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Rotated EPR states

I For finite systems Mn ⊗Mn:
states with perfect correlation:

Φ =
1√
n

n∑
j=1

|ej fj〉, {ej}, {fj} ONB for Cn

All states satisfying perfect correlation can transfered
into each other by a unitary operator on the same
vector space Cn ⊗ Cn.

I For infinite systems A(Rn):
there exists non-unitarily equivalent states satisfying
perfect correlation.
⇒ New entanglement phenomenon.
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Perfect correlation

A1, A2: two independent C ∗-algebras
ρ: state A1 ⊗A2

Perfect correlation (Werner, 1999): ∀A ∈ A1, ∃B ∈ A2

ρ((A− B)(A∗ − B∗)) = ρ((A∗ − B∗)(A− B)) = 0.

B: an EPR-double of A

(H, π,Ω): the GNS representation of ρ, ρ(A) = (Ω, π(A)Ω)

π(A)Ω = π(B)Ω, π(A)∗Ω = π(B)∗Ω.
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Perfect correlation

For ωθ with (l2(R2), πθ, ξ(0,0)) define an anti-unitary
operator J:

J[cχ(λ cos θ,µ sin θ)] = e−iλµ cos 2θ c χ(−λ cos θ,−µ sin θ)

The only EPR-double of W (a, b, 0, 0) ∈ A is given by

B = exp(i(aλ0/ cos θ − bµ0/ sin θ))

×W (0, 0,−a sin θ/ cos θ, b cos θ/ sin θ) ∈ B.

⇒ ωθ satisfies the perfect correlation.
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Summary

1. Rotated EPR states ωθ is constructed!

2. No information of individual particle from ωθ can be
obtained!

3. ωθ non-unitarily equivalent to ωθ′

4. Another construction ωφ:

ωφ(W (a, b, c , d)φ) = δb,0δc,0e
i(aλ0+dµ0)

s1 = (cosφ, 0, 0, sinφ) t1 = (0, cosφ,− sinφ, 0),

s2 = (− sinφ, 0, 0, cosφ), t2 = (0,− sinφ,− cosφ, 0).
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Thank you for your attention!
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