sdhuang@mail.ndhu.edu.tw

Department of Applied Mathematics National Dong Hwa University Shoufeng, Hualien

March 10, 2009

Rotated EPR States

Huang, Siendong

Outline

EDD at

EPR

represent

Rotated EPR

Perfect correlation

Rotated EPF tates

Perfect correlation

Summary

States with perfect correlation

continuous system: EPR state (1935)

$$\Psi(x_1, x_2) = \int_{-\infty}^{\infty} e^{(2\pi i/h)(x_1 - x_2 + x_0)p} dp$$

▶ finite-dimensional system: Bohm state (1951)

$$rac{1}{\sqrt{2}}(\ket{01}-\ket{10})$$

Perfect correlation

Summary

Comparison of EPR state and Bohm state

- common:
 - bi-partite systems.
 - perfectly correlated.
- differences:
 - Bohm state is well-defined;
 EPR state is not well-defined.
 - all states with perfect correlation on $\mathbb{C}^2 \otimes \mathbb{C}^2$ are unitarily equivalent to Bohm state; for continuous system it is unknown.

Outline

Rotated EPR States

Huang, Siendong

Outline

EPR state:

representations

Rotated EPR states

Perfect correlation

Summary

Problems:

- a well-defined formulation of EPR state
- rotated EPR states
- entanglement properties
- measurement of individual particles

Outline

FPR stat

EPK representations

otated EPR

Perfect correlation

Summary

EPR states

EPR representations

Rotated EPR states

Perfect correlation

Perfect correlation

Summary

The observable algebra of a particle is given by $\mathcal{A}(\mathbb{R}^2)$:

$$\mathcal{A}(\mathbb{R}^2) = \left\{ \sum_{j=1}^n c_j W(u_j) \mid u_j = (a_j, b_j) \in \mathbb{R}^2 \right\}$$

In Schrödinger representation $\mathcal{L}(\mathbb{R})$ W(u) can be represented as

$$\pi_{\mathcal{S}}(W(u)) = e^{i(a\hat{q}+b\hat{p})}$$

with

 \hat{q} : position operator

 \hat{p} : momentum operator

states

Perfect correlation

Summarv

(1)

W(u) satisfies the canonical commutation relation (CCR):

$$W(u)W(v) = e^{-i\sigma(u,v)/2}W(u+v)$$

with

$$\sigma(u, v) = u_1 v_2 - u_2 v_1, \quad u, v \in \mathbb{R}^2.$$
 (2)

In $\mathcal{A}(\mathbb{R}^2)$ we have *-operation:

$$W(u)^* = W(-u)$$

An observable associated with an measurement procedure corresponds to an element $A \in \mathcal{A}(\mathbb{R}^2)$ with

$$A = A^*$$
.

A state ω of a particle is given by a linear positive functional on $\mathcal{A}(\mathbb{R}^2)$ with norm one:

$$\omega : \mathcal{A}(\mathbb{R}^2) \to \mathbb{C}.$$

Perfect correlation

Summary

Let $\mathcal{A} = \mathcal{B} = \mathcal{A}(\mathbb{R}^2)$.

The observable algebra of two particles is then given by

$$\mathcal{A}\otimes\mathcal{B}\cong\mathcal{A}(\mathbb{R}^4)$$

where the elements $W(u) \in \mathcal{A}(\mathbb{R}^4)$ satisfy CCR similarly as (1) with

$$\sigma_2 = \sigma \oplus \sigma$$
.

In Schrödinger representation $\mathcal{L}(\mathbb{R}^2)$:

$$\pi_{\mathcal{S}}(W(a,0,-a,0)) = e^{ia(\hat{q}_1-\hat{q}_2)},$$
 relative position $\pi_{\mathcal{S}}(W(0,b,0,b)) = e^{ib(\hat{p}_1+\hat{p}_2)},$ total momentum.

representation

Rotated EPR states

Perfect correlation

Summary

Halvorson (2000):

 ω_{epr} is a state on $\mathcal{A}(\mathbb{R}^4)$ that assigns a dispersion-free value λ_0 to $\hat{q}_1 - \hat{q}_2$ and a dispersion-free value μ_0 to $\hat{p}_1 + \hat{p}_2$.

$$\omega_{epr}(W(a,b,c,d)) = \delta(a+c)\delta(b-d)e^{i(a\lambda_0+b\mu_0)}.$$
 (3)

C^* -algebraic formulation of quantum mechanics

 C^* -algebraic formulation of quantum mechanics:

Rotated EPR States

Huang, Siendong

Dutline

EPR states

EPR

lotated EPR tates

Perfect correlation

Huang, Siendong

Outline

EPR states

representations

otated EPR

Perfect correlation

ummary

 C^* -algebraic formulation of quantum mechanics:

1. A physical system is a C^* -algebra \mathcal{A} :

representations

Rotated EPR

Perfect correlation

ummary

 C^* -algebraic formulation of quantum mechanics:

- 1. A physical system is a C^* -algebra \mathcal{A} :
 - *: $A \rightarrow A^*$

representations

Rotated EPR states

Perfect correlation

ummary

C*-algebraic formulation of quantum mechanics:

- 1. A physical system is a C^* -algebra \mathcal{A} :
 - *: A → A*
 - C^* -norm: $||A^*A|| = ||A||^2$

Perfect correlation

Summary

 C^* -algebraic formulation of quantum mechanics:

- 1. A physical system is a C^* -algebra \mathcal{A} :
 - *: $A \rightarrow A^*$
 - C^* -norm: $||A^*A|| = ||A||^2$
 - an observable: $A = A^*$

Perfect correlation

Summary

 C^* -algebraic formulation of quantum mechanics:

- 1. A physical system is a C^* -algebra \mathcal{A} :
 - *: A → A*
 - C^* -norm: $||A^*A|| = ||A||^2$
 - an observable: $A = A^*$

 \mathcal{A} is called the **observable algebra**.

Perfect correlation

Summary

C*-algebraic formulation of quantum mechanics:

- 1. A physical system is a C^* -algebra \mathcal{A} :
 - *: A → A*
 - C^* -norm: $||A^*A|| = ||A||^2$
 - an observable: $A = A^*$

 \mathcal{A} is called the **observable algebra**.

2. A **state** ω of a physical system \mathcal{A} is a positive linear functional on \mathcal{A} with norm one.

Perfect correlation

Summary

C*-algebraic formulation of quantum mechanics:

- 1. A physical system is a C^* -algebra \mathcal{A} :
 - *: A → A*
 - C^* -norm: $||A^*A|| = ||A||^2$
 - an observable: $A = A^*$

 \mathcal{A} is called the **observable algebra**.

- 2. A **state** ω of a physical system \mathcal{A} is a positive linear functional on \mathcal{A} with norm one.
- 3. $\omega(A)$: the **expectation value** of A in ω .

- C^* -algebraic formulation of quantum mechanics:
 - 1. A physical system is a C^* -algebra \mathcal{A} :
 - *: A → A*
 - C^* -norm: $||A^*A|| = ||A||^2$
 - an observable: $A = A^*$

 \mathcal{A} is called the **observable algebra**.

- 2. A **state** ω of a physical system \mathcal{A} is a positive linear functional on \mathcal{A} with norm one.
- 3. $\omega(A)$: the **expectation value** of A in ω .
- The dynamics of a physical system A is a *-automorphism of A.

EPR

representations

Rotated EPR states

Perfect correlation

Summary

Examples:

1. Systems with finite dimensions:

$$\mathcal{A} = M_n$$

 $\rho(A) = \operatorname{tr}(\rho A), \quad \rho \leq 0, \quad \operatorname{tr}\rho = 1$

representation

Rotated EPR states

Perfect correlation

Summary

Examples:

1. Systems with finite dimensions:

$$\mathcal{A} = M_n$$

 $\rho(A) = \operatorname{tr}(\rho A), \quad \rho \leq 0, \quad \operatorname{tr}\rho = 1$

2. systems of infinitely many dimensions:

$$egin{array}{lcl} \mathcal{A} &=& \mathcal{B}(\mathcal{L}(\mathbb{R})) \
ho(\mathcal{A}) &=& \langle \Omega, \mathcal{A}\Omega
angle, & \Omega \in \mathcal{L}(\mathbb{R}), & \|\Omega\| = 1 \end{array}$$

C^* -algebraic formulation of quantum mechanics

Rotated EPR States

Huang, Siendong

Outline

EPR states

EPR

ates

Perfect correlation

C*-algebraic formulation of quantum mechanics

Rotated EPR States

Huang, Siendong

Jutline

EPR states

EFR

representations

tates

Perfect correlation

ummary

► C*-algebra formulation of quantum mechanics is a Heisenberg picture.

C*-algebraic formulation of quantum mechanics

Rotated EPR States

Huang, Siendong

Jutline

EPR states

EPR

representations

tates

Perfect correlation

ummary

C*-algebra formulation of quantum mechanics is a Heisenberg picture.

For systems with finite degrees of freedom:

Heisenberg picture \approx Schrödinger picture

representations

tates

Perfect correlation

ummary

C*-algebra formulation of quantum mechanics is a Heisenberg picture.

► For systems with finite degrees of freedom:

Heisenberg picture ≈ Schrödinger picture

► For systems with infinitely many degrees of freedom:

Heisenberg picture ≉ Schrödinger picture

EPR representations

Halvorson (2000):

Let $l_2(\mathbb{R}^2)$ be the Hilbert space of square-summable functions from \mathbb{R}^2 to \mathbb{C} :

$$f: \mathbb{R}^2 \to \mathbb{C},$$

$$\langle f|g \rangle = \sum \overline{f(\lambda,\mu)}g(\lambda,\mu),$$

$$\|f\| = (\sum |f(x)|^2)^{1/2}.$$

Rotated EPR States

Huang, Siendong

Outline

FPR state

EPR representations

Rotated EPR

Perfect correlation

Perfect correlation

Summary

 $\xi_{(\lambda,\mu)}$: the characteristic function of the set $\{(\lambda,\mu)\}$:

$$\xi_{(\lambda,\mu)}(x,y) = \begin{cases} 1 & (x,y) = (\lambda,\mu) \\ 0 & (x,y) \neq (\lambda,\mu) \end{cases}$$

Define a linear mapping $\pi_{epr}: \mathcal{A}(\mathbb{R}^4) o \mathcal{B}(\mathit{l}_2(\mathbb{R}^2))$

$$\begin{array}{rcl} \pi_{epr}(W(a,0,-a,0))\xi_{(\lambda,\mu)} & = & e^{ia\lambda}\xi_{(\lambda,\mu)}, \\ \pi_{epr}(W(0,b/2,0,-b/2))\xi_{(\lambda,\mu)} & = & \xi_{(\lambda-b,\mu)}, \\ \pi_{epr}(W(c/2,0,c/2,0))\xi_{(\lambda,\mu)} & = & \xi_{(\lambda,\mu+c)}, \\ \pi_{epr}(W(0,d,0,d))\xi_{(\lambda,\mu)} & = & e^{id\mu}\xi_{(\lambda,\mu)}. \end{array}$$

Summary

 $(I_2(\mathbb{R}^2), \pi_{epr}, \xi_{(0,0)})$ has properties:

• $\xi_{(0,0)}$ is cyclic for $\pi(A \otimes B)$:

$$\overline{\{\pi(\mathcal{A}\otimes\mathcal{B})\xi_{(0,0)}\}}=\mathit{I}_{2}(\mathbb{R}^{2})$$

• ω_{epr} is represented as a vector state $\xi_{(0,0)}$:

$$\omega_{epr}(A) = (\xi_{(0,0)}, \pi_{epr}(A)\xi_{(0,0)}), \quad \forall A \in \mathcal{A} \otimes \mathcal{B}$$

 $(I_2(\mathbb{R}^2), \pi_{epr}, \xi_{(0,0)})$ is called a **GNS** representation of ω_{epr} .

EPR representations

Rotated EPR states

Perfect correlation

- Bohr (1935): in EPR states (\hat{q}, \hat{p}) cab be replaced (\hat{Q}, \hat{P})
 - $$\begin{split} \hat{Q}_1 &= \hat{q}_1 \cos \theta + \hat{q}_2 \sin \theta, \qquad \hat{Q}_2 &= -\hat{q}_1 \sin \theta + \hat{q}_2 \cos \theta, \\ \hat{P}_1 &= \hat{p}_1 \cos \theta + \hat{p}_2 \sin \theta, \qquad \hat{P}_2 &= -\hat{p}_1 \sin \theta + \hat{p}_2 \cos \theta. \end{split}$$
 - 1. This corresponds to a rotation R in phase space.
 - 2. The commutation relation remains, i.e.,

$$[\hat{Q}_j, \hat{P}_j] = i, \quad j = 1, 2.$$

Rotated EPR States

Huang, Siendong

Outline

EPK

Rotated EPR states

Perfect correlation

Summary

Remark of Bohr (1935) + ω_{epr} by Halvorson (2000)

 \Rightarrow rotated EPR states (Huang, 2007)

Rotated EPR States

Huang, Siendong

Jutline

...

EPR

Rotated EPR states

Perfect correlation

Introduce a new basis
$$E = [u_1, v_1, u_2, v_2]$$
 for \mathbb{R}^4 ,

$$u_1 = (\cos \theta, 0, \sin \theta, 0)$$
 $v_1 = (0, \cos \theta, 0, \sin \theta),$
 $u_2 = (-\sin \theta, 0, \cos \theta, 0),$ $v_2 = (0, -\sin \theta, 0, \cos \theta).$

$$W(u_1) \Leftrightarrow \hat{Q}_1$$
 $W(v_1) \Leftrightarrow \hat{P}_1$ $W(u_2) \Leftrightarrow \hat{Q}_2,$ $W(v_2) \Leftrightarrow \hat{P}_2.$

representations

Rotated EPR states

Perfect correlation

ummary

A state which assigns share values to $W(u_1)$ and $W(v_2)$ has the same perfect correlation as the EPR states.

_

- A state which assigns share values to $W(u_1)$ and $W(v_2)$ has the same perfect correlation as the EPR states.
- Let $(a, b, c, d)_{\theta}$ denote the coordinate vector of an element x with respect to the new ordered basis $E = [u_1, v_1, u_2, v_2]$.

Perfect correlation

- A state which assigns share values to $W(u_1)$ and $W(v_2)$ has the same perfect correlation as the EPR states.
- Let $(a, b, c, d)_{\theta}$ denote the coordinate vector of an element x with respect to the new ordered basis $E = [u_1, v_1, u_2, v_2]$.
- ▶ A **rotated EPR state** ω_{θ} such that \hat{Q}_1 and \hat{P}_2 have the sharp value 0 can then be defined as

$$\omega_{\theta}(W(a,b,c,d)_{\theta}) = \delta_{b,0}\delta_{c,0} \tag{4}$$

 $ightharpoonup \sigma_2$ is invariant under this rotation R:

$$R^T \sigma_2 R = \sigma_2$$

Rotated EPR States

Huang, Siendong

Outline

EPR

representations

Rotated EPR states

Perfect correlation

Perfect correlation

Summary

• σ_2 is invariant under this rotation R:

$$R^T \sigma_2 R = \sigma_2$$

 \blacktriangleright ω_{θ} is connected with the original EPR state ω_{epr} :

$$\omega_{ heta} = \omega_{epr} \circ \tau_{R}$$
 $\omega_{ heta}(W(u)) = \omega_{epr}(W(Ru))$

Perfect correlation

Summary

• σ_2 is invariant under this rotation R:

$$R^T \sigma_2 R = \sigma_2$$

 $\blacktriangleright \omega_{\theta}$ is connected with the original EPR state ω_{epr} :

$$\omega_{ heta} = \omega_{epr} \circ \tau_{R}$$
 $\omega_{ heta}(W(u)) = \omega_{epr}(W(Ru))$

 $ightharpoonup au_R$ is a *-automorphism,

$$\tau_R(W(u)) = W(Ru)$$

Define $\pi_{\theta}: \mathcal{A}(\mathbb{R}^4) \to \mathcal{B}(I_2(\mathbb{R}^2))$:

 $\pi_{\theta}(W(a,0,0,0))\xi_{(\lambda,\mu)} = e^{ia\cos\theta\lambda}\xi_{(\lambda,\mu-a\sin\theta)},$ $\pi_{\theta}(W(0,b,0,0))\xi_{(\lambda,\mu)} = e^{-ib\sin\theta\mu}\xi_{(\lambda-b\cos\theta,\mu)},$ $\pi_{\theta}(W(0,0,c,0))\xi_{(\lambda,\mu)} = e^{ic\sin\theta\lambda}\xi_{(\lambda,\mu+c\cos\theta)}$ $\pi_{\theta}(W(0,0,0,d))\xi_{(\lambda,\mu)} = e^{id\cos\theta\mu}\xi_{(\lambda-d\sin\theta,\mu)}.$

 $\xi_{(0,0)}$ has the following properties:

$$\overline{\{\pi_{\theta}(\mathcal{A} \otimes \mathcal{B})\xi_{(0,0)}\}} = l_2(\mathbb{R}^2)
\omega_{\theta}(A) = (\xi_{(0,0)}, \pi_{\theta}(A)\xi_{(0,0)})$$

 $(I_2(\mathbb{R}^2), \pi_{\theta}, \xi_{(0,0)})$: GNS representation of ω_{θ}

Rotated EPR representation

Rotated EPR States

Huang, Siendong

Outline

EPR

Rotated EPR states

Perfect correlation

Summary

Property I:

 $\xi_{(0,0)}$ has the entanglement property:

$$\overline{\{\pi_{\theta}(\mathcal{A})\xi_{(0,0)}\}} = \overline{\{\pi_{\theta}(\mathcal{B})\xi_{(0,0)}\}} = I_2(\mathbb{R}^2).$$

Rotated EPR representation

Rotated EPR States

Huang, Siendong

Outline

EPR .

Rotated EPR states

Perfect correlation

Summary

```
Property (II):
```

Halvorson (2000): $\omega_{\it epr}$ maximally violate Bell's inequalities.

Here: similar arguments as Halvorson (2000), ω_{θ} maximally violate Bell's inequalities.

Rotated EPR States

Huang, Siendong

Outline

EPR

Rotated EPR states

Perfect correlation

Summary

Property (II):

 ω_{θ} has the perfect correlation:

If the outcome of one measurement on one subsystem is obtained, then the outcome of some measurement on the other subsystem can be predicted with certain.

Property (IV):

No information about individual particle can be obtained!

The operator \hat{q}_1 does not exist. Due to the weak discontinuity of $\omega_{\theta}(W(a,0,0,0))$

$$\omega_{\theta}(W(a,0,0,0)) = \langle \xi_{(0,0)}, \pi(W(a,0,0,0)) \xi_{(0,0)} \rangle$$

$$= \begin{cases} 1, & a = 0 \\ 0, & a \neq 0 \end{cases}$$

the limit does not exist!

$$\lim_{a\to 0} \frac{W(a,0,0,0) - \mathbb{I}}{a} \, \xi_{(0,0)} =: i\hat{q} \, \xi_{(0,0)}$$

▶ Similarly, \hat{q}_2 , \hat{p}_1 and \hat{p}_2 does not exist.

EPK representation

Rotated EPR states

Perfect correlation

- Keyl, Schlingemann, and Werner (2003): In an EPR states the probability of finding a particle at infinity is one!
- ► Halvorson (2004): In any representation where the position operator has eigenstates, there is no momentum operator, and vice versa.

EPR representations

Rotated EPR states

Perfect correlation

Property (V):

The uncertainty principle implies that two representations π_{θ} and $\pi_{\theta'}$ are not unitarily equivalent if $\theta \neq \theta' + n\pi$ or $\theta \neq \theta' + (n+1/2)\pi$, i.e., there is no unitary operator U on $I_2(\mathbb{R}^2)$ such that

$$\pi_{\theta}(W(x)) = U^{\dagger}\pi_{\theta'}(W(x))U$$

 $\xi_{(0,0)} = U\xi_{(0,0)}$

Perfect correlation

Summary

► For finite systems $M_n \otimes M_n$: states with perfect correlation:

$$\Phi = rac{1}{\sqrt{n}} \sum_{j=1}^n |e_j f_j
angle, \quad \{e_j\}, \{f_j\} \; \mathsf{ONB} \; \mathsf{for} \; \mathbb{C}^n$$

All states satisfying perfect correlation can transfered into each other by a unitary operator on the same vector space $\mathbb{C}^n \otimes \mathbb{C}^n$.

- For infinite systems $\mathcal{A}(\mathbb{R}^n)$: there exists non-unitarily equivalent states satisfying perfect correlation.
 - \Rightarrow New entanglement phenomenon.

Perfect correlation

 A_1 , A_2 : two independent C^* -algebras ρ : state $\mathcal{A}_1 \otimes \mathcal{A}_2$

Perfect correlation (Werner, 1999): $\forall A \in A_1, \exists B \in A_2$

$$\rho((A-B)(A^*-B^*)) = \rho((A^*-B^*)(A-B)) = 0.$$

B: an EPR-double of A

$$(\mathcal{H}, \pi, \Omega)$$
: the GNS representation of ρ , $\rho(A) = (\Omega, \pi(A)\Omega)$
$$\pi(A)\Omega = \pi(B)\Omega, \quad \pi(A)^*\Omega = \pi(B)^*\Omega.$$

Perfect correlation

Summary

For ω_{θ} with $(I_2(\mathbb{R}^2), \pi_{\theta}, \xi_{(0,0)})$ define an anti-unitary operator J:

$$J[c\chi_{(\lambda\cos\theta,\mu\sin\theta)}] = e^{-i\lambda\mu\cos2\theta}\,\overline{c}\,\chi_{(-\lambda\cos\theta,-\mu\sin\theta)}$$

The only EPR-double of $W(a, b, 0, 0) \in A$ is given by

$$B = \exp(i(a\lambda_0/\cos\theta - b\mu_0/\sin\theta)) \times W(0, 0, -a\sin\theta/\cos\theta, b\cos\theta/\sin\theta) \in \mathcal{B}.$$

 $\Rightarrow \omega_{\theta}$ satisfies the perfect correlation.

1. Rotated EPR states ω_{θ} is constructed!

Rotated EPR States

Huang, Siendong

Outline

EPR states

EPR

representation

Rotated EPR tates

Perfect correlation

Rotated EPR States

Huang, Siendong

Outline

EDR ct-

EPK

otated EPF

Perfect correlation

- 1. Rotated EPR states ω_{θ} is constructed!
- 2. No information of individual particle from ω_{θ} can be obtained!

Rotated EPR States

Huang, Siendong

Outline

FPR sta

EPR

representations

states

Perfect correlation

- 1. Rotated EPR states ω_{θ} is constructed!
- 2. No information of individual particle from ω_{θ} can be obtained!
- 3. ω_{θ} non-unitarily equivalent to $\omega_{\theta'}$

Rotated EPR

Perfect correlation

- 1. Rotated EPR states ω_{θ} is constructed!
- 2. No information of individual particle from ω_{θ} can be obtained!
- 3. ω_{θ} non-unitarily equivalent to $\omega_{\theta'}$
- 4. Another construction ω_{ϕ} :

$$\omega_{\phi}(W(a,b,c,d)_{\phi}) = \delta_{b,0}\delta_{c,0}e^{i(a\lambda_0+d\mu_0)}$$

$$s_1 = (\cos \phi, 0, 0, \sin \phi)$$
 $t_1 = (0, \cos \phi, -\sin \phi, 0),$
 $s_2 = (-\sin \phi, 0, 0, \cos \phi),$ $t_2 = (0, -\sin \phi, -\cos \phi, 0).$

Thank you for your attention!

Rotated EPR States

Huang, Siendong

Outline

EPR states

EPK representati

representation

tates

Perfect correlation