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Motivation

QCD phase diagram: the first appearance [Cabibbo and Parisi ‘75]
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Fig. 1. Schematic phase diagram of hadronic matter. pyg is the
density of baryonic number. Quarks are confined in phase I
and unconfined in phase Il.




QCD phase diagram: the evolution

[McLerran, hep-ph/0202025]

The Evolving QCD Phase Transition
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The ground state of cold, very
dense QCD might be color
superconductor!

But as for the not-so-dense
regime......???
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Real QCD phase diagram | [Alford et al., 0709.4635]
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Real QCD phase diagram Il [Shovkovy et al., hep-ph/0503184]
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For large N, QCD at low T and high density

At the limit N_ = oo with fixed A = g2 N_, the color superconductivity is
suppressed due to color non-singlet quark “Cooper pair”:

—Const&

(w'y)e
—> No color superconducting or CFL phase at high density!

What can we see at N> oo ?7?

Chiral density wave (DGR Instability) [Deryagin, Grigoriev, and Rubakov "92]

In the perturbative regime g N << 1,
_c
(T (X (y)) ceP*YE(x—y)  with F()xe

* Color singlet condensate, dominating the N.— o= [imit.
* spatially modulated chiral density wave
* Instability of the Fermi surface against formation of the chiral density wave




Quarkyonic phase?? [McLerran & Pisarski, 0706.2191; Kojo et al., 0912.3800]
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(Plot adapted from Pizarski‘s talk ,,Phase Diagram of QCD at large Nc” in 2007)




Question to answer in today‘s talk:

What is the phase at finite density in the picture of holographic QCD?
Is there any dynamical instability?
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Holographic QCD

Gravity/Gauge Theory correspondence

= A map between gravity and gauge theory
Large .N gauge theory — Classical gravitational theory
In d-dim spacetime In (d+1)-dim spacetime
= The best developed example
N=4 Super Yang-Mills  A=guN /4N, O A  SO(24)xSO(6)
String theory in AdScxS® R*/a” Os ¢ m  SO(2,4)xSO(6)

Prescription:
Ao (=Y 5
<ef ! JQD(I)O(I}>CFT — Zst-;r"i'n'g [G)(I' -Z)

— C’u(f)]

z=0)




[Witten, hep-th/9803131]
Witten‘s Idea of Holographic Realization of 4d pure Yang-Mills

Starting from N=2 supersymmetric gauge theory on N_ D4-branes (5d) compacti-
fied on St with radius p_:
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Taking antiperiodic boundary condition for the fermions to break SUSY:
- Fermions mass ~ 1/ p_ (tree level)

- scalars mass ~ 1-loop effect

At scale << compactification radius p_, the effective theory is 4d pure QCD.




[Aharony et al., hep-th/0604161]

Dual geometry of thermal gauge theory (in the near horizon limit of the D4-branes)
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Witten‘s Idea of Holographic Realization of 4d pure Yang-Mills



Bulk thermal transition: (analogous to Hawking-Page transition)

High-temperature phase:

3 3
1 U2 R)2( du? UK
dszz(ﬁ) (f(U)dt2+dxi2+dx§)+(Uj ( +U2dej, f(U)=1—U—T3

f(U)
A7 R%? 1

Quark-anti-quark potential decays with distance:
—> deconfined phase

T

Low-temperature phase:

4 4 R3/2
X AX4=?”W U g R g dU2 U3
S ds? = = | (dE o+ F U)K )+| — LU0 fU)=1-—k
R u)fu) Ul
1
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Quark-anti-quark potential grows with distance:
— confined phase

Witten‘s Idea of Holographic Realization of 4d pure Yang-Mills



[Sakai & Sugimoto, hep-th/0412141, 0507073]
Sakai-Sugimoto (SS) Holographic QCD Model:

adding quarks by introducing N; D8 and N, D8-brane probes: (N.<<N)

N.D4 0123 (4)
N,D8/D8 0123 56789

Picture before taking the weak coupling

: . limit
X, X
i _ 4-8 strings: chiral quark
N;D8 / W‘CC\ 4-8 strings: anti-chiral quark
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N; flavors:
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 Supergravity dual (weak coupling limit) of confined phase

U=U,, U=U, U=oo

K

D8- and D8-branes are embedded
in the cigar-shaped background

s=-—------=

D8- and D8-branes are smoothly connected at U, => Chiral symmetry is broken
U(N;) xU(N;)g _>U(Nf)diag

In which U(1); corresponds to the conserved number of quarks

Sakai-Sugimoto (SS) Holographic QCD Model:



 Supergravity dual (weak coupling limit) of deconfined phase

U=U; U=U, ~ Us=oo

There are two D8-D8 pair configurations
for certain T and L:

A: chiral symmetry broken

B: Chiral symmetry restored (QGP)

The thermodynamically favored configuration carry lower free energy.

Phase transition:
As T increases, A—> B. In this case chiral symmetry restoration happens above
deconfinement temperature

[Aharony et al., hep-th/0604161]
As asymptotic separation L>0.97p_ deconfinement coincides with x-phase transition.

Sakai-Sugimoto (SS) Holographic QCD Model:



Bulk thermal transition in SS model:

N\
T U
U/T‘—PU:OO
( ': X4(f AX, = 270, Deconfined phase, restored chiral
. < symmetry (QGP)
4 R3? 1
"""""""" At_?ul/z =,3=?
T
U, ——> U=eo
{ AX, =27p, Deconfined phase, broken chiral symmetry
U
Uk N
4z R? : :
x4 AX, =< i Confined phase, broken chiral symmetry
KK

Sakai-Sugimoto (SS) Holographic QCD Model:



[Sakai & Sugimoto, hep-th/0412141]
[Hata-Sakai-Sugimoto-Yamato, hep-th/0701280]

Sakai-Sugimoto Model with Finite Baryon Density

Sps = Spai +Scs. The Sy, part gives rise to 4d meson spectrum. The S is given by

1 1 3 NC
Ses =Ts | 0sCs ATr &P (27 F) =T, [ 55Cs AT (270’ F) = = IM4XR”5(@A“)
In general
i 1
A) =t (AF? —— AT — — A
@5 () ( 5 10 )

If we expand the U(N,) gauge field «& into SU(N;) part A and U(1) part A:
1 .
For N;=2, by solving the full YM+CS e.o.m of D8, one finds an instanton solution

A= AT+

N
such that Scs :T;IM . AtrF? i.e U(1) gauge field is sourced by the instanton.




*Instanton as Baryon in SS model

The instanton sourcing U(1) electric gauge potential is regarded as a baryon by
identifying it with D4-branes wrapping S%.

Applying Witten‘s proposal in hep-th/9805112, the RR field F,) charges up the D4-
branes (wrapping S*) under U(1) via

1
EL& Ay A |:(4) = Nc_[Ao
= N_ Strings attaching the wrapped D4 and probe D8 (in SS model)

— Baryonic vertex on D8

For this configuration to be stable, wrapped D4 must be attracted to D8

= Instanton on the D8 worldvolume

. o o [Domokos & Ha(vey, 0704.1604.; Nakamura et al., 0911.0679]
The CS term induces dynamic instability in holographic QCD, which we’‘ll see later.

Sakai-Sugimoto Model with Finite Baryon Density



*The D4-instanton profile in our case:

The instanton locates at U=U_ and smeared along (x,x,,X3):

Mo [ A ATHF?) = N, A U)

81°

Where n, is the instanton number(D4-charges) density, n, the baryon number density

éter _nSU-U)d>U S =

\T N TB R.E' N f 1]_'—3 37(24 n L P'M'TC N f TLg I’J:?) .'?
v s b= "ora/RIN
¥ v The D8-D8 develops a cusp
— B due to pulling of the instanton.
The cusp angle
U - U 2
1N, nb
NG C0SO, = —F———
- Uc Te— R nb + U C
Smooth D8 — D8 for n, =0 D8 — DR with a cusp for nonzero n, by the force balance condition.

Sakai-Sugimoto Model with Finite Baryon Density



*Effect of n, on chiral symmetry restoration in the deconfined geometry

x4

an /

—« U
k‘\\

D8 — D8 with a cusp for nonzero n,

As baryon number density n, increases (below a critical value), the tension of D4
increase, and the tip of D8-D8 is pulled towards the horizon. However if n, is too

Sakai-Sugimoto Model with Finite Baryon Density



Dynamical Instability

The dual geometries in SS model

" Low temperature phase

N RN UNS,
dse = ()" Onwdada) + (57 ) () W) + 375 ) aU* + U2
_ (@2m)*EN. . U\ L Uk | 4 R3/?
= High-temperature phase

U U R 1 R
d 2 _ (2 3/2 —h(U dt2 d- 2 ~y3/2..2 N3/ & dUE s SXZUEdQZ
s* = (R [=hU)dt" + dai] + (5)™ 728 + () h(U)) + () 1
LrB
WUy =1- %

= The total action of D8 is Spg = Spg + Scs

Sps = —T/dgﬂ‘- E_é\/— det(gayn + 27’ Fyyn) + Ses
N, ,
S(_j-g = ADTTF = Nﬂb dU@(U — UC)AG
Myx R,

2472




" The e.0.m
Low temperature phase

o= ry-d Vs 0 p ! E=-0,A =-A
hy/H — Hysin® 6, Vv H — Hysin® 6,

where ) = 5h(1 + E—E’] Ho=H(U,) cos®f.=—

High-temperature phase

. H, sin? 6 . h
g 4 U_3/2 1] c. ) E— _ US,Q :
a \/h.(H " Hysin’0,) " (H — Hysin0,)

The differential eqn x,’ can be solved (numerically) by the fixed-length condition

L = / dL’T:IT':i
U

The dual geometries in SS model




Introducing the chemical potential

According to AdS/CFT prescription, the coupling occurs on the boundary
[d“xA, (U =o0) j* = [d*XA, (x,U =0)zy“y

" For the 0-th component:

jd4XAb(X,U =0) j° :jd4xAb(X,U = o0)p p: baryon number density

The chemical potential is identified as Ay(x, U> =2) after solving A, in the e.o.m.

In our case, u =N A,(e=), where the bulk U(1) gauge field is sourced by the instanton.




*For the j-th component (j=1,2,3):

[d*xA (xU =) j' = [d“xA (x,U =o0)izy'y

A, (x, U= o) serves as the source to the current operator j' on the boundary.

Dictionary of gauge/gravity correspondence

Nonnormalizable normalizable

mode mode
(U—>e0)

bulk field  #(x,U)~ AU *+BU" +---

!

boundary [A0 (0)
(source term) (exp. value of operator O)

The normalizable mode of A, correspond to <j’>

Introducing the chemical potential



Looking for Dynamical Instability

Now turn on the bulk perturbations:

U(1) gauge field: 0A={a,, a,,a,}
D8-brane embedding funtion 6 x, =y

Expand the DBI+CS action upto quadratic order
LA X;;8,,8,, Y= Lo+ L+ L, +-o

Vanish  Contain 1st gives eom for perturbations
dueto order pert. Ao 0, Ay Y
eom but vanish (6 coupled diff eqns)

on shell




Dynamical Instability from Chern-Simons coupling

Dynamical instabilities are found in the 3 equations of motions for a::
(master equations, derived from L,)

_ 602 _ k2 From Chern-Simons term
USA L /
( qf;c) —( Q Ssz T d‘sz) + 2K€;: £0; f; = 0 fi == %Eijkfjk

— U4,/ o g 1 LKK
q = LT LLT U H— [Shﬂ &L]" =1 (SLT = h, K m = 288'}T ﬁ R

q:HT LHT ::U‘I«H%,‘;hu &HT =nh ‘5HT::1

Q:=1+2 hy:=h(U,)

¢(t, X,U) — e—ia)t+ik-x g(U)




Heuristically, take the ansatz for the perturbed fields

¢(t, X,U) — e—ia)t+ik-x g(U)
The e.o.m’s then take the form of 2nd order ordinary linear (eigenvalue) diff eqns.

AU)g"U)+B.U)g'U)+C, (U)gU)=w"gV)
= gU)=m+W " -

Such that
o(t,x,U)~ A+ I?U s (U > 0)

[A0 (0)

We are looking for normalizable (m=0) growing mode such that B = e
= spontaneous symmetry breaking with order parameter(O), without the source
term for O




Numerical method: shooting

We look for the unstable mode by starting with the marginal case w?=0 (onset of

instability), and tune k for a certain value of n, to “shoot” for the normalizable
mode (m=0) for both HT and LT phases.

.q(U-nm:r:} iy = 3.4
U)=m+J "+ " = 0.77
o) ny =232 -
(.-.l:l:- - -:- . ; H:--.;-:*:".I L 1 . ; k
Boundary conditions
At U- oo, m=0 (normalizable mode)

AtU=U, a4, : Dirichlet or Neumann

y  : Dirichlet (fixing the position of the tip)
d, :Neumann (fixing the electric source)




For normalizble unstable modes of a::

a. oc e—ia)t+ik-xVLJ —-a
i

<J i> oc e ynstable for nonzero k : Spatially modulated

Numerical Results T

For k within certain range, there is s
unstable mode, with w?=0 being . :

08 [

the onset of instability. Thus bulk !
normalizable growing modes are

foundina; £ | Y K
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Conclusion: Holographic QCD Diagram
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