Dynamical Instability of Holographic QCD at Finite Baryon Density

Shou-Huang Dai (NTNU)

Motivation

QCD phase diagram: the first appearance

[Cabibbo and Parisi '75]

Fig. 1. Schematic phase diagram of hadronic matter. ρ_B is the density of baryonic number. Quarks are confined in phase I and unconfined in phase II.

QCD phase diagram: the evolution

[McLerran, hep-ph/0202025]

The ground state of cold, very dense QCD might be color superconductor!

But as for the not-so-dense regime.....???

Real QCD phase diagram I

[Alford et al., 0709.4635]

Real QCD phase diagram II

[Shovkovy et al., hep-ph/0503184]

For large N_c QCD at low T and high density

At the limit $N_c \rightarrow \infty$ with fixed $\lambda = g^2 N_c$, the color superconductivity is suppressed due to color non-singlet quark "Cooper pair":

$$\left\langle \psi^T \psi \right\rangle \propto e^{-Const \frac{N_C}{\lambda}}$$

⇒ No color superconducting or CFL phase at high density!

What can we see at $N_c \rightarrow \infty$??

Chiral density wave (DGR Instability)

[Deryagin, Grigoriev, and Rubakov `92]

In the perturbative regime $g^2 N_c << 1$,

$$\langle \overline{\psi}(x)\psi(y)\rangle \propto e^{i\mathbf{p}\cdot(\mathbf{x}+\mathbf{y})}F(x-y)$$
 with $F(0)\propto e^{-\frac{C}{\sqrt{\lambda}}}$

- Color singlet condensate, dominating the $N_c \rightarrow \infty$ limit.
- spatially modulated chiral density wave
- Instability of the Fermi surface against formation of the chiral density wave

Or

Quarkyonic phase??

[McLerran & Pisarski, 0706.2191; Kojo et al., 0912.3800]

(Plot adapted from Pizarski's talk "Phase Diagram of QCD at large Nc" in 2007)

Question to answer in today's talk:

What is the phase at finite density in the picture of holographic QCD? Is there any dynamical instability?

Holographic QCD

Gravity/Gauge Theory correspondence

A map between gravity and gauge theory

Large N gauge theory In d-dim spacetime

Classical gravitational theory In (d+1)-dim spacetime

The best developed example

N=4 Super Yang-Mills

$$\lambda = g_{YM}^2 N \qquad \lambda / 4\pi N_C \qquad \mathcal{O} \qquad \Delta$$

$$\lambda/4\pi N$$

$$SO(2,4)\times SO(6)$$

String theory in $AdS_5 \times S^5$

$$R^4/\alpha'^2$$

$$g_S$$
 ϕ

$$\phi$$

$$SO(2,4)\times SO(6)$$

Prescription:

$$\langle e^{\int d^4x \phi_0(\vec{x})\mathcal{O}(\vec{x})} \rangle_{CFT} = \mathcal{Z}_{string} \left[\phi(\vec{x}, z) \Big|_{z=0} = \phi_0(\vec{x}) \right]$$

Witten's Idea of Holographic Realization of 4d pure Yang-Mills

Starting from N=2 supersymmetric gauge theory on N_c D4-branes (5d) compactified on S^1 with radius ρ_c :

 N_c D4: $(x^0 x^1 x^2 x^3 x^3)$ (Before taking the weak coupling limit)

Taking antiperiodic boundary condition for the fermions to break SUSY:

- Fermions mass $\sim 1/\rho_c$ (tree level)
- scalars mass ~ 1-loop effect

At scale << compactification radius ρ_c , the effective theory is 4d pure QCD.

Dual geometry of thermal gauge theory (in the near horizon limit of the D4-branes)

Low-temperature phase:
$$ds^2 = \left(\frac{U}{R}\right)^{\frac{3}{2}} \left(dt^2 + dx_i^2 + f(U)dx_4^2\right) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^2}{f(U)} + U^2 d\Omega_4^2\right), \qquad f(U) = 1 - \frac{U_{KK}^3}{U^3}$$

High-temperature phase:
$$ds^2 = \left(\frac{U}{R}\right)^{\frac{3}{2}} \left(f(U)dt^2 + dx_i^2 + dx_4^2\right) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^2}{f(U)} + U^2 d\Omega_4^2\right), \qquad f(U) = 1 - \frac{U_T^3}{U^3}$$

$$R^3 = \pi g_s N_c l_s^3,$$

Bulk thermal transition: (analogous to Hawking-Page transition)

High-temperature phase:

$$ds^{2} = \left(\frac{U}{R}\right)^{\frac{3}{2}} \left(f(U)dt^{2} + dx_{i}^{2} + dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^{2}}{f(U)} + U^{2}d\Omega_{4}^{2}\right), \qquad f(U) = 1 - \frac{U_{T}^{3}}{U^{3}}$$

$$\Delta t = \frac{4\pi}{3} \frac{R^{3/2}}{U_{T}^{1/2}} = \beta = \frac{1}{T}$$

Quark-anti-quark potential decays with distance:

⇒ deconfined phase

Low-temperature phase:
$$ds^{2} = \left(\frac{U}{R}\right)^{\frac{3}{2}} \left(dt^{2} + dx_{i}^{2} + f(U)dx_{4}^{2}\right) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\frac{dU^{2}}{f(U)} + U^{2}d\Omega_{4}^{2}\right), \qquad f(U) = 1 - \frac{U_{KK}^{3}}{U^{3}}$$

$$\Delta t = \beta_{c} = \frac{1}{T}$$

Quark-anti-quark potential grows with distance:

 \Rightarrow confined phase

Sakai-Sugimoto (SS) Holographic QCD Model:

adding quarks by introducing N_f D8 and N_f $\overline{D8}$ -brane probes: $(N_f << N_c)$

$$N_c D4 = 0 1 2 3 (4)$$

 $N_f D8/\overline{D8} = 0 1 2 3 = 5 6 7 8 9$

Picture before taking the weak coupling limit

4-8 strings: chiral quark

4-8 strings: anti-chiral quark

Massless U(Nc) QCD in 4d with N_f flavors:

$$U(N_c) \times U(N_f)_L \times U(N_f)_R$$

Supergravity dual (weak coupling limit) of confined phase

D8- and D8-branes are embedded in the cigar-shaped background

D8- and $\overline{D8}$ -branes are smoothly connected at $U_0 \Longrightarrow$ Chiral symmetry is broken

$$U(N_f)_L \times U(N_f)_R \rightarrow U(N_f)_{\text{diag}}$$

In which U(1)_B corresponds to the conserved number of quarks

Supergravity dual (weak coupling limit) of deconfined phase

There are two D8-D8 pair configurations for certain T and L:

A: chiral symmetry broken

B: Chiral symmetry restored (QGP)

The thermodynamically favored configuration carry lower free energy.

Phase transition:

As T increases, A -> B. In this case chiral symmetry restoration happens above deconfinement temperature

[Aharony et al., hep-th/0604161]

As asymptotic separation L>0.97 ρ_c , deconfinement coincides with χ -phase transition.

Bulk thermal transition in SS model:

Deconfined phase, restored chiral symmetry (QGP)

Deconfined phase, broken chiral symmetry

Confined phase, broken chiral symmetry

Sakai-Sugimoto Model with Finite Baryon Density

 $S_{D8} = S_{DBI} + S_{CS}$. The S_{DBI} part gives rise to 4d meson spectrum. The S_{CS} is given by

$$S_{CS} = T_8 \int_{D8} C_3 \wedge \operatorname{Tr} \exp(2\pi\alpha' \mathcal{F}) = T_8 \int_{D8} C_3 \wedge \operatorname{Tr} (2\pi\alpha' \mathcal{F})^3 = \frac{N_c}{24\pi^2} \int_{M_4 \times R} \omega_5(\mathcal{A})$$

In general

$$\omega_5(\mathcal{A}) = tr(\mathcal{A}\mathcal{F}^2 - \frac{i}{2}\mathcal{A}^3\mathcal{F} - \frac{1}{10}\mathcal{A}^5)$$

If we expand the $U(N_f)$ gauge field \mathcal{A} into $SU(N_f)$ part A and U(1) part \hat{A} :

$$\mathcal{A} = A^a T^a + \frac{1}{\sqrt{2N_f}} \hat{A}$$

For N_f=2, by solving the full YM+CS e.o.m of D8, one finds an instanton solution

$$\hat{A} = A_0$$
, $A^a = (A^a)_{1,2,3,U}$ with $N_b = \frac{1}{32\pi^2} \int d^3x dU \operatorname{tr}(F \wedge F)$

such that $S_{CS} = \frac{N_c}{24\pi^2} \int_{M_4 \times R} A_0 \text{tr} F^2$, i.e U(1) gauge field is sourced by the instanton.

•Instanton as Baryon in SS model

The instanton sourcing U(1) electric gauge potential is regarded as a baryon by identifying it with D4-branes wrapping S⁴.

Applying Witten's proposal in hep-th/9805112, the RR field $F_{(4)}$ charges up the D4-branes (wrapping S^4) under U(1) via

$$\frac{1}{2\pi} \int_{t \times S^4} A_0 \wedge F_{(4)} = N_c \int A_0$$

- ⇒ N_c Strings attaching the wrapped D4 and probe D8 (in SS model)
- ⇒ Baryonic vertex on D8

For this configuration to be stable, wrapped D4 must be attracted to D8

⇒ Instanton on the D8 worldvolume

[Domokos & Harvey, 0704.1604; Nakamura et al., 0911.0679]

The CS term induces dynamic instability in holographic QCD, which we'll see later.

•The D4-instanton profile in our case:

The instanton locates at $U=U_c$ and smeared along (x_1,x_2,x_3) :

$$\frac{1}{8\pi^2} \operatorname{tr} F^2 = n_4 \delta(U - U_c) d^3 x dU$$

$$\frac{1}{8\pi^2} \text{tr} F^2 = n_4 \delta(U - U_c) d^3 x dU \qquad S_{CS} = \frac{N_c}{8\pi^2} \int A_0 \wedge \text{Tr}(F^2) = N n_b A_0(U_c)$$

Where n_4 is the instanton number (D4-charges) density, n_b the baryon number density

$$N := \frac{T_8 R^5 N_f V_3 \beta \Omega_4}{g_s} \qquad n_b := \frac{N_c N_f n_4 V_3 \beta}{2\pi \alpha' R^2 N}$$

$$n_b := \frac{N_c N_f n_4 V_3 \beta}{2\pi \alpha' R^2 N}$$

The D8-D8 develops a cusp due to pulling of the instanton. The cusp angle

$$\cos \theta_c = \frac{n_b^2}{n_b^2 + U_c^5}$$

•Effect of n_b on chiral symmetry restoration in the deconfined geometry

As baryon number density n_b increases (below a critical value), the tension of D4 increase, and the tip of D8- $\overline{D8}$ is pulled towards the horizon. However if n_b is too large, the joint D8- $\overline{D8}$ solution doesn't exist in HT phase \Rightarrow QGP

Dynamical Instability

The dual geometries in SS model

Low temperature phase

$$ds_{D8}^2 = \left(\frac{U}{R}\right)^{\frac{3}{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu}) + \left(\frac{R}{U}\right)^{\frac{3}{2}} \left(\left(\left(\frac{U}{R}\right)^3 h(U) x_4'^2 + \frac{1}{h(U)}\right) dU^2 + U^2 d\Omega_4^2\right)$$
$$F_4 = \frac{(2\pi)^3 \ell_s^3 N_c}{\Omega_4} \epsilon_4, \ e^{\phi} = g_s \left(\frac{U}{R}\right)^{\frac{3}{4}}, \ h(U) = 1 - \frac{U_{KK}^3}{U^3}, \ x_4 \sim x_4 + \frac{4\pi R^{3/2}}{3U_{KK}^{1/2}}$$

High-temperature phase

$$ds^2 = (\frac{U}{R})^{3/2} [-h(U) dt^2 + dx_i^2] + ((\frac{U}{R})^{3/2} x_4'^2 + (\frac{R}{U})^{3/2} \frac{1}{h(U)}) dU^2 + (\frac{R}{U})^{3/2} U^2 d\Omega_4^2$$

■ The total action of D8 is $S_{D8} = S_{DBI} + S_{CS}$

$$S_{D8} = -T \int d^9 x \, e^{-\phi} \sqrt{-\det(g_{MN} + 2\pi\alpha' F_{MN})} + S_{CS}$$
$$S_{CS} = \frac{N_c}{24\pi^2} \int_{M_4 \times R_+} A_0 Tr F^2 = N n_b \int dU \delta(U - U_c) A_0$$

 $h(U) = 1 - \frac{U_T^3}{U_T^3}$

■ The e.o.m

Low temperature phase

$$x_4' = \pm U^{-\frac{3}{2}} \frac{\sqrt{H_0 \sin^2 \theta_c}}{h\sqrt{H - H_0 \sin^2 \theta_c}} , \qquad E = -n_b U^{\frac{3}{2}} \frac{1}{\sqrt{H - H_0 \sin^2 \theta_c}} \qquad E = -\partial_U A_0 = -A_0'$$
 where
$$H(U) = U^8 h(1 + \frac{n_b^2}{U^5}), \ H_0 = H(U_c) \qquad \cos^2 \theta_c = \frac{n_b^2}{n_b^2 + U_c^5}.$$

$$L = \int_{U_c}^{\infty} dU x_4'$$

High-temperature phase

$$x_4' = \pm U^{-3/2} \sqrt{\frac{H_0 \sin^2 \theta_c}{h(H - H_0 \sin^2 \theta_c)}}, \qquad E = -n_b U^{3/2} \sqrt{\frac{h}{(H - H_0 \sin^2 \theta_c)}}$$

The differential eqn x_4 can be solved (numerically) by the fixed-length condition

$$L = \int_{U_c}^{\infty} dU x_4'$$

Introducing the chemical potential

According to AdS/CFT prescription, the coupling occurs on the boundary

$$\int d^4x A_{\mu}(x, U = \infty) j^{\mu} = \int d^4x A_{\mu}(x, U = \infty) \overline{\psi} \gamma^{\mu} \psi$$

For the 0-th component:

$$\int d^4x A_0(x, U = \infty) j^0 = \int d^4x A_0(x, U = \infty) \rho$$
 ρ : baryon number density

The chemical potential is identified as $A_0(x, U \rightarrow \infty)$ after solving A_0 in the e.o.m.

In our case, $\mu = N A_0(\infty)$, where the bulk U(1) gauge field is sourced by the instanton.

•For the j-th component (j=1,2,3):

$$\int d^4x A_i(x, U = \infty) j^i = \int d^4x A_i(x, U = \infty) \overline{\psi} \gamma^i \psi$$

 A_i (x, $U \rightarrow \infty$) serves as the source to the current operator j^i on the boundary.

Dictionary of gauge/gravity correspondence

Nonnormalizable normalizable mode mode
$$(U \Rightarrow^{\infty})$$
 bulk field
$$\phi(x,U) \approx AU^{-a} + BU^b + \cdots$$
 boundary
$$\int_{AO} \langle O \rangle$$
 (source term) (exp. value of operator \mathcal{O})

The normalizable mode of A_i correspond to $\langle j^i \rangle$

Looking for Dynamical Instability

Now turn on the bulk perturbations:

U(1) gauge field:
$$\delta A = \{a_0, a_i, a_U\}$$

D8-brane embedding funtion $\delta x_4 = y$

Expand the DBI+CS action upto quadratic order

Dynamical Instability from Chern-Simons coupling

Dynamical instabilities are found in the 3 equations of motions for a_i : (master equations, derived from L_2)

$$-\omega^2 - k^2 \qquad \text{From Chern-Simons term}$$

$$(\frac{U^5\Delta_q}{L_q}f_k')' + \frac{L_q}{U^3}(-\frac{Q}{\Delta_q}\partial_t^2f_k + \partial_j^2f_k) + 2\kappa\epsilon_{ijk}E\partial_jf_i = 0$$

$$f_i := \frac{1}{2}\epsilon_{ijk}f_{jk}$$

$$q = LT \qquad L_{LT} := U^4\sqrt{\frac{U^5}{H-U_c^8h_0}} \qquad \Delta_{LT} := 1 \qquad \delta_{LT} := h$$

$$q = HT \qquad L_{HT} := U^4\sqrt{\frac{U^5h}{H-U_c^8h_0}} \qquad \Delta_{HT} := h \qquad \delta_{HT} := 1$$

$$Q := 1 + \frac{n_b^2}{U^5}, \ h_0 := h(U_c)$$

$$J_i := \frac{1}{2} \epsilon_{ijk} J_{jk}$$

$$\kappa := \frac{n_b}{4\pi^2 n_4} = 288\pi^2 \frac{1}{\lambda^2} \frac{U_{KK}}{R}$$

$$\phi(t, x, U) = e^{-i\omega t + i\mathbf{k} \cdot \mathbf{x}} g(U)$$

Heuristically, take the ansatz for the perturbed fields

$$\phi(t, x, U) = e^{-i\omega t + i\mathbf{k} \cdot \mathbf{x}} g(U)$$

The e.o.m's then take the form of 2nd order ordinary linear (eigenvalue) diff eqns.

$$A_{\mathbf{k}}(U) g''(U) + B_{\mathbf{k}}(U) g'(U) + C_{\mathbf{k}}(U) g(U) = \omega^2 g(U)$$

$$\Rightarrow g(U) \approx m + \nu U^{-\alpha} + \cdots$$

Such that

$$\phi(t, x, U) \approx A + BU^{-\alpha} + \cdots \quad (U \to \infty)$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\uparrow \qquad AO \quad \langle O \rangle$$

We are looking for normalizable (m=0) growing mode such that $B\cong e^{\omega_I t}$

 \Rightarrow spontaneous symmetry breaking with order parameter $\langle O \rangle$, without the source term for $\mathcal O$

Numerical method: shooting

We look for the unstable mode by starting with the marginal case $\omega^2=0$ (onset of instability), and tune k for a certain value of n_b to "shoot" for the normalizable mode (m=0) for both HT and LT phases.

$$g(U) \approx m + \nu U^{-\alpha} + \cdots$$

Boundary conditions

At $U \rightarrow \infty$, m=0 (normalizable mode)

At $U=U_c$, a_i, a_U : Dirichlet or Neumann

y : Dirichlet (fixing the position of the tip)

 a_0 : Neumann (fixing the electric source)

For normalizable unstable modes of a_i :

Numerical Results

For k within certain range, there is unstable mode, with ω^2 =0 being the onset of instability. Thus bulk normalizable growing modes are found in a_i .

Conclusion: Holographic QCD Diagram

