The size of the Proton

Laser spectroscopy of Lamb Shift of muonic hydrogen

劉怡維 Yi-Wei Liu 清華大學物理系

質子 Proton

所有物質的主要組成p, n, e。 但我們真的了解質子嗎? Classification: Baryon

Composition: 2 up quarks, 1 down quark

Particle statistics: Fermionic

Symbol(s): p, p+, N+

Theorized: William Prout (1815)

Discovered: Ernest Rutherford (1919)

Mass: $1.672621637(83) \times 10^{-27} \text{ kg}$

Mean lifetime: >2.1×10²⁹ yr (stable)

Electric charge: 1.602176487(/

Charge radius: 0.877 (7) fm

Magnetic moment: 2.79284735

Magnetic polarizability: 1.9(5)×10⁻⁴ fm³

Spin: 1/2 Isospin: 1/2 Parity: +1

Electric dipole moment: <5.4×10⁻²⁴ e·cm

Electric polarizability: 1.20(6)×10⁻³ fm³

回到最簡單與最基本 ---現代物理的起點

一個電子+一個質子

Rosetta stone

氫原子

The **key** to decode the **secret**

of ancient Egypt.

Idiomatic as something that is a

criti**Cal** key to the process of **decryption** or **transl**ation of a

difficult **ENCODING** of **INFORMATION**.

解開現代物理世界

祕密的羅賽塔石

^{氫原子} 光譜

的解碼

是量子物理之鑰

从 从波爾的原子模型

』量子電動力學

150年來的氫原子光譜量測

氫原子的超精確頻率量測

f(1S-2S) = 2466061413187074(34) Hz 1.4×10^{14} L(1S) = 8172840(22) kHz

By T. Hansch (Max-Planck-Institut für Quantenoptik)

Bound QED的理論限制

以最簡單的原子系統為檢驗

氫原子(ep) 1S-2S躍遷中的

1S Lamb Shift (所有能階中最大):

$$\Delta E(nS) = \frac{\alpha (Z\alpha)^4 m}{\pi n^3} F_n(Z\alpha) + \frac{\alpha (Z\alpha)^4 m}{\pi n^3} G_n(Z\alpha) + \Delta E_{recoil} + \Delta E_{rad\ recoil}$$

目前理論與實驗精確度的比較

由於理論的精確度受制於<r²>, 使得無法進行真正的 Bound QED test

QED test and RMS of the proton charge radius

目前各質子<r2>的實驗結果

實驗誤差在2-4%間

transition energy=theory + proton size

区III风局

proton size=transition energy - theory

Few possible strategies to go around the finite size effect

• Purely leptonic system : me \ e+emuonium 1s-2s : muon mass problem (2000, PRL)

positronium 1s-2s: Second order Doppler effect (1993, S. Chu)

Measuring the proton size
 muonic hydrogen spectroscopy

Recognized value of proton charge radius

The Committee on Data for Science and Technoloy

- H-spectroscopy (CODATA): 0.8768±0.0069 fm
- Electron-proton scattering: 0.897 ± 0.018 fm

• 0.8% accuracy

奇異原子 = Exotic atom

- 字典說: Exotic=外國來的, 異國情調的, 奇特的, 脱衣舞孃的
- 含有電子、質子、中子等長半衰期以外的 粒子(如 μ、π)所組成的原子系統,稱為奇異 原子

渺子氫原子: Muonic Hydrogen: μ- P+

(μ比電子重200倍的短命電子,生命期只有0.000002秒)

渺子氫原子

Lamb shift and rp

S state

Electoron

$${
m r}_{ep} \sim 5 \cdot 10^{-11} \, {
m m}$$
 ${
m r}_{\mu p} \sim 3 \cdot 10^{-13} \, {
m m}$
$${
m r}_p \sim 10^{-15} \, {
m m}$$

$$m_{\mu} \cong 200 \cdot m_e \implies r_{\mu p} \cong \frac{r_{ep}}{200}$$

P state

More sensitive to the structure of proton !!!!

 $\Delta E = 209.9779(49)-5.2262 r_P^2 + 0.0347 r_P^3 meV$

為甚麼是渺子氫原子?

渺子比電子重兩百倍,更靠近質子 兩百倍,能更敏鋭地偵測到質子的 大小。

Principle

Cascade and detection mechanism

Two major technical challenges

<5keV

- Muonic hydrogen: Produce slow muon that can stop in low pressure hydrogen gas. I hPa
- Light source: 6μm laser source, powerful, well-controlled frequency, triggered on demand.

0.2 mJ

Generation of Cold muonic hydrogen

Interaction region

708nm→6µm Laser system

Replay the MOMENT...

Results

$$2S_{1/2}$$
 (F=1) \rightarrow 2P_{3/2} (F=2): 49881.88±0.76GHz

 $r_p = 0.84184(36)(56)$ fm

變小的質子

10⁻¹⁵m

雖然不大,確影響深遠

● 新數值 0.84 184 fm<0.8768 fm, 小了4%

0.0000000000000084184 公尺

精確度到達了,尚未被研究過的極小世界

CODATA experimental inputs

TABLE XII. Summary of measured transition frequencies ν considered in the present work for the determination of the Rydberg constant R_{∞} (H is hydrogen and D is deuterium).

Authors	Laboratory	Frequency interval(s)	Reported value (ν/kHz)	Rel. stand. uncert. u_r
Fischer et al., 2004a, 2004b	MPQ	$\nu_{\rm H}(1{\rm S}_{1/2}-2{\rm S}_{1/2})$	2 466 061 413 187.074(34)	1.4×10^{-14}
Weitz et al., 1995	MPQ	$\nu_{\rm H}(2S_{1/2}-4S_{1/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	4 797 338(10)	2.1×10^{-6}
		$\nu_{\rm H}(2S_{1/2}-4D_{5/2})-\frac{1}{4}\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	6 490 144(24)	3.7×10^{-6}
		$\nu_{\rm D}(2S_{1/2}-4S_{1/2}) - \frac{1}{4}\nu_{\rm D}(1S_{1/2}-2S_{1/2})$	4 801 693(20)	4.2×10^{-6}
		$\nu_{\rm D}(2S_{1/2}-4D_{5/2})-\frac{1}{4}\nu_{\rm D}(1S_{1/2}-2S_{1/2})$	6 494 841(41)	6.3×10^{-6}
Huber et al., 1998	MPQ	$\nu_{\rm D}(1{\rm S}_{1/2}-2{\rm S}_{1/2})-\nu_{\rm H}(1{\rm S}_{1/2}-2{\rm S}_{1/2})$	670 994 334.64(15)	2.2×10^{-10}
de Beauvoir et al., 1997	LKB/SYRTE	$\nu_{\rm H}(2{\rm S}_{1/2}-8{\rm S}_{1/2})$	770 649 350 012.0(8.6)	1.1×10^{-11}
		$\nu_{\rm H}(2{\rm S}_{1/2}-8{\rm D}_{3/2})$	770 649 504 450.0(8.3)	1.1×10^{-11}
		$\nu_{\rm H}(2{\rm S}_{1/2}-8{\rm D}_{5/2})$	770 649 561 584.2(6.4)	8.3×10^{-12}
		$\nu_{\rm D}(2S_{1/2}-8S_{1/2})$	770 859 041 245.7(6.9)	8.9×10^{-12}
		$\nu_{\rm D}(2S_{1/2}-8D_{3/2})$	770 859 195 701.8(6.3)	8.2×10^{-12}
		$\nu_{\rm D}(2S_{1/2}-8D_{5/2})$	770 859 252 849.5(5.9)	7.7×10^{-12}
Schwob et al., 1999, 2001	LKB/SYRTE	$\nu_{\rm H}(2S_{1/2}-12D_{3/2})$	799 191 710 472.7(9.4)	1.2×10^{-11}
		$\nu_{\rm H}(2S_{1/2}-12D_{5/2})$	799 191 727 403.7(7.0)	8.7×10^{-12}
		$\nu_{\rm D}(2S_{1/2}-12D_{3/2})$	799 409 168 038.0(8.6)	1.1×10^{-11}
		$\nu_{\rm D}(2{\rm S}_{1/2}-12{\rm D}_{5/2})$	799 409 184 966.8(6.8)	8.5×10^{-12}
Bourzeix et al., 1996	LKB	$\nu_{\rm H}(2S_{1/2}-6S_{1/2}) - \frac{1}{4}\nu_{\rm H}(1S_{1/2}-3S_{1/2})$	4 197 604(21)	4.9×10^{-6}
		$\nu_{\rm H}(2S_{1/2}-6D_{5/2})-\frac{1}{4}\nu_{\rm H}(1S_{1/2}-3S_{1/2})$	4 699 099(10)	2.2×10^{-6}
Berkeland et al., 1995	Yale	$\nu_{\rm H}(2S_{1/2}-4P_{1/2})-\frac{1}{4}\nu_{\rm H}(1S_{1/2}-2S_{1/2})$	4 664 269(15)	3.2×10^{-6}
		$\nu_{\rm H}(2{\rm S}_{1/2}-4{\rm P}_{3/2})-\frac{1}{4}\nu_{\rm H}(1{\rm S}_{1/2}-2{\rm S}_{1/2})$	6 035 373(10)	1.7×10^{-6}
Hagley and Pipkin, 1994	Harvard	$\nu_{\rm H}(2{ m S}_{1/2}-2{ m P}_{3/2})$	9 911 200(12)	1.2×10^{-6}
Lundeen and Pipkin, 1986	Harvard	$\nu_{\rm H}(2P_{1/2}-2S_{1/2})$	1 057 845.0(9.0)	8.5×10^{-6}
Newton et al., 1979	U. Sussex	$\nu_{\rm H}(2{\rm P}_{1/2}-2{\rm S}_{1/2})$	1 057 862(20)	1.9×10^{-5}

Implications

Now, we have a big trouble in atomic physics

Some possible routes to the puzzle:

- Is QED wrong???
- Physics in very small scale (am 10⁻¹⁸, zm 10⁻²¹)???
- Unexplored µ-p or e-p interaction???

Is there any sign shown in the past?

Hint A:

IS MUON A FISHY PARTICLE?

BNL Running Year

Muon g-2 experiment is 3.2σ away from theory Is muon fishy particle?

A POSSIBLE WAY TO SOLVE THE PUZZLE

If QED is the trouble maker, then we should find a system that tests QED only, without the nucleus size problem.

Purely leptonic system

- I. muonium → limited by the knowledge of muon mass m_µ/m_e
- 2. positronium → a forgotten one, no news for 15 years

Hint B: Laser spectroscopy of positronium

DISCREPANCIES IN THE POSITRONIUM SPECTROSCOPY

Do they tell us anything? Any clue to the puzzle from the anti-world?

Hint C:

A HINT HOW ABOUTTHE CHARGE RADIUS DIFFERENCE

Absolute size:

 $\mu P: r_p = 0.84184 \text{ fm}$

 $H: r_p = 0.8768 \text{ fm}$

5σ away..... DISCREPANCY

Proton-Deutron Size difference:

e-d scattering & $\mu P \rightarrow r_d^2 - r_p^2 = (2.130)^2 - (0.84184)^2 = 3.828(24)$

H-D spectroscopy→r_d²-r_p²

=3.82007(65)

0.3σ only! AMAZINGLY AGREE

Hint C:

ISOTOPE SHIFT & CHARGE DIFFERENCE

The deduced radius difference is "almost" QED free (QED plays no role here)

Absolute size, with QED→discrepancy
Size difference, without QED→agree

→ QED problematic ???

Future of the experiment

 Analysis other hyperfine transitions and muonic Deuterium.

 muonic helium (µHe⁺) experiment (approved project, take data in 2013)

Few more thoughts after sometime

QED is not endangered by the proton 's size: A De Rújula - Physics Letters B, 2010

$$\Delta E_{ns} = -\frac{2\alpha Z}{3} \left(\frac{\alpha Z m_r}{n}\right)^3 \left[\langle r^2 \rangle - \frac{\alpha Z m_r}{2} \langle r^3 \rangle_{(2)}\right]$$

$$\Delta E = 209.9779 (49) - 5.2262 \text{ rp}^2 + 0.0347 \text{ rp}^3 \text{ meV}$$

$$+ (\alpha Z)^2 (F_{REL} + m_r^2 F_{NR})$$
 Zemach moment : Charge or Magnetic moment, form factor

Third Zemach moment of the proton: IC Cloet, GA Miller - Arxiv preprint arXiv:1008.4345, 2010

Re-analysis electron scattering world data to find more precise Zemach moment

Spectroscopy as a test of Coulomb's law - A probe of the hidden sector, Jaeckel, S Roy - Arxiv preprint arXiv:1008.3536v2, 2010

Is Coulomb's law valid in a very small scale?

"Soon it will be a flood wrong (theoretical)works." --- a colleague

muonic hydrogen 2S Lamb shift Collaboration

---- 12 institutes from 6 countries

F.D Amaro, A. Antognini, F.Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax, S. Dhawan, L.M.P. Fernandes, A. Giesen, T. Graf, T.W. Hänsch, P. Indelicato, L.Julien, C.-Y. Kao, P.E. Knowles, F. Kottmann, J.A.M. Lopes, E. Le Bigot, Y.-W. Liu, L. Ludhova, C.M.B. Monteiro, F. Mulhauser, T. Nebel, F. Nez, R. Pohl, P. Rabinowitz, J.M.F. dos Santos, L.A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J.F.C.A. Veloso

INSTITUT FÜR STRAHLWERKZEUGE

Proton Size Investigators thank you for your attention

8 July 2010 | www.nature.com/nature | \$10 THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE Idulit **OIL SPILLS** There's more to come **PLAGIARISM** It's worse than JII ABLABO you think **CHIMPANZEES** The battle for survival **EPROTON** New value from exotic atom trims radius by four per cent

感謝

國家科學委員會的經費支持,特別是國際 合作處的台瑞雙邊合作協議。

• 清華大學校方以及物理系的長期支持。