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Introduction to SCET

The main idea of effective field theories is the presence of lower limit of the distances that
can be resolved through a process of given energy. In this limit, the heavy modes can be
integrated out and the non-local interactions mediated by these heavy modes are reduced to
local interactions.

SCET is an effective field theory describing the dynamics of highly energetic particles
moving close to the light-cone interacting with a background field of soft quanta

SCET provides a systematic and rigorous approach for calculating processes with
several relevant energy scales. For instance, in B decays to light mesons we have the B
energy scale, the jet scale and the low energy QCD scale.

SCET has the ability to sum up all large radiative corrections appears in high energy
scattering processes and thus preserving the perturbation theory at each order. As an
example, in processes with highly energetic hadron jets SCET can sum up the enhanced
corrections which are proportional to large logarithms of ratios of mass scales .

The systematic power counting in SCET reduce the complexity of calculations: we start
by defining a small parameter λ as the ratio of the lowest and largest energy scales in
the process under consideration and then we make a scaling for the momenta and fields
in terms of λ and finally, the Lagrangian, Effective Hamiltonian can be expanded into
terms with different orders in λ.
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Momenta and field scaling in SCET

Consider a process in which B meson decays into two light energetic quarks. In the rest
frame of the B meson and due to the conservation of momentum, the two quarks will be
emitted in opposite directions which can be chosen as Z direction for simplicity.

As the motion of the emitted quarks is in the Z direction, it is appropriate to define two
vectors nµ = (1, 0, 0, 1) and n̄µ = (1, 0, 0,−1). The two emitted quarks move in nµ and
n̄µ directions and they are called collinear quarks.

In terms of nµ and n̄µ we can write any vector Pµ as
Pµ = (n · P ) n̄µ

2
+ (n̄ · P ) nµ

2
+ Pµ

⊥ = Pµ
+ + Pµ

− + Pµ
⊥

The notation P = (P+, P−, P⊥) is usually used and this decomposition of momentum
is referred as light cone decomposition.

For any given momentum, the scaling of any of its light cone components depends on a
small parameter λ.

Usually, λ is defined as λ = ( lowest energy scale
largest!energy scale

)n where n can be 1/2 or 1 depending
on the process under consideration and so we will have two types of SCET as we will
show in the following.

B → Kρ and B → K∗π within Soft Collinear Effective Theory. – p. 4/35



Consider the energetic collinear quark moves along the nµ direction: its different light
cone components are widely separated, with P− ∼ E being large, P⊥ ∼ λE being small
and P+ ∼ λ2E being very small where we have used P+P− ∼ P 2

⊥ for fluctuations near
the mass shell. So the scaling of the momentum of the collinear quark moves in nµ

direction is : pµ = n · p n̄µ

2
+ n̄ · pnµ

2
+ pµ

⊥ = O(λ2) + O(λ0) + O(λ1) ≡ (λ2, 1, λ)E.

The other partons in the B meson carry momenta that scale like
(ΛQCD,ΛQCD,ΛQCD). If we choose λ =

√

ΛQCD/E we can write the scaling of
these partons as (λ2, λ2, λ2)E and the momentum is referred as ultrasoft momentum
mode.

If we choose λ =
ΛQCD

E
we can write the scaling of these partons as (λ, λ, λ)E and the

momentum is referred as soft momentum mode.

We can classify two different effective theories SCETI and SCETII according to the
momenta modes in the process under consideration:

SCETI : When we have only collinear and ultrsoft momentum modes as inclusive decay
of a heavy meson such as B → X∗

s γ at the end point region and e−p→ e−X at the
threshold region.

SCETII : When we have only collinear and soft momentum modes as in semi-inclusive
or exclusive decays of a heavy meson such as B → Dπ, B → Kπ,....etc.B → Kρ and B → K∗π within Soft Collinear Effective Theory. – p. 5/35



In order to write the scaling of the collinear quark field we rewrite the momentum of the
collinear quark as

p = p̃+ k(1)

where

p̃ ≡ 1

2
(n̄ · p)nµ + p⊥ .(2)

We can remove the large momenta p̃ by defining a new field ψn,p for the collinear quark
as follows

ψ(x) =
∑

p̃

e−ip̃·xψn,p(3)

ψn,p contains only the component k that will be treated as a dynamical degree of
freedom while p̃ becomes a label on the field.
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The four component field ψn,p can be expressed in terms of two two-components
spinors ξn,p and ξn̄,p defined as follows

ξn,p =
6n 6n̄
4
ψn,p

ξn̄,p =
6n̄ 6n
4
ψn,p(4)

The scaling ξn,p and ξn̄,p can be obtained using

〈0|T
{

ψi(x), ψ̄j(y)
}

|0〉 =

∫

d4p

(2π)4

i 6pij

p2 + iǫ
e−ip·(x−y) .(5)

Assuming collinear momentum scaling ∼ (λ2, 1, λ), one finds that p2 ∼ O(λ2) and d4p
scales like O(λ4).

Thus, the two-component spinor fields scale as ξn,p ∼ O(λ) and ξn̄,p ∼ O(λ2).

The scaling momenta modes and their corresponding fermion fields they can be
obtained in a similar way and it is given in Table (1).
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Momenta mode Momentum scaling Fermion field scaling

Hard (h) (1,1,1)E

Collinear (c) (λ2, 1, λ)E λ

Hard-collinear (hc) (λ, 1, λ1/2)E λ1/2

Soft (s) (λ, λ, λ)E λ3/2

Ultrasoft (us) (λ2, λ2, λ2)E λ3

Soft-collinear (sc) (λ2, λ, λ3/2)E λ2

Table 1: Scaling of different momenta modes and their corresponding fermion fields
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SCET Lagrangian

Few Remarks about construction of the SCET Lagrangian:

Consideration of the kinematics:

Kinematics allows only collinear collinear and collinear ultrasof interactions between
quarks or gluons or a quark and gluon. So we have Lagrangian for collinear collinear
interaction and Lagrangian for collinear ultrasof interaction.

Matching with the QCD Lagrangian and Doing expansion in orders of λ and keeping
order 0,1,2 terms.

integrating out the off shell fluctuation through introducing Wilson lines.

Recalling that the QCD Lagrangian for massless quarks and gluons is given by

LQCD = ψ̄ i 6D ψ − 1

4
GµνG

µν ,(6)

where the covariant derivative Dµ is defined as Dµ = ∂µ − igTaAa
µ, and Gµν is the gluon

field strength. Using

γµ = nµ 6n̄/2 + n̄µ 6n/2 + γµ
⊥(7)

the quark part in the Lagrangian (6) can be expressed in terms of ξn,p and ξn̄,p as follows
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L =
∑

p̃,p̃′

e−i(p̃−p̃′)·x
[

ξ̄n,p′

6n̄
2

(

in ·D
)

ξn,p + ξ̄n̄,p′

6n
2

(

n̄ · p+ in̄ ·D
)

ξn̄,p

+ξ̄n,p′

(

6p⊥ + i 6D⊥

)

ξn̄,p + ξ̄n̄,p′

(

6p⊥ + i 6D⊥

)

ξn,p

]

.(8)

Using the equation of motion, one can eliminate the small component ξn̄,p in favor of ξn,p

L =
∑

p̃,p̃′

e−i(p̃−p̃′)·xξ̄n,p′

[

n · iD + ( 6p⊥ + i 6D⊥)
1

n̄ · p+ n̄ · iD ( 6p⊥ + i 6D⊥)

] 6n̄
2
ξn,p .(9)

The covariant derivative Dµ includes only collinear and ultrasoft gluons, Aµ = Aµ
c +Aµ

us as
the interaction of soft gluons and collinear quarks is forbidden kinematically.

it is convenient to separate the collinear and ultrasoft gluon field such that the covariant
derivative Dµ contains only the ultrasoft collinear gluons. We define the collinear gluon
as Aµ

c (x) = e−iq̃·xAµ
n,q(x) in a similar way to the collinear quark field and so Eq. (9)can

be written as
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L =
∑

p̃,p̃′,q̃

e−i(p̃−p̃′)·xξ̄n,p′



n · iD + ge−iq̃·xn ·An,q +

(

6p⊥ + i 6D⊥ + ge−iq̃·x 6A⊥
n,q

)

1

n̄ · p+ n̄ · iD + ge−iq̃·xn̄ ·An,q

(

6p⊥ + i 6D⊥ + ge−iq̃·x 6A⊥
n,q

)





6n̄
2
ξn,p(10)

Expanding Eq. (10) in powers of gAc, we obtain at order λ0

Lcus = ξ̄n,p
p2⊥
n̄ · p

6n̄
2
ξn,p + ξ̄n,pn · iD 6n̄

2
ξn,p

+ξ̄n,p+q

[

gn ·An,q + g 6A⊥
n,q

6p⊥
n̄ · p +

6p⊥+ 6q⊥
n̄ · (p+ q)

g 6A⊥
n,q

− 6p⊥+ 6q⊥
n̄ · (p+ q)

gn̄ ·An,q
6p⊥
n̄ · p

]

6n̄
2
ξn,p + . . .+ O(λ)(11)

The first term in Eq. (11) gives the propagator for the collinear quarks, the second term
gives its interaction with an ultrasoft gluon and the third term gives its interaction with a
collinear gluons.
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The order λ lagrangian of the quark collinear field is given by

L(1)
ξξ = ξ̄ni 6Dus

⊥
1

in̄ ·Dc
i 6Dc

⊥
6n̄
2
ξn + h.c.(12)

We need also to carry the matching of the full QCD lagrangian to the mixed usoft
quark-collinear quark Lagrangian.

We split the quark field into the ultrasoft quark field qus and the collinear quark field

ψ = ξn + ξn̄ + qus(13)

Decompose the Dirac matrix γµ in light-cone coordinates as before and using
6nξn = ¯6nξn̄,p = 0, the kinetic term in the Lagrangian L = ψ̄ i 6Dψ + . . . can be matched to

Lξq =

[

ξ̄ng 6An qus + ξ̄n
6n̄
2
i 6D⊥

1

in̄ ·Dg 6An qus

]

+

[

q̄us g 6An ξn

+ q̄us g 6An
1

in̄ ·Di 6D⊥
6n̄
2
ξn

]

(14)

Expanding Eq. (14) to second order in λ gives
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L(1)
ξq = ξ̄n

(

g 6Ac
⊥ − i 6Dc

⊥
1

in̄ ·Dc
gn̄ ·Ac

)

qus + h.c.

L(2)
ξq = ξ̄n

6n̄
2

(

gn ·Ac + i 6D c
⊥

1

in̄ ·Dc
g 6A c

⊥

)

qus − ξ̄ni 6D us
⊥

1

in̄ ·Dc
gn̄ ·Ac qus + h.c.

(15)

Introducing the label operators P̄ ∼ λ0 and Pµ
⊥ ∼ λ such that, P̄ ξn,p = (n̄·p) ξn,p allows us

to redefine the collinear covariant derivatives as follows

in̄ ·Dc = P̄ + gn̄ ·An , iD⊥µ
c = P̄µ

⊥ + gA⊥µ
n ,(16)

The ultrasoft covariant derivatives can be written as

in̄ ·Dus = in̄ · ∂ + gn̄ ·Aus, iD
⊥µ
us = i∂µ

⊥ + gA⊥µ
us .(17)

In SCET , the off-shell fluctuations resulting from attaching gluons to quarks can be
integrated out with the help of the so-called Wilson lines.
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For example, attaching collinear gluons to a heavy quark results in intermediate states (
propagators ) which are off-shell by an amount of order E. These intermediate states
must be integrated out as SCET is an effective theory below the energy scale E. This
can be done by a field redefinition q(x) →W (x)q0(x) where q(x) is the quark field and
W is the collinear Wilson line defined as

W =

[

∑

perms

exp

(

− g

P̄ n̄ ·An,q(x)

)]

,(18)

where the label operators only act on fields inside the square brackets. Performing this
field redefinition will lead to a lagrangian that contains the field q0(x) which no longer
couples to the collinear gluons.

we can write eq.(15) as:

L(1)
ξq = ig ξ̄n

1

in̄ ·Dc
6B̄c

⊥Wqus + h.c.(19)

L(2a)
ξq = ig ξ̄n

1

in̄ ·Dc
6M̄ W qus + h.c. ,

(20)
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L(2b)
ξq = ig ξ̄n

6n̄
2
i 6D c

⊥
1

(in̄ ·Dc)2
6B̄c

⊥W qus + h.c.(21)

where the following operators are introduced

ig 6B̄c
⊥ = [in̄ ·Dc, i 6Dc

⊥].(22)

and

ig 6M̄ = [in̄ ·Dc, i 6D us +
6n̄
2
gn ·Ac].(23)

Finally, we give here the Lagrangian for the collinear gluons

Lcg =
1

2g2
tr
{

[iDµ, iDν ]2
}

(24)

The order λ collinear gluons Lagrangian which can be obtained by Expanding eq.(24) in
powers of λ

L(1)
cg =

2

g2
tr
{

[iDµ, iD⊥ν
c ][iDµ, iD

⊥
usν ]

}

(25)

where

Dµ = Dµ
c + n̄µn · Dus

2
(26)
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SCET Hamiltonian for ∆B = 1 decays

We start by writing the Weak Effective Hamiltonian in the SM describing the weak
interactions of the B meson namely ∆B = 1 decays.

Heff =
GF√

2

∑

p=u,c

λ
(D)
p

(

C1Q
p
1 + C2Q

p
2 +

∑

i=3,...,10

Ci Qi + C7γ Q7γ + C8g Q8g

)

+h.c.

(27)

where λ(D)
p ≡ VpbV

∗
pD with D = d, s and

Qp
1 = (p̄b)V −A(D̄p)V −A , Qp

2 = (p̄αbβ)V −A(D̄βpα)V −A ,

Q3 = (D̄b)V −A

∑

q (q̄q)V −A , Q4 = (D̄αbβ)V −A

∑

q (q̄βqα)V −A ,

Q5 = (D̄b)V −A

∑

q (q̄q)V +A , Q6 = (D̄αbβ)V −A

∑

q (q̄βqα)V +A ,

Q7 = (D̄b)V −A

∑

q
3
2
eq(q̄q)V +A , Q8 = (D̄αbβ)V −A

∑

q
3
2
eq(q̄βqα)V +A ,

Q9 = (D̄b)V −A

∑

q
3
2
eq(q̄q)V −A , Q10 = (D̄αbβ)V −A

∑

q
3
2
eq(q̄βqα)V −A

(28)
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Q7γ =
e

8π2
mb D̄σµν(1 + γ5)Fµνb , Q8g =

gs

8π2
mbD̄ασµν(1 + γ5)tAαβG

A
µνbβ

(29)

where Ci(MW ) are the Wilson coefficients α and β stand for color indices, tAαβ are the

SU(3)c color matrices and σµν = 1
2
i[γµ, γν ]. eq are quark electric charges in units of e,

(q̄q)V ±A ≡ q̄γµ(1 ± γ5)q, and q runs over u, d, s, c, and b quark labels.

Matching of the weak effective Hamiltonian Heff to the corresponding SCET gauge invariant
operators requires two step matching:

First the full QCD effective weak Hamiltonian is matched to the corresponding weak
Hamiltonian in SCETI by integrating out the hard scale mb. Hence, after integrating out
the b̄b pairs in the electroweak Penguin operators, we can write

Q9 =
3

2
Qu

2 +
3

2
Qc

2 − 2

2
Q3

Q10 =
3

2
Qu

1 +
3

2
Qc

1 − 2

2
Q4.(30)
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which leads to remove the operators Q9 and Q10 from the effective Hamiltonian.

Second, the SCETI weak Hamiltonian is matched to the weak Hamiltonian SCETII by
integrating out the hard collinear modes with p2 ∼ Λmb as we will show in details below.

At leading power in (1/mb) expansion, the effective Hamiltonian in eq.(27) is matched into
SCETI Hamiltonian as follows

HW =
2GF√

2

∑

n,n̄

{

∑

i

∫

[dωj ]
3
j=1c

(f)
i (ωj)Q

(0)
if (ωj)

+
∑

i

∫

[dωj ]
4
j=1b

(f)
i (ωj)Q

(1)
if (ωj) +Qcc̄ + ....

}

(31)

where f = d or s, c(f)
i and b(f)

i are Wilson coefficients corresponding to O(λ0) operators

(Q(0)
if ) and O(λ) operator (Q(1)

if ). Qcc̄ denotes the operator corresponding to the long

distance charm Penguin. For B → ππ decays as an example, the operators Q(0)
if and Q(1)

if

in Eq.(31) are given by

Q
(0)
1f = [ūn,ω1

6̄nPLbν ][f̄n̄,ω2
6nPLun̄,ω3

](32)
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Q
(0)
2f,3f = [f̄n,ω1

6̄nPLbν ][ūn̄,ω2
6nPL,Run̄,ω3

],

Q
(0)
4f = [q̄n,ω1

6̄nPLbν ][f̄n̄,ω2
6nPLqn̄,ω3

],

(33)

Q
(1)
1f =

−2

mb
[ūn,ω1

ig 6B⊥
n,ω4

PLbν ][f̄n̄,ω2
6nPLun̄,ω3

],

Q
(1)
2f,3f =

−2

mb
[f̄n,ω1

ig 6B⊥
n,ω4

PLbν ][ūn̄,ω2
6nPL,Run̄,ω3

],

Q
(1)
4f =

−2

mb
[q̄n,ω1

ig 6B⊥
n,ω4

PLbν ][f̄n̄,ω2
6nPLqn̄,ω3

],

(34)

where a sum over q = u, d, s is understood and

qn,ω = [δ(ω − n̄.P )W †
nξ

(q)
n ],(35)

igB⊥µ
n,ω =

1

(−ω)
[W †

n[in̄.Dc,n, iD
µ
n,⊥]Wnδ(ω − n̄.P †)].(36)
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with n̄.P is the operator that project out the large momentum component of the collinear
quark field and P operates only inside the square brackets. The bν is the standard heavy

quark effective field (HQET). The Wilson coefficients corresponding to the operators Q(0)
if

are given by

c
(f)
1,2 = λ

(f)
u

[

C1,2 +
1

N
C2,1

]

− λ
(f)
t

3

2

[

1

N
C9,10 + C10,9

]

+ ∆c
(f)
1,2

c
(f)
3 = −3

2
λ
(f)
t

[

C7 +
1

N
C8

]

+ ∆c
(f)
3

c4(f) = −λ(f)
t

[

1

N
C3 + C4 − 1

2N
C9 − 1

2
C10

]

+ ∆c
(f)
4(37)

and for Q(1)
if we have

b
(f)
1,2 = λ

(f)
u

[

C1,2 +
1

N

(

1 − mb

ω3

)

C2,1

]

− λ
(f)
t

3

2

[

C10,9 +
1

N

(

1 − mb

ω3

)

C9,10

]

+ ∆b
(f)
1,2

b
(f)
3 = −λ(f)

t

3

2

[

C7 +

(

1 − mb

ω2

)

1

N
C8

]

+ ∆b
(f)
3

b
(f)
4 = −λ(f)

t

[

C4 +
1

N

(

1 − mb

ω3

)

C3

]

+ λ
(f)
t

1

2

[

C10 +
1

N

(

1 − mb

ω3

)

C9

]

+ ∆b
(f)
4

(38)
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where ω2 = mbu and ω3 = −mbū. u and ū = 1 − u are momentum fractions for the quark

and antiquark n̄ collinear fields. The ∆c
(f)
i and ∆b

(f)
i denote terms depending on αs

generated by matching from HW .

The matching of SCETI onto SCETII is performed by integrating out the hard collinear
modes with p2 ∼ Λmb. Therefore, the collinear n and collinear n̄ sectors are decoupled

and the operators Q(0,1)
if factor into

Q
(0,1)
if = Q̃

(0,1)
if Q̃n̄

if .(39)

where, after dropping f , Q̃(0,1)
if and Q̃n̄

if are given by

Q̃
(0)
i =

[

q̄i
n,ω1

6n̄PLbv
]

Q̃
(1)
i =

−2

mb

[

q̄i
n,ω1

ig 6B⊥
n,ω4

PLbv
]

(40)

and

Q̃n̄
i =















q̄i
n̄,ω2

6nPLq
′i
n̄,ω3

i = 1, 2, 4, 5

q̄i
n̄,ω2

6nPRq
′i
n̄,ω3

i = 3, 6

(41)
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B → M1M2 decay amplitudes in SCET

The leading order amplitude can be generated through the time ordered products of the

operators Q(0)
i and Q(1)

i and the subleading Lagrangians

T1[Q̃
(0)
i ] =

∫

d4y d4y′ T [Q̃
(0)
i (0), iL(1)

ξnξn
(y′) + iL(1)

cg (y′), iL(1)
ξnq(y)]

+

∫

d4yT [Q
(0)
if (0), iL(1,2)

ξnq (y)],

T2[Q̃
(1)
i ] =

∫

d4yT [Q̃
(1)
i (0), iL(1)

ξnq(y)].(42)

The matrix elements of the time ordered products (T1,2 )and Q̃n̄
i can be expressed in terms

of the following hadronic parameters

〈

Mn

∣

∣

∣T1

[

q̄L
nω1

6n̄bv
]∣

∣

∣B
〉

= CBM
qL

δ̄ω1
mB ζBM ,

〈

Mn

∣

∣

∣
T2

[

q̄L
nω1

ig 6B⊥
nω4

bv
]∣

∣

∣
B
〉

= −CBM
qL

δ̄ω1ω4

mB

2
ζBM
J (z),

〈

Mn̄

∣

∣

∣
q̄ ′L
n̄ω2

6nqL
n̄ω3

∣

∣

∣
0
〉

=
i

2
CM

q′

L
q δ̄ω2ω3

, fMφM (u),

〈

Mn̄

∣

∣

∣
q̄ ′R
n̄ω2

6nqR
n̄ω3

∣

∣

∣
0
〉

=
i

2
CM

q′

R
q δ̄ω2ω3

fMφM (u).(43)
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The parameters ζBM , ζBM
J are treated as hadronic parameters that can be determined

through the fit to the non leptonic decay data. Finally, the amplitude at leading order in 1/mb

expansion and to all orders in αS(mb) is given by

ALO(B̄ →M1M2) = −i
〈

M1M2

∣

∣

∣HW

∣

∣

∣B̄
〉

=
GFm

2
B√

2
fM1

[

∫ 1

0
dudzT1J (u, z)ζBM2

J (z)φM1
(u)

+ ζBM2

∫ 1

0
duT1ζ(u)φM1

(u)



 + λ
(f)
c AM1M2

cc + (1 ↔ 2).(44)

The hard kernels T1ζ and T1J are functions of linear combinations of the matching

coefficients c(f)
i (u) and b(f)

i (u, z) and depend on the final state mesons. T1ζ and T1J for
some specific decay channels and T1ζ and T1J are given in Table(2).
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Decay Mode (M1M2) T1ξ(u) T2ξ(u)

π0K− 1√
2
(c

(s)
2 − c

(s)
3 ) 1√

2
(c

(s)
1 + c

(s)
4 )

π+K− 0 c
(s)
1 + c

(s)
4

π0K̄0 1√
2
(c

(s)
2 − c

(s)
3 ) − 1√

2
c
(s)
4

π−K̄0 0 −c(s)4

K̄0φ 0 c
(s)
4 + c

(s)
5 + c

(s)
6

K̄0ηs c
(s)
4 c

(s)
4 + c

(s)
5 − c

(s)
6

K̄0ηq
1√
2
c
(s)
4

1√
2
(c

(s)
2 − c

(s)
3 + 2c

(s)
5 − 2c

(s)
6 )

Table 2: Hard kernels for ∆S = 1 decays of B−, B̄0 and B̄0
s into some final states. The co-

efficients T1J,2J (u, z) for all these states are identical to T1ζ,2ζ(u) with each c(f)
i (u) replaced

by b(f)
i (u, z).
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B → ρK and B → πK∗ within SM

The SM contribution to the CP asymmetries and the branching ratios for B → πK∗ and
B → ρK decays are given in Tables 3. and Table 4.

Decay channel Exp. SM prediction

π0K(∗) + 6.9 ±2.3 7.2

π−K(∗) + 8.6 ± 0.9 7.8

π0K̄(∗) 0 2.4 ± 0.7 7.8

π+K̄(∗) 0 9.9+0.8
−0.9 10.3

ρ0K+ 3.81+0.48
−0.46 4.8

ρ+K̄0 8.0+1.5
−1.4 10.9

ρ0K̄0 4.7 ± 0.7 10.2

ρ−K+ 8.6+0.9
−1.1 2.6

Table 3: Branching ratios in units 10−6 of B → πK∗ and B → ρK decays.

B → Kρ and B → K∗π within Soft Collinear Effective Theory. – p. 25/35



Decay channel Exp. SM prediction

π0K∗+ 0.04 ± 0.29 - 0.08

π−K∗+ −0.18 ± 0.07 -0.12

π0K̄∗ 0 −0.15 ± 0.12 - 0.01

π+K̄∗ 0 −0.038 ± 0.042 -0.004

ρ0K+ 0.37 ± 0.11 0.06

ρ+K̄0 −0.12 ± 0.17 - 0.005

ρ0K̄0 −0.02 ± 0.27 ± 0.08 ± 0.06 - 0.02

ρ−K+ 0.15 ± 0.06 0.14

Table 4: Direct CP asymmetries of B → πK∗ and B → ρK decays.
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B → ρK and B → πK∗ in SUSY

In SUSY, Flavor Changing Neutral Current(FCNC) and CP quantities are sensitive to
particular entries in the mass matrices of the scalar fermions. Thus it is very useful to adopt
a model independent- parametrization, the so-called Mass Insertion Approximation (MIA)
where all the couplings of fermions and sfermions to neutral gauginos are flavour diagonal.
Denoting by ∆ the off-diagonal terms in the (M2

f̃
)AB where f̃ denotes any scalar fermion

and A,B indicate chirality, A,B = (L,R):

(M2
f̃
)AB =













(m2
f1)AB (∆f

AB)12 (∆f
AB)13

(∆f
AB)21 (m2

f2)AB (∆f
AB)23

(∆f
AB)31 (∆f

AB)32 (m2
f3)AB













,(45)

∆IJ
LL = ∆JI⋆

LL and ∆IJ
RR = ∆JI⋆

RR , but no such relation holds for ∆LR. It is often to set
(m2

f1)AB = (m2
f2)AB = (m2

f3)AB = m̃2 where m̃ is the average sfermion mass. The FC is
exhibited by the non-diagonality of the A−B sfermion propagator that can be expanded as

〈f̃a
Af̃

b∗
B 〉 = i(k2I − m̃2I − ∆f

AB))−1
ab ≃ iδab

k2 − m̃2
+

i(∆f
AB)ab

(k2 − m̃2)2
+O(∆2),(46)

where a, b = (1, 2, 3) are flavor indices and I is the unit matrix.
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It is convenient to define a dimensionless quantity (δf
AB)ab ≡ (∆f

AB)ab/m̃
2. As long as

(∆f
AB)ab is smaller than m̃2 we can consider only the first order term in (δf

AB)ab of the
sfermion propagator expansion.

The parameters (δf
AB)ab can be constrained from experimental measurement concerning

FCNC and CP violating phenomena and vacuum stability argument. After including SUSY
contributions to the mentioned decays and keeping the dominant terms we find

A(B− → π−K̄(∗) 0) × 107 ≃ (0.0323 − 0.0029i)(δd
LL)23 − 6.6914(δd

LR)23

− 1.5857(δd
RL)23 − (0.0052 + 0.0003i)(δu

LR)32

− (0.0046 − 0.0003i)(δu
RL)32 + (0.3319 − 0.0612i)

A(B− → π0K̄(∗)−) × 107 ≃ (0.2209 − 0.0017i)(δd
LL)23 + 4.7315(δd

LR)23

+ 1.1212(δd
RL)23 + (0.0056 − 0.0001i)(δu

LR)32

− (0.0223 − 0.0001i)(δu
RL)32 + (0.2508 − 0.1259i)
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A(B0 → π0K̄(∗) 0) × 107 ≃ (0.1540 + 0.0002i)(δd
LL)23 − 4.7315(δd

LR)23

− 1.1212(δd
RL)23 + (0.0094 + 0.0001i)(δu

LR)32

− (0.0185 + 0.0001i)(δu
RL)32 + (0.2949 − 0.0707i)

A(B0 → π+K̄(∗)−) × 107 ≃ (0.1269 − 0.0057i)(δd
LL)23 + 6.6914(δd

LR)23

+ 1.5857(δd
RL)23 − (0.0106 + 0.0005i)(δu

LR)32

− (0.0099 − 0.0005i)(δu
RL)32 + (0.2695 − 0.1392i)

A(B̄− → ρ−K0) × 107 ≃ (0.0146 − 0.0055i)(δd
LL)23 + 1.6190(δd

LR)23

− 1.0851(δd
RL)23 − (0.0001 + 0.0005i)(δu

LR)32

− (0.0021 − 0.0005i)(δu
RL)32 − (0.3473 + 0.0111i)

A(B− → ρ0K−) × 107 ≃ (0.1491 − 0.0061i)(δd
LL)23 − 1.1448(δd

LR)23

+ 0.7673(δd
RL)23 − (0.0037 + 0.0006i)(δu

LR)32

− (0.0120 − 0.0006i)(δu
RL)32 − (0.2232 + 0.0501i)
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A(B̄0 → ρ0K0) × 107 ≃ (0.1514 − 0.0025i)(δd
LL)23 + 1.1448(δd

LR)23

− 0.7673(δd
RL)23 − (0.0032 + 0.0003i)(δu

LR)32

− (0.0108.− 0.0003i)(δu
RL)32 − (0.3470 + 0.0307i)

A(B− → ρ+K−) × 107 ≃ (0.0112 − 0.0107i)(δd
LL)23 − 1.6190(δd

LR)23

+ 1.0851(δd
RL)23 − (0.0008 + 0.0010i)(δu

LR)32

− (0.0037 − 0.0010i)(δu
RL)32 − (0.1723 + 0.0386i)(47)

The mass insertions (δu
RL)32 and (δu

LR)32 are not constrained by b→ sγ and so we can set
them as (δu

RL)32 = (δu
LR)32 = eiδu where δu is the phase that can vary from −π to −π.

Applying b→ sγ constraints leads to the following parametrization

(δd
LL)23 = eiδd (δd

LR)23 = (δd
RL)23 = 0.01eiδ(48)
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Figure 1: CP asymmetriy versus the phase of the (δd
AB)32 where A, B denotes the chirality

i.e. L, R. for 3 different mass insertions. The left diagram correspond toACP (B+ → π+K̄∗ 0)

while the right diagram correspond to of ACP (B+ → π0K∗+). In both diagrams we take
only one mass insertion per time and vary the phase of from −π to π. The horizontal lines in
both diagrams represent the experimental measurements to 1σ.
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Figure 2: CP asymmetry versus the phase of the (δd
AB)32 where A, B denotes the chirality

i.e. L, R. for 3 different mass insertions. The left diagram correspond to ACP (B0 → π0K̄∗ 0)

while the right diagram correspond to of ACP (B0 → π−K∗+). In both diagrams we take
only one mass insertion per time and vary the phase of from −π to π.The horizontal lines in
both diagrams represent the experimental measurements to 1σ.
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Figure 3: CP asymmetriy versus the phase of the (δd
AB)32 where A, B denotes the chirality

i.e. L, R. for 3 different mass insertions. The left diagram correspond to ACP (B+ → ρ+K0)

while the right diagram correspond to of ACP (B+ → ρ0K+). In both diagrams we take only
one mass insertion per time and vary the phase of from −π to π. The horizontal lines in both
diagrams represent the experimental measurements to 1σ.
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Figure 4: CP asymmetriy of ACP (B+ → ρ0K+) versus the phase of the mass insertion for 2
different mass insertions. The left diagram correspond to gluino contributions where we keep
the two mass insertions (δd

LL)32 and (δd
RL)32 and set the other mass insertions to zero. The

right diagram correspond to both gluino and chargino contributions where we keep the two
mass insertions (δd

LL)32 and (δu
LR)23 and set the other mass insertions to zero.
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Summary

Within Soft Collinear Effective Theory, we extend the Standard Model analysis of the
B → πK∗ and B → ρK asymmetries to include the next leading order QCD corrections

We find that, even with QCD correction, the Standard Model predictions can not
accommodate the direct CP asymmetries in these decay modes.

We have analyzed the SUSY contributions to the direct CP asymmetries of the decay
modes B → ρK and B → πK∗ using the Mass Insertion approach.

In contrast to the SM, SUSY contributions mediated by gluino exchange can significantly
enhance the direct CP asymmetries and thus accommodate the experimental results.
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