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Perturbation vs. Non-perturbation

When we calculate physics quantities in
perturbative expansion, we may need to answer
several questions:

1.Is the perturbative series convergent?
2.What are the contributions of non-perturbative parts?

3.1s the perturbative vacuum stable?
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Introduction

Perturbation and Non-perturbation
in Matrix Model



Example: Matrix model

Matrix Models (N: size of Matrix)

P /dMeNtfr(V(M))

M: NxN Hermitian Matrix

String Theory

Z /Dg...efd2"\/§"'

Feynman W \J
Diagram Worldsheet

2D surfaces




Free Energy in Matrix model

String amplitudes

0+gstr°+ gst

* Perturbative expansions:, 2

oo
F=InZypy = Z N2_2”fn “ Zggr’;’; 2]: n: genus
n=0 n=0

* Non-perturbative parts:

2n—2 —L 7D
(F — Z Istr  Tn) Fnonpert. = ZHI@Q br

e Determine F() :Instanton calculations
* Determine f; :Stokes phenomenon

Values of 0; tell us which instanton effect is important



Details of Matrix model

Diagonalization: UTMU = diag(ar,as, -, an)
i<j

N-body problem in the potential V

Orthogonal Polynomial Method:

/dae_v(a)Pn(a)Pm(oz) = hn0n.m P,(a)=a"+---

[1(ei ) = detid ™) = det(P; 1)) g Zaass = N1 o

1<J

Q: How do we solve h,, 7



Continuum Limit

Baker-Akhiezer function system

as (" Pu(a) = 9(;0)

ab, = Z Apm P WithT;L —t, « —; ¢ C¢(t C) - P(t; 6)10(75, C)

/dae‘v(a)aPan #0, |m—n| <1

d
dao— (P, P,,e” V()
/ada( e )=0

These relations give the recursion
relations of h,,.
It is called string equation.

m=0
—¢(t () = Q(:9)v(t; Q)
n—1 C
i ¥, —
m=0

P(t;0),Q(t; 9) are p-th and g-th
order differential operator
in d = gstrat

String Equation:

[P Q] gstr

The commutator (P,Q)
gives us the differential equation
of coefficients which are in (P,Q)



Summary of (p,q) Minimal String

After we take continuum limit, the different potential forms of
matrix models are correspond to different Baker-Akhiezer
systems with (P,Q) pairs.

The theory in continuum side is understood as 2D gravity couple
to (p,q) minimal CFT matter fields with central charges:

Pa)  _ 9 _g (p—q)°

C
matter Dq

. p and q coprime

String equation: Nonlinear Differential equations what we
obtain in continuous limit: Painlevé equations, ...

Ex:(p,q)=(2,3), pure gravity: Painlevé I equation



Method of Analysis

Stokes Phenomenon
and
Riemann-Hilbert Problem



Stokes phenomenon of Airy function

. . d .
Airy function: (F —Q)Ai(¢) =0 Two WKB solutions : )
o1 = S and ¢9 = e 5
— . _ .
Different asymptotic expansions in different regions 274 2y/m(4
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Stokes phenomenon

Solutions have different asymptotic expansions in different regions: Stokes sectors

The difference is the coefficient of sub-dominated term: Stokes multipliers



What can we learn?
Stokes Matrix describes the difference:

; B L 0) _ Ai function case:
W= ( ¥)=(a b (821 1) _ s

(1:0,5:1,821:i
When the intersection region shrink to line, the
Stokes multipliers give the jump information of ,.,, ..

function W, this line is called anti-Stokes line. v/,

Giving a ODE and finding solutions, the solutions :
have jump behavior (Stokes Phenomenon)

When we want to solve the coefficient in the ODE
system. Can we solve it from the information of
Stokes matrices (jump information) ?

Yes! It is called Inverse Monodromy Method or
Riemann-Hilbert Problem




p X p ODE system in Matrix Models

* For a given (p,q) matrix model, we have a
correspondent Baker-Akhiezer systems :
CY(t:¢) = PH)Y(EC) = (0% + - )v(t: ()

gstrd%w(t;é) = Q(9)y(t;¢) = (97 + -+ )ip(t;€)

 We can rewrite the BA system to be a p x p ODE
system with p different dominations:
(— AP w ~ <¢ P w(pl))T V.= (Jl,lgg ..... %) : p X p matrix

* We find how to relate 0 by function of tand A, so

we obtain a p x p ODE system in A plane:

0

Gatr 57 W(EA) = Q(E N Ut A) = (pPQINPTIL 4 T N)

Q = diag(l,w,w?, - ,wP™h); WP =1



Stokes Phenomenon in Matrix Models
e Consider pxp ODE system with matrix function WY (A )

G =)
0

a‘lf(ﬂ )\) = Q(t; )\)‘lf(t; )\) — (quXr—l T )\I’(t’)\)

r is called Poincaré index, here r = p + ¢

e Matrix function W (A ) has a formal asymptotic solution in
AN —oco, Uosym = Z(A)efW

A q\p+a
_ (1_|_71_|_)€QA++

e Asymptotic expansions are only applied in specific A
angular domains, and exact solutions in each domain differ
by a constant matrix (Stokes matrices): U,y Doy Dn
U, (A) & Uagym(N); A= 00, A€ D,

—1
T or< arg\ < n+p7r}

' P \Ijn—l—l — \IjnSn

D, ={\ e C;




Algebra Relations of Stokes Matrices

Zp'SmeEtry condition: \ — w)
Sn—l—?r — I‘—lSnF, (n — O7 17 - ,27"p . 1)

I'= (05,41 + 0i,p0j,1)1<i,5<p
Monodromy condition: ) — ¢27i)
505152 -+ Sopp_1 = e™P7H
Hermiticity condition: »— X
Sy =ATS, r'A, (n=0,1,---,2rp—1)

n (2r—1)p—n

A = (0itjp+1)1<ij<p
Multi-cut boundary condition: Branch cuts in the A plane are
relative to the eigenvalue distributions in Matrix model. They
give the additional constraint for Stokes matrices



Riemann-Hilbert Problem

Finding an analytic function having a prescribed
jump across a curve

Jump Information: Stoke matrices
Curves K: Deift-Zhou network (as anti-Stoke lines)
Analytic function Z(A) are determined from its jump

behavior: Z:=lmZ(\+e) (A +e) =T\ =€,
€E—r
c
Z_|_ = Z_G; G = GQO(A)SCLG_(P()\) }Ca

The solving W problem becomes to a integral

problem: de Z_(6)(G(€) — 1))  Iispx
Z()\) :Ip+[c 275&- (5)2 _(5)3 p) identﬁy rflatrix

The solution of u(t) is given from Z(A)



Deift-Zhou network

 The main contributions of integral contour for
solution W are steepest descend lines:

Im(p(A)) =Im(p(A")); Orp(A*) =0
* Network can be deformed from anti-Stokes lines

* Ex: (p,q)=(2,3)
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Information on Deift-Zhou network

:I:,f" (1.2) (2.,1) f:l:f A
w(2.0) (1,2) A
The weight in Each lines are the |
solutions of Stokes multipliers which i

are non-zero elements of Stokes
matrices. Blue lines are the line with
non-zero Si,, and Red lines are the

L4
. . -1 '\.'ll '
line with non-zero s,;.
- (2,1) : M
+i/(1,2) | (2,)\%i
f

€ Behavior of Z(]A) is given by Deift-Zhou network:

* Perturbative part of free energy: It comes from the
branch cut structure of @ (A ).

* Non-perturbative part of free energy: it comes from the
integral around saddle points.



Sketch of Inverse Monodromy Method

Give (p,q) Baker-Akhiezer system
l Solve

0
SN = QNN

lExpand around A — oo
T(\) = Z(N\)erW
l Solve

Stokes matrices S5,

l Draw

D-Z network along

Along countour K,

saddle points of @ (A )

U(A+¢€)=T(A—¢€)S,

l Calculate RH

d§ Z_(§)(G(§) — 1)

Z(A):Ip+/,c2m' E— A

G = e“O(A)Sae_(P(A); AeK, CK

l Calculate u(t)

u(t) = —4 lim A\?Z(\)

A— 00

l Calculate Free Energy

w=0°F



Applications of non-perturbative
researches

Structure of vacua (Landscape): meta-
stable vacuum, true vacuum, and decay
rate



Example ((p,q)=(2,5) Yang-Lee Edge)

e (P,Q) pairs:  P@:t) = +u()
Q(0;t) = 0° + v1(t)0° + va(t)0* + v3(£)D + va(t)

[P(aa t)a Q(aa t)] = Gstr

* Classical solution of @ (A ) :Chebyshev background

O Chebyshev polynomial:
P = Tp(2), Q = Ty(z2), 2 = 1/4 T, (cosf) = cos(nb)

) .0 - [P Q) - %f” ek

* String equation is:
O*u + 20ud?u + 10(0u)? — 40pu + 40u® = —16t




Chebyshev background: Meta-stable vacuum

Deift-Zhou network (Yang-Lee Edge (p,q)=(2,5)):

+i(2,1) (1,2), +i

\/ A
7 \/_ Z +1 i xﬁ
QOmst 4
[.I'I
{1,.2]:‘ b . > h 1'.{IE.‘I:J'I
- | 0 » +7
Ty(z) = 162° — 2023 + 52 |

Large Instanton: meta-stable

T Vst /20 [+ 335, \/2 5 — V/5)ui]
Vor(2vE) (VB + 1ip

Fnonpefrt —
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Landscape of Matrix Model

* For fixed Stokes matrices, the solution of W (A ) is
unique. But the factorization ways can be different!

Veﬁ
1 2 ’*‘
TN = Zay (Ve Y = Zgy (e = -

1 1
90(1)()\) — F= Fggm)“t. + FT(LO’)npert.

2 2
90(2) ()‘) — F= Fggen)"t. + FT(LO')erert. \

T
{S}An Yang-Lee Edge case (p,q)=(2,5)




True Vacuum

Deift-Zhou network (Yang-Lee Edge (p,q)=(2,5)) :

/

+i2.1) | (1,2) +i

Al
=l W

N

Pro(A) = dp(p — 26)\/4@)3 — ga2(c)p — g3(c) 422

u(p) in true vacuum C H

[-1 ,.‘EJ'IJ'!.

Upert (1) ~ —v/1(p(wa) + p(wp) — p(wa +wp) + ¢)

No large instanton condition: (c~—0. 184963725)

[492 (C)

B 693(0)(»03(0)] 5  6gs(c) g5(c)wp(c)
5

: n(ws(e)) -

n(ws(c))

©: Weierstrass elliptic function, —p’ =7

wa&wp: Weierstrass half period along the A-cycle and B-cycle



Decay Rate

Deift-Zhou network: contour deformation as Coleman’s method for bounce solution

=i {2,1) +{1.2} =i 7

Decay rate: Imaginary part of free energy

i \/Gstr/2€xp|— 57, \/2(5 + VBt

Fgfpe'rtq:§ st e
\/57T(2\/5)§(\/5— 1)z ps




A Summary of Landscape in Yang-Lee Edge

* Large instanson implies chebyshev vacuum is
meta-stable: P — T,(2),Q — Ty(2)

* Based on the RH problem researches, we find the
vacuum spaces are governed by Weijerstrass
elliptic function: P— o,Q— (p- 26)\/4@33 — g2(c)p — g3(c)

 The vacua are described by parameter c:

ex: ¢ = —0.206 Chebyshev background, ¢ = —0.185 true vacuum

* The different perturbative vacuums can be
understood as: same Baker-Akhiezer function has
different factorization forms with fix jump
information (A around infinity)



Goals on Future

Generalize these results to all (p,q) minimal string theories
Find a principle to determine the position of true vacuum

Understand the concept of duality in Matrix models
( Ex: T-duality or S-duality, etc.)

Find applications for other systems: String theory,
Condensed Matter Physics, Mathematical Physics, etc.

Answer the questions: Why do we live in this special
vacuum? Is it stable or meta-stable?



Thanks For Your Attention

“The important thing is not to stop questioning.”
-Albert Einstein



