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The large scale structure

(Very) tentative definition :
“Everything above galaxy scale that is

sensitive to gravitational instability."

2dFGRS (2002) :
2.5 Gly depth on 2 slices

∼ 1500 sqdeg area

spectra for ∼ 250k objects

http ://www.2dfgrs.net/

Millennium Run (2005) :
10 G particles

2 Mly box

∼ 20 M galaxies

Sloan Digital Sky Survey :
3 M spectra

∼ 35% of the sky
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Millennium-XXL (2010)

300 billion particles
whole Univ. to z ∼ 0.72

goal 1 : relation between optical
richness, lensing mass, X-ray
luminosity and thermal
Sunyaev-Zeldovich (tSZ) signal
from CMB

goal 2 : mass of extreme galaxy
clusters

useful of other probes :
BAOs, redshift space distortions
(RSD), cluster number counts,
weak gravitational lensing
(WL), integrated Sachs-Wolfe
(ISW) effect.

halo mass function, power
spectrum

gives optical, lensing, X-ray, tSZ
maps, galaxy clusters catalogues

See Angulo et al. 2013.
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Examples of other probes
Source of images : Springel, Frenk, White 2006

Intergalactic H absorption lines in quasar spectra ⇒ Lyman-α forest.

2pt-correlation (of galaxies or dark matter) ⇔ Power spectrum / BAO.
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Relativistic corrections

Simple models of inflation ⇒ random independent phases and near-scale
invariant power spectrum.

Context : Perturbations around a FLRW background using scalar
perturbations (+ vector, tensor).

Impact on : luminosity distance (Hubble diagram), redshift, angles
(gravitation lensing), volumes (number counts of galaxies). See recent papers
by Yoo & Scaccabarozzi).
⇒ Very important for precision cosmology !

Gauge-invariant quantities are very important (see e.g. Yoo, Durrer, 2017).
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Two aspects of this talk

RELATIVISTIC CORRECTIONS DUE TO THE LSS :
how does the LSS affects cosmological observables, how we can use
adapted coordinates which actually simplify calculations.

COMPARING SUPERNOVAE DATA AND LSS IN OUR
LOCAL UNIVERSE :
what can we learn by comparing these probes, what it can say about the
H0 tension, supernovae or galaxy catalogues.
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Adapted coordinates as a tool

IDEA : Simplify relativistic calculations by working in coordinates defined
from observable (and thus gauge-invariant) quantities.

1938 : Temple’s ‘optical co-ordinates”

1958 : Joseph’s “optical co-ordinates”

1968 : Saunders “observer’s polar
coordinates”

1984 : Maartens detailed “observational
coordinates”

2011 : “Geodesic light-cone
coordinates”

Numerical implementations of Bester,
Larena, Bishop ’13 & ’15
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Geodesic Light Cone
coordinates
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θ φ

θ1 θ2

Σ(wo, τ)

τ = cst or z = cst⇔ Υ = cst

w = wo
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θ φ
θ1 θ2

Σ(wo, τ)

τ = cst or z = cst⇔ Υ = cst

w = wo
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NO CAUSTICS !
Way to generalization ?



Motivations Relat. corr. with adapted coords. Local universe inhomogeneity Conclusions

Geodesic light-cone coordinates

ds2GLC = Υ2dw2 − 2Υdwdτ + γab(dθ
a − Uadw)(dθb − U bdw)

(6 arbitrary functions : Υ, Ua, γab)

Properties :
w is a null coordinate, ∂µτ defines a geodesic flow (from gττGLC = −1),

photons travel at (w, θa) =
−→
cst ⊥ to Σ(w, z).

Interpretation :
Υ is like an inhomogeneous scale factor (lapse function), Ua is a
shift-vector and γab the metric inside the 2-sphere Σ(τ, w).

FLRW :

w = η + r , τ = t , (θ1, θ2) = (θ, φ) ,

Υ = a(t) , Ua = 0 , γab = a2r2diag(1, sin2 θ) .
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Residual gauge freedoms

Relabelling lightcones : Υ′ = Υ dw
dw′ , Ua → U ′a = Ua

dw
dw′

(⇒ temporal gauge : w = τo).

Relabelling light rays :

γab → γαβ = γab∂aϕ
α∂bϕ

β , Ua → Uα = Ua∂aϕ
α − ∂wϕα

Conditions : θa are regular spherical angles on the observer’s sky, observer
is not rotating (non-rotating observational gauge).

Reparametrising light rays : ∂µw → f(τ, w, θa)∂µw

Conformal transformations : dτ = Ωdτ̃ , Υ = ΩΥ̃ , γab = Ω2γ̃ab

See Fulvio Scaccabarozzi, Jaiyul Yoo, 1703.08553 giving a very rigorous
treatment of observer angles reparametrization.
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Direct simplifications

ds2
GLC = Υ2dw2 − 2Υdwdτ + γab(dθ

a − Uadw)(dθb − U bdw)

⇒ Redshift perturbation (cf. Giuseppe’s talk) :

(1 + zs) =
(kµuµ)s
(kµuµ)o

=
(∂µw∂µτ)s
(∂µw∂µτ)o

=
Υ(wo, τo, θ

a)

Υ(wo, τs, θ
a)
≡ Υo

Υs

where uµ = −∂µτ is the peculiar velocity of the comoving observer/source
and kµ = ∂µw is the photon momentum.

⇒ (exact) Angular distance (with homogeneous observer
neighborhood) :

dA = γ1/4
(
sin θ1

)−1/2
with γ ≡ det(γab) = |det(gGLC)|/Υ2

which, combined with redshift, gives the distance-redshift relation.
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Hubble diagram
Magnitude :

m = −2.5 log10(
Φ

Φref
)

Flux :

Φ =
L

4πd2
L

Absolute Mag. :

M = −2.5 log10

(
Φ(10pc)

Φref(pc)

)
Distance Modulus :

µ = m−M = 5 log10(dL) + cst

Two assumptions in SMC :

GR valid on all scales,

Isotropy + Homogeneity,

⇒ FLRW model.

Luminosity Distance (for K = 0) :

d
FLRW
L (z) =

1 + z

H0

∫ z
0

dz′[
ΩΛ0 + Ωm0(1 + z′)3

]1/2
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Distance-redshift relation at O(2)

The GLC metric allows to compute the dL(z) relation to O(2) in NG :

ds2
NG = a2(η)

(
−(1 + 2Φ)dη2 + (1− 2Ψ)(dr2 + γ

(0)
ab dθadθb)

)
with γ(0)

ab = r2diag
(
1, sin2 θ

)
, and Φ = ψ+ 1

2φ
(2) , Ψ = ψ+ 1

2ψ
(2) (Bardeen).

ψ(2), φ(2) ∝ ∇−2(∂iψ∂
iψ) , ∂iψ∂

iψ (cf. Bartolo, Matarrese, Riotto, 2005)

FULL transformation GLC ↔ NG at second order in PT :
(τ, w, θ̃1, θ̃2) = f(η, r, θ, φ)

⇓
(Υ, Ua, γab) = f(ψ,ψ(2), φ(2))

⇓

dL = (1 + z)2 γ1/4
(

sin θ̃1
)−1/2

up to O(2) :

dL(zs, θ
a) = dFLRWL (zs)

(
1 + δ

(1)
S (zs, θ

a) + δ
(2)
S (zs, θ

a)
)
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Compute the distance-redshift relation at O(2) in perturbations (from
the Newtonian gauge, 1104.1167, 1209.4326, 1506.02003) :

dL(zs, θ
a) = dFLRWL (zs)

(
1 + δ

(1)
S (zs, θ

a) + δ
(2)
S (zs, θ

a)
)

Contributors : G. Veneziano, M. Gasperini, G. Marozzi, I. Ben-Dayan, G. Fanizza

Qualitative agreement with O. Umeh, C. Clarkson and R. Maarten ’14, Bonvin,
Clarkson, Durrer, Maartens, Umeh ’15, Kaiser, Peacock ’15.

Detailed comparison ? Difficult task. (see Yoo, Scaccabarozzi ’16)
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At O(1) :

δ
(1)
S (zs, θ

a) ∼ SW + ISW + Doppler−

(
ψ(1)
s +

∫ η−

η+

dx ψ

)
− Lensing(1)

Lensing(1) =
1

2
∇aθa(1) =

∫ ηo

η
(0)
s

dη

∆η

η − η(0)
s

ηo − η
∆2ψ(η, ηo − η, θ̄a)

Doppler =

(
1− 1

Hs∆η

)
(vo − vs) · n̂ , v ≡

∫ η

ηin

dη′
a(η′)

a(η)
∇ψ(η′, r, θa)

At O(2), full calculation :

Dominant terms : (Doppler)2, (Lensing)2 ! ! !

Combinations of O(1)-terms : ψ2
s , ([I]SW)2, [I]SW×Doppler,

(ψs,
∫ η−
η+

dx ψ)× (Lensing, [I]SW, Doppler) ...

Genuine O(2)-terms : ψ(2)
s , Lensing(2) = 1

2
∇aθa(2) , Q(2)

s ...

A LOT of other contributions : New integrated effects, Angle deformations,
Redshift perturbations(⊂ transverse peculiar velocity), Lens-Lens coupling,
corrections to Born approximation, ... See 1209.4326, also Umeh 1402.1933.
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The whole second order... (up to some observer terms)
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Stochastic average of inhomogeneous realizations
Inhomogeneities :

ψ(η, ~x) =

∫
d3k

(2π)3/2
ei
~k·~xψk(η)E(~k)

with E a unit R.V. which is
homogeneous(E∗(~k) = E(−~k)) and
gaussian(E(~k) = 0, E(~k1)E(~k2) = δ(~k1 + ~k2)).

Spectrum : |ψk(η)|2 = 2π2Pψ(k)/k3

Light-cone average is combined with a stochastic average. In CDM :

〈dL〉 =

∫ ∞
0

dk

k
Pψ(k)C(k∆η)

We do the same ∀ terms in
〈
δ

(1)
S

〉
and

〈
δ

(2)
S

〉
in ΛCDM... with approximations.

Kaiser & Peacock 2015 for precise discussion on ‘directional’ / ‘source’ averaging.
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The averaged modulus 〈µ〉 depends on 〈(Φ1/Φ0)2〉 while the

standard deviation σµ =

√
〈µ2〉 − 〈µ〉

2
= 2.5(log10 e)

√
〈(Φ1/Φ0)2〉 with

〈(Φ1/Φ0)2〉 ∼ 〈(Doppler)2〉+
〈(

Lensing(1)
)2〉

0.02 0.05 0.10 0.20 0.50 1.00 2.00
4.0

4.5

5.0

5.5

6.0

z

Μ
-

Μ
M

+
5

With the Union 2 dataset :

small z : Velocities explain quite
well the scatter.

large z : Lensing is too weak to
explain data’s scatter (∼%ΩΛ0).

The total effect is well approximated by
Doppler (z ≤ 0.2) + Lensing (z > 0.3),

Lensing prediction is in great agreement
with experiments so far !

Cf. Ben-Dayan 2014, 1401.7973 for effect on Ho.
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Simplify averages on the past lightcone (1207.1286, 1302.0740) :

〈S〉wo,τs =

∫
Σ
d4x
√
−g δD(w − wo)δD(τ − τs) |∂µτ∂µw|S(τ, w, θa)∫

Σ
d4x
√
−g δD(w − wo)δD(τ − τs) |∂µτ∂µw|

=

∫
d2θ

√
γ(wo, τs, θ

a)S(wo, τs, θ
a)∫

d2θ̃
√
γ(wo, τs, θ

a)

V0 ∼ w0 , A0 ∼ τs
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Estimate the effect of large scale structure on the Hubble diagram :
average and dispersion of the distance modulus (my thesis, 1309.6542, and
dL references above.).

Measurements to confirm this prediction ?
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Other applications of GLC

Amplification matrix ((. . .)· ≡ ∂τ (. . .)) :

AAB(λs, λo) =
sAa (λs)

[
2uτ (γ̇ab)

−1
]
o
sBb (λo)

d̄A(λs)

=

(
1− κ− γ̂1 −γ̂2 + ω̂
−γ̂2 − ω̂ 1− κ+ γ̂1

)
Fanizza, Nugier 2014, 1408.1604

The angular distance and lensing quantities become :

dA ∝ (γγo)
1/4 , µ̂ = (detA)−1 =

(
d̄A
dA

)2

,

involving d̄A = a(τ)r with r = w −
∫
a−1(τ)dτ measured from the observer,

{
(1− κ)

2
+ ω̂2

γ̂2
1 + γ̂2

2

}
=

(
uτo
d̄A

)2


 γ γ̇abγ

bcγ̇cd(
detab γ̇ab

)2


o

γ γad ± 2

√
γ γo(

detab γ̇ab

)
o


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Evaluate the galaxy number counts at O(2) in perturbations (Di Dio,
Durrer, Marozzi, Montanari 1407.0376, 1510.04202) ⇒ Bispectrum !

Inhomogeneous spacetime : Lemaître-Tolman-Bondi with off-center
observer and no curvature (Fanizza, Nugier 2014, 1408.1604), lensing
quantities for over/under dense regions.

Application to an Anisotropic Bianchi I spacetime Fleury, Nugier,
Fanizza 2016, 1602.04461). ⇒ we find that the anisotropy of the
Bianchi I spacetime violates 〈µ−1〉Ω = 1 ! (as for inhomogeneous
Swiss-Cheese).

Application to the time-of-flight of UR particles
(Fanizza,Gasperini,Marozzi,Veneziano, 1512.08489).

Which other application can we find ?
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Turning TIME into FUTURE NULL coordinate !

xµ ≡ (τ, w, θa) yµ ≡ (wu, wv, θ
a)

“(Geodesic → Double) Light-Cone coordinates"
Nugier 2016, 1606.08296
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yµ ≡ (wu, wv, θ
a) → gDLC

µν (y) =
∂xα

∂yµ
∂xβ

∂yν
gGLC
αβ (x) ← xµ ≡ (τ, w, θa)

w = wv ⇒ ∂w/∂wv = 1

wu independent from wv ⇒ ∂w/∂wu = 0

in GLC θa is independent from w ⇒ ∂θa/∂wv = 0

light rays independent from wu ⇒ ∂θa/∂wu = 0.

gDLC
µν =

 0 gDLC
wuwv

~0
gDLC
wuwv gDLC

wvwv gDLC
wva

~0T (gDLC
wva )T gDLC

ab

 with
{

gDLC
wuwv = −Υ ∂τ

∂wu
,

gDLC
wvwv = (Υ2 + U2)− 2Υ ∂τ

∂wv

θa = θa (residual gauge freedom on Σ(wu, wv)) ⇒ ∂θa/∂θb ≡ δab
natural consequence ⇒ ∂w/∂θa = 0

g
µν
DLC =

 gwuwuDLC −2/Υ̃2 −2Ũb/Υ̃2

−2/Υ̃2 0 ~0

−2(Ũa)T /Υ̃2 ~0T γab

 from
{

gDLC
ab = γab ,

gDLC
wva

= −Ua −Υ ∂τ
∂θa ≡ −Ũa
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We introduced new metric quantities :

Ũa ≡ γabŨb = Ua + Υγab
∂τ

∂θb
, Υ̃ =

√
2Υ

∂τ

∂wu

We make wu null by imposing gwuwuDLC = 0. So we need the conditions on τ :

∂τ

∂wu
=

Υ̃2

2Υ
,

∂τ

∂wv
=

Υ

2
− Ũa ∂τ

∂θa
+

Υ

2
γab

∂τ

∂θa
∂τ

∂θb

Once satisfied, we get the result :

gDLC
µν =

 0 −Υ̃2/2 ~0

−Υ̃2/2 Ũ2 −Ũb
~0T −ŨTa γab


The line element in DLC coordinates is :

ds2
DLC = −Υ̃2dwudwv + γab(dθ

a − Ũadwv)(dθ
b − Ũ bdwv)
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Summary GLC/DLC

DLC = GLC for which we replace τ by a future null coordinate wu !

ds2
GLC = Υ2dw2 − 2Υdwdτ + γab(dθ

a − Uadw)(dθb − U bdw)

⇓

ds2
DLC = −Υ̃2dwudwv + γab(dθ

a − Ũadwv)(dθ
b − Ũ bdwv)

Ũa ≡ γabŨb = Ua + Υγab
∂τ

∂θb
,

∂τ

∂wu
=

Υ̃2

2Υ
,

∂τ

∂wv
=

Υ

2
− Ũa ∂τ

∂θa
+

Υ

2
γab

∂τ

∂θa
∂τ

∂θb
.

g
GLC
µν =

 0 −Υ ~0

−Υ Υ2 + U2 −Ub
~0T −UTa γab

 , g
µν
GLC =

 −1 −Υ−1 −Ub/Υ
−Υ−1 0 ~0

−(Ua)T /Υ ~0T γab

 ,

g
DLC
µν =

 0 −Υ̃2/2 ~0

−Υ̃2/2 Ũ2 −Ũb
~0T −ŨTa γab

 , g
µν
DLC =

 0 −2/Υ̃2 −2Ũb/Υ̃2

−2/Υ̃2 0 ~0

−2(Ũa)T /Υ̃2 ~0T γab

 .
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Simple – but mixed – quantities in DLC

Photon momentum :

kµ ≡ ∂µwv = δwvµ ⇒ kµ = − 2

Υ̃2
δµwu

Observer velocity defined in GLC by uµ ≡ ∂µτ gives :

uµ = − Υ

Υ̃2

[
1 +

(Ũa − Ua)(Ũa − Ua)

Υ2

]
δµwu −

1

Υ
δµwv −

Ua

Υ
δµa

uwv and ua are identical to GLC.

We still have kµuµ = −1/Υ and thus the redshift :

1 + zs ≡
(kµu

µ)s
(kµuµ)o

=
Υo

Υs

and the lensing quantities are not changed.
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DLC = double-null coordinates !

Line element in the double-null coordinates :

ds2 = eληABdwAdwB + gab(dθ
a + saAdwA)(dθb + sbBdwB)

So we get back DLC coordinates by taking :

dx0 = dwu , dx1 = dwv , dxa = sawudwu + (sawv + Ũa)dwv + dθa

λ = ln
(

Υ̃2/2
)

, sawu = 0 , sawv = −Ũa (gauge fixing)

⇒ Ũa is a shift vector in the (2+2) decomposition.

They are equivalent to the double-null coordinates
of Brady, Droz, Israel and Morsink 1995 after a gauge fixing !
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Probing the local homogeneity with
standard candles

Collaboration with Hsu-Wen Chiang (蔣序文),
Enea Romano, Pisin Chen (陳丕燊).
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Motivations

Estimate how standard candles can probe the density contrast.

Investigate on H0 as Riess 2016 re-evaluates H0 = 73.24± 1.74 km s−1 Mpc−1,
raising the tension to 3.4 σ against 66.93± 0.62 km s−1 Mpc−1 from Planck.

Isotropic inhomogeneity extending very far should not exist, but
anisotropic inhomogeneity may. Keenan, Barger, Cowie ’13 find a
super-void extending to z ∼ 0.07 (∼ 300h−1

70 Mpc).

We know that being inside an underdense region may alleviate H0

tension (see Ben-Dayan, Durrer, Marozzi and Schwarz, 2014 and
Romano 2016).
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Method

Model independent fit of luminosity distance observations (standard
candles)
+ Inversion based on LTB to reconstruct the local radial density profile )
assuming Planck background, along two different directions of the sky.

Comparison with : density maps obtained from luminosity density, in
particular Keenan et al. 2013 and the 2M++ galaxy catalogue.

Remark : See estimation of cosmic variance on H0 in Ben-Dayan, Durrer,
Marozzi and Schwarz, ’14.
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Keenan etal 2013, Figure 11
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2M++ (Lavaux & Hudson 2011, Carrick et al.2015)

Redshifts are from 2MRS,
SDSS-DR7, and 6dFGRS.

Peculiar velocities are obtained from the galaxy density :

~v(~r) =
β∗

4π

∫ Rmax

0

d3~r′ δ∗g(~r′)
~r′

r′3
, z̄ = zobs − ~v · ~n

where β∗ = 0.43 is a best fit value and the upper limit of integration is the
depth of the survey Rmax = 200h−1Mpc, i.e. z = 0.067.

⇒ limited to 200 Mpc + an external bulk flow (that we remove).
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Data

Cepheids are from Riess 2016 (zhost from Ned) and SNe Ia from Union
2.1 (with z < 0.2 or 0.4 and positions from Simbad), corrected to Riess H0.

0 50 100 150 200 250 300 350

-50

0

50

Φ

Θ

ç 0.2 < zSN £ 0.4

æ 0.007 < zSN £ 0.2

æ zSN £ 0.007

á Cepheid

á NGC4258

Galactic
plane

Field 3

Field 2

Field 1

Velocity dispersion : 250 km s−1 for SNe, 0, 40, 250 km s−1 for Cepheids.
Implies a change in µ by ∆µv.d. ≈ 5

log 10
∆v
cz .

Field ICRS coordinates (deg) Number of SNe Cepheids-hosting
N◦ R.A. Dec. zmax = 0.2 zmax = 0.4 galaxies of Riess
1 [300, 360] ∪ [0, 80] [−3, 4] 69 144 1
2 [130, 250] [−3, 2] 4+1 4+1 1
3 [110, 255] [2, 36] 47+2 52+2 6
/ Whole Sky 288 372 20
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Initial rescaling
At small z :

µ ≡ m−M = 25−5 log10H
loc
0 +5 log10

(
H loc

0 DL

)
≈ 25−5 log10H

loc
0 +5 log10 cz ,

where H loc
0 is the local Hubble parameter.

⇒ µ(R16) = µ(Union 2.1)− 5 log10

(
73.24

70

)

N1309N1309
N3021N3021

N3370N3370

N4038N4038

N5584N5584

N5917N5917

U9391U9391

31.0 31.5 32.0 32.5 33.0 33.5 ΜHR16L31.0

31.5

32.0

32.5

33.0

33.5
ΜHUnion2.1L

7 host galaxies common to R16 Cepheids and Union 2.1 SNe
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1D Fitting

Fits of the distance modulus data (zi, µi,∆µi) by minimizing χ2 of the
deviation from a homogeneous model :

χ2 =
∑
i

(
f (zi)−

(
µi − µPlanck (zi)

)
∆µi

)2

, f(z) =
(
µobs − µPlanck

)
(z)

where µPlanck(z) is the ΛCDM theoretical value of distance modulus at z.

Model independent by decomposing the fitting function f(z) wrt a set of
radial basis functions (RBFs NN) :

f(z) = w0 + w−1 z +

NNL∑
m=1

wm Φ (|z − pm|)

where Φ are chosen to be Φ(r) = r3 (NNL RBFs), pm are the non-linear
parameters or “centers” of the RBFs, wm the linear parameters, w0

(intercept) and/or w−1 (slope) parameters.
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Best fit and confidence bands

Linear parameters w ≡ (w−1 , . . . , wNNL) : we use the simple
Moore-Penrose pseudo-inverse method.

Non-linear parameters p ≡ (p1 , . . . , pNNL
) : we use a Monte Carlo (MC)

random sampling method and a LO algorithm (Gauss-Newton).

To speed up the MC process and fill up confidence band : we use a
Monte Carlo Markov Chain (MCMC) algorithm to explore the non-linear
parameter space (see paper for illustration).

A fitting model is classified by a set of parameters (N0, N−1, NNL).

We use a F-test to determine the best model parameters.
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Density contrast (Romano, Chiang and Chen, 2013)

LTB metric and EFEs :

ds2 = dt2 − a2

[(
1 +

a,r r

a

)2 dr2

1− k(r)r2
+ r2dΩ2

2

]
(
ȧ

a

)2

= −k(r)

a2
+
ρ0(r)

3a3
, ρ(t, r) =

(ρ0r
3),r

3a2r2(ar),r
,

Solution of the EFEs can be expressed in conformal time η =
∫ t
dt′/a (t′, r) :

a (η, r) =
ρ0

6k(r)

[
1− cos

(√
k(r)η

)]

t (η, r) =
ρ0

6k(r)

[
η −

1√
k(r)

sin

(√
k(r)η

)]
+ (tb(r) ≡ 0)

⇒ DL(z) = (1 + z)2 r(z) a (η (z) , r (z)) ,

where η (z) and r (z) are the solutions of the radial ingoing null geodesic equations,
and the redshift z is defined by 1+zs

1+zo
= exp

(
∂ts
∫ o
s

dt
dr

)
.

To obtain r (z), η (z) and k (z), the relation of DL needs to be inverted and
solved together with the radial null geodesic equations ⇒ ρ(z,DL(z)).
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Inversion (Romano, Chiang and Chen, 2013), i.e. what we solve :
a(z = 0) = a0 , HLTB(z = 0) ≡ [a

−1
∂ta](z = 0) = H0 , (I.C.)

qLTB(z = 0) ≡
[
−a (∂ta)

−2
∂t∂ta

]
(z = 0) = q0 , r(z = 0) = 0 , (I.C.)

dk

dz
=

√
1− S2

3(1 + z)S

2k tan(τ/2)A
3− τ csc(τ)(2 + cos(τ))

,

dη

dz
=

1

(1 + z)
√
k

(
csc(τ)B −

√
1− S2

3S
A
)
,

dr

dz
=

√
1− S2

(1 + z)
√
k

(
cos(τ) + 3τ csc(τ)− 4

3− τ csc(τ)(2 + cos(τ))

csc(τ)A
3

+ tan(τ/2)

)
,

where we have defined

τ ≡
√
kη , S ≡

√
kr , A = 1− cos(τ) + B

B =
2

S

(a0H0)−3 (1 + z)k3/2

1− tan(τ/2)
√

1− S2/S

(
1−

1 + 2q0

4 (1 + q0)2

)−1
d

dz

(
H0DL (z)

(1 + z)2

)
.

The density is then given

ρ(z) = ρ (t (z) , r (z)) =
a−3ρ0

1 + r
(
∂r ln a|η −

∂t
a∂r

∂η ln a
∣∣∣
r

) , ρ0 ≡ 3H
2
0

[
1−

1 + 2q0

4
(1 + q0)

−2
]

Density contrast :

δC = f
−1

 ρinv (DL, z)

ρinv

(
DPlanck
L

, z
) − 1

 , f
−1

= Ω
−0.55
m0 .
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Full sky fitting

Applying peculiar velocity correction (PVC) from 2M++ and velocity dispersion
(VD) of 250 km s−1 for SNe (Riess 2016 applies 250 km s−1 also for Cepheids).

250 km s−1 VD for Cepheids :

⇒ Preferred model is (1,0,0) : f(z) = µobs(z)− µPlanck(z) = w0, i.e. homogeneous
model with an apparent value of the Hubble parameter :

H loc
0 ≡ HPlanck

0 10−f(z=0)/5 = HPlanck
0 10−w0/5 = 10−w0/5( 66.93 km s−1 Mpc−1) .

We find : H loc
0 = 73.06± 1.61 (stat.) km s−1 Mpc−1, in good agreement with

73.24± 1.61 (stat.)± 0.66 (sys.) km s−1 Mpc−1 of Riess 2016 (we have χ2
R = 1.49).

40 km s−1 VD for Cepheids :
(see Tully 2007)

Best fit is a (0, 1, 7) model !
χ2
R = 4.18

⇒ there must be structure not
accounted for by 2M++.
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Directional fitting in F1

With PVC from 2M++ :

best fit we get is from a simple
(1, 0, 0) model with
H loc

0 = 72.89 ± 0.50 km s−1 Mpc−1

and χ2
R = 1.05 (see figure),

next best fit (Threshold < 33%) is
given by a (0, 1, 5) model with
χ2
R = 0.88.

⇒ there must be structure not
accounted for by 2M++.

Without PVC from 2M++ :

best fit model is (1, 0, 0) with
H loc

0 = 72.90± 0.51 km s−1 Mpc−1

with F-test Threshold > 36% and
χ2
R ∼ 1.07 (see figure),

second best model is an
inhomogeneous (1, 1, 13) model with
χ2
R ∼ 0.59 but low threshold.
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Directional fitting in F3 with PVC

Applying PVC from 2M++ and a velocity dispersion (VD) of 250
km s−1 for SNe Ia (host rotation), and no VD for Cepheids.

It is necessary to remove some “outliers” to have invertible fits.
We use a F-test Threshold around 95% to compare a given model with a
constant fit model.

zmax = 0.2

χ2
R Threshold (%) Param. Removal

19.5 Not Preferred 76.40± 2.90
1.59 81 ∼ 100% (0, 1, 6)
5.92 95.8 ∼ 100% (0, 0, 0) NGC 4536
2.06 90.7 ∼ 95.7% (0, 1, 3) Same
2.05 73 ∼ 100% 70.56± 0.93 +NGC 4424

zmax = 0.4

χ2
R Threshold (%) Param. Removal

17.9 Not Preferred 76.36± 2.75
1.60 74 ∼ 100% (0, 1, 6)
5.58 96.9 ∼ 100% (0, 0, 0) NGC 4536
2.03 85 ∼ 96.8% (0, 1, 3) Same
2.00 72 ∼ 100% 70.65± 0.91 +NGC 4424
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Directional fitting in F3 without PVC

We don’t apply PVC since we want to see the whole contribution from
SNe Ia and Cepheids.

Just apply a VD of 250 km s−1 for SNe Ia (host rotation).

zmax = 0.2

χ2
R Threshold (%) Param. Removal

1.40 39 ∼ 100 (0, 0, 5)
3.45 97.5 ∼ 100 (0, 0, 0) NGC 4536
2.26 89 ∼ 97.4 (1, 0, 1) Same
2.88 99.5 ∼ 100 (0, 0, 0) +1999cl
1.55 94.1 ∼ 99.4 (1, 0, 1) Same
1.47 47 ∼ 94.0 (0, 0, 2) Same

zmax = 0.4

χ2
R Threshold (%) Param. Removal

1.43 38 ∼ 100 (0, 1, 5)
3.31 92.6 ∼ 100 (0, 0, 0) NGC 4536
2.20 92.1 ∼ 92.5 (0, 1, 2) Same
2.80 96.3 ∼ 100 (0, 0, 0) +1999cl
1.96 89 ∼ 96.2 (1, 0, 1) Same
1.37 76 ∼ 88 (0, 0, 4) Same
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(a) NGC 4536 removed (1, 0, 1) (b) NGC 4536, 1999cl removed (1, 0, 1)

(c) NGC 4536, 1999cl removed (0, 0, 2) (d) Inverted density

Figure: Distance modulus best fit models are plotted for F3 with zmax = 0.2, without peculiar
velocity corrections and with a 250 km s−1 velocity dispersion for SNe.
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(a) NGC 4536 removed (0, 1, 2) (b) NGC 4536, 1999cl removed (1, 0, 1)

(c) NGC 4536, 1999cl removed (0, 0, 4) (d) Inverted density

Figure: Distance modulus best fit models are plotted for F3 with zmax = 0.4, without peculiar
velocity corrections and with a 250 km s−1 velocity dispersion for SNe.
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Comparison with
density maps obtained
from luminosity density of
Keenan et al. 2013.

Green : Field 1
Blue : Field 2
Orange : Field 3

Keenan ’13 suggests
2M++ rescaling of
∼ 0.6 ⇒ our density
matches quite well with
2M++ for such a
rescaling in F1, F3.
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Main results

(a) Field 1, (1, 0, 0)

(b) Field 3, zmax = 0.2 with NGC 4536
and 1999cl removed (0, 0, 2)

(c) Field 3, zmax = 0.4 with NGC 4536
and 1999cl removed (0, 0, 4)
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Field 1

Field 3

Comparison with 2M++ density map (averaged along declination
direction in ICRS coordinates).

White arcs correspond to z = 0.01, 0.02, . . . , 0.06, gray contours indicate iso-density
lines of δC = −0.5, 0, 2, 4. Depth of the survey Rmax = 200h−1Mpc, i.e. z = 0.067.
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Rescaling 2M++

2M++ is normalized wrt the average within its depth ⇒ its
normalization can be wrong if 2M++ is embedded in a larger structure.

Same with Keenan 2013 with background equal to the averaged
luminosity density over the data set.

Our reconstructed density profile is normalized wrt the
background since we are assuming cosmological background
parameters obtained from large scale observations (Planck).

If we take K13 background density we would have to rescale 2M++ as

δcor
C =

ρ̃2M++

ρ̃K13
(1 + δC)− 1,

where δcor
C is the rescaled density contrast, while ρ̃2M++ and ρ̃K13 are the

assumed background density of 2M++ and K13 ⇒ factor 0.6 rescaling.
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Our results :

independently confirms the existence of inhomogeneities,

to some extent in qualitative agreement with Keenan 2013 (claiming
∼ 300 Mpc void), but normalization of background seems crucial,

based on 1D fit in windows of the sky, LTB inversion model, with SNe
Ia and Cepheids data ⇒ different sources of uncertainty,

SNe Ia could be useful to correctly normalize density maps from galaxy
surveys with respect to the average density of the Universe,

could clarify the apparent discrepancy between local and large scale
estimations of the H0 (especially between Planck and Riess, which uses
2M++).
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Conclusions

We have tools to work with relativistic effects in the large scale structure.
Adapted coordinates is one of them :

GLC coordinates are convenient for many applications,

they can be related to double-null coordinates (via DLC coordinates),

there are still applications to explore,

in order to go below percent accuracy in cosmology.

But tools are not everything, we also have to understand what we measure :

SNe are messy (and not classified !),

H0 tension is a big problem to solve ! (before/with DE?),

we need to better understand our local Universe,

as discoveries now hide into the details.
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