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• Different phases - rich world

• Why the different phases exist  
- Symmetry breaking theory
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• Local order parameters distinguish different phases

[Landau ]
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• The Hilbert space grows exponentially with system size 

• To efficient simulation (polynomial in memory and time) 

• To study various Hamiltonians (e.g. Bosons and Fermions) and measure 
physical properties and observables

H ⇠ dN

Find the ground state  (approximation)  
Measure physical observables (approximation)  
exact diagonalization (ED),  
Density matrix renormalization group (DMRG) 
Tensor network state (simple update, full update)+  
Tensor network algorithm (PEPS,TRG,SRG,HOTRG,TNR,…..)  
…………



Outline
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- corner tensor 
- Symmetry protected topological order phases 

• The fingerprints of universal physics are encoded holographically in 
numerical CTMs and CTs.  
- classical and quantum Ising  (quantum-classical correspondence)  
- deformed symmetry protected topological order phase  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• Quantum state renormalization in 2D using  corner tensors 
- chiral topological PEPS 

• Summary



A typical problem

• We are given:  
- A lattice with N sites 
- On each site a Cd  
   Hilbert space 
- A quantum Hamiltonian

Can we do better?

• The most general state:  | i =
X

s1,s2,...,sN

Cs1,s2,...,sN |s1, s2, ..., sN i

square lattice honeycomb lattice

• Exponentially large number of states: dN
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Matrix/Tensor Product States

• The numerical implementation for finding the ground states of spin 
systems are based on the matrix/tensor product states.

•  These states can be understood from a series of Schmidt (bi-partite) 
decomposition. It is QIS inspired.

• The ground state is approximated by the relevance of entanglement.

…

MPS
TNS



Graphical representation

• We have to deal with an N index tensor!

Break the wave function locally
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• Is there a good way to represent it?
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Efficient representation, satisfies area-law, 
and targets low-energy eigenstates of local Hamiltonians

| i =
X

s1,s2,...,sN

tT r(As1As2 ...AsN )|s1, s2, ..., sN i
O(dN ) ! O(poly(N, d,D))



Tensor network state (TNS)

• Represent wave-function by the tensor network of A tensors

physical index(1,…,d)
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Tensor network state (TNS)

• Represent wave-function by the tensor network of A tensors

Tensors are local building blocks for 
the quantum state (like a DNA, or LEGO)

quantum state

| i
physical index(1,…,d)

bond index(1,…,D)

i
j
k

l

As
ijkl =

s

| i =
X

s1,s2,...,sN

tT r(As1As2 ...AsN )|s1, s2, ..., sN i



• The Spin-1 chain  

• The Hamiltonian of the AKLT point is

• Tensor network states provide a useful numerical tool

H =
X

i

~Si
~Si+1 +

1

3
(~Si

~Si+1)
2

An example:  
1D Affleck-Kennedy-Lieb-Tasaki state state

TNS with  
d=3; D=2| i =

X

s1,s2,...,sN

tT r(As1As2 ...AsN )|s1, s2, ..., sN i

As=+1
"" = 1; As=�1

## = 1; As=0
"# = As=0

#" =

r
1

2

= |+ 1ih""|+ |0i h"#|+ h#"|p
2

+ |� 1ih##|

[Affleck, I., Kennedy, T., Lieb, E.H., Tasaki ’87,88]



Entanglement

• 2- dimensional system 

• Entanglement key resource in quantum information 

⇢A = trE(| ih |)

S(A) = �tr(⇢A log ⇢A)

Reduced density matrix 
of subsystem A

Entanglement entropy

For many ground states S(A) ⇠ L (L > ⇠)

• In d dimensional system 

Generic 
state S(A) ⇠ Ld Ground state  

of local Hamiltonian S(A) ⇠ Ld�1

[Srednicki, Plenio, Eisert, Dreißig, Cramer, Wolf…]

A
E

L



TNS obey  area law

| i 1, ..., D



out

in

L

L

TNS obey  area law

| i 1, ..., D



out

↵1 ↵2 …..
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↵̄ = (↵1,↵2, ....,↵4L�1,↵4L)|out(↵̄)i
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out
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L

L

1, ..., D
| i =

D4LX

↵̄=1

|in(↵̄)i|out(↵̄)i

X↵̄↵̄0 = hout(↵̄0)|out(↵̄)i

size of the boundary

⇢in = trout(| ih |) =
X

↵̄↵̄0

X↵̄↵̄0 |in(↵̄)ihin(↵̄0)|

rank(⇢in)  D4L S(L) = �tr(⇢in log ⇢in)  log(D)4L



Infinite system

finite TNS

[J. Jordan, R. Orus, G. Vidal, F. Verstraete, I. Cirac, 08’]

infinite TNS

[F. Verstraete, I. Cirac 06’]
Unit cell of tensors is repeated 
periodically over the whole PEPS: 
translational invariance

…

…

…

…



Tensor network algorithm 

Find the best ground 
stats

iterative optimization 
of individual tensors 

 (energy minimization)

imaginary time 
evolution

Compute observable

Contraction of the 
tensor network  

exact / approximate

Structure (Anstaz)
1d: MPS     2d: TNS

| i =
X

s1,s2,....,sn

tT r(As1As2 ...Asn)|s1, s2, ...., sni



Determine the observables
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h |
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Contracting the infinite 2d lattice

……
……

……

……

……

…
…

(double indices)

Contraction of this infinite lattice

To determine observables  



Contracting the infinite 2d lattice

[R. Orús, G. Vidal,09’, R. Orús,12’]

Renormalized Corner Transfer Matrices  
CTM method

…

T1

T2

T3

T4

C4

C1 C2

C3

…… …

…

…… …

……

…

……

half-row  
transfer matrix

corner transfer matrix

half-column  
transfer matrix

from infinite TNS



CTM method
[R. Orús, G. Vidal,09’]
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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CTM (rCTM), since it is a scheme that “reduces” the wave
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available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
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of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN

…
…

…
…

C4

C1 C2

C3

(a)

(b)

…

…
…

…

C4

C1 C2

C3

ρ

Z

FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
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Therefore, one has that

Z = tr(C1C2C3C4), (1)
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symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
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It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
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topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
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models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
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the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.
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on a square lattice. Such a TN could be, e.g., the partition
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1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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can be obtained, at least theoretically, by multiplying four
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Therefore, one has that
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system. They correspond to the (sometimes approximate)
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C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)

195170-2

| (0)i

h (0)|

U(�⌧)

U(�⌧)

U(�⌧)

U(�⌧)⇤

U(�⌧)⇤

U(�⌧)⇤

[R. Orús  2012]

T1

T2

T3

T4

C4

C1 C2

C3

✓ The Partition function of 
classical lattice model

✓ The time-evolution of a 1d 
quantum system 

[R. J. Baxte 1968; T. Nishino and K. Okunishi 1996; R. Orús 2012] 



Corner tensor

• Corner transfer matrices (CTMs) 
method can be used to study 
physical system. 

• CTMs can be defined for any 2d 
tensor network

CHING-YU HUANG, TZU-CHIEH WEI, AND ROMÁN ORÚS PHYSICAL REVIEW B 95, 195170 (2017)

norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.
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CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
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on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.
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on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads
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FIG. 6. Coupling constants for a 2D classical Ising model. In

connection with the quantum-classical correspondence, the vertical
direction corresponds to imaginary time.

model can be written as

Zq ≈
∑

{η}
C ′eJs

∑
α,⟨i,j⟩ η[i]

z (τα)η[j ]
z (τα)eJτ

∑
α,i η[i]

z (τα+1)η[i]
z (τα), (23)

where the “coupling constants” along the imaginary-time (τ )
and space (s) directions are given by

Jτ = tanh− 1(e− 2δτJx ) Js = Jzδτ. (24)

Therefore, the canonical quantum partition function of a
d-dimensional quantum Ising model with a transverse field
at inverse temperature β can be approximately represented
by the classical partition function of a (d + 1)-dimensional
classical Ising model of size β in the imaginary-time direction.
The exact correspondence arrives if we take the number
of sites L in the imaginary time direction to be infinity,
giving δ = β/L → 0, and then the corresponding classical
model has the couplings Js → 0 and Jτ → ∞. In Monte
Carlo simulations, tricks can be used to deal with such as a
limit [39]. For our simulations using correspondence from such
a partition-function approach, we have to take δ increasingly
small to obtain the exact correspondence of the spectrum.

Reparametrizing the derived classical 2D anisotropic Ising
model (see Fig. 6) we have

βHc = −
∑

⟨i,j⟩
(Kxs

[i,j ]s[i,j+1] + Kys
[i,j ]s[i+1,j ]), (25)

where Kx,Ky are, respectively, the horizontal and vertical
couplings, s[i,j ] = ± 1 are classical spins at site [i,j ], and
the sum runs over nearest neighbors on a square lattice. The
classical canonical partition function of this model is given by

Zc =
∑

{s}
e(

∑
⟨i,j⟩ Kxs

[i,j ]s[i,j+1]+Kys
[i,j ]s[i+1,j ]). (26)

Comparing Eq. (23) with Eq. (26) we then have the relations

Kx = Js = Jzδτ, Ky = Jτ = tanh− 1(e− 2δτJx ), (27)

where we can set Jz = 1 and Jx = h. We thus obtain the
relation between h and Kx,Ky ,

tanh Ky = e− 2Kxh. (28)

D2
D1φ

φ

φ

FIG. 7. The diagonal transfer matrix of square lattice.

The exact mapping is obtained in the limit Kx → 0 and
Ky → 0.

The case of a 3D classical Ising model on a cubic lattice,
analogous to a 2D quantum Ising model in a transverse field
on the square lattice, only introduces one more relation in
addition to those Eq. (27) for an extra coupling along a spatial
direction, i.e.,

Kx = Js = Jzδτ, Ky = Js = Jzδτ,
(29)

Kz = Jτ = tanh− 1(e− 2δτJx ).

Such a d-dimensional quantum Ising model is mapped to
a corresponding (d + 1)-dimensional classical Ising model,
which has homogeneous couplings along d spatial dimensions
and is anisotropic in the extra (imaginary) temporal dimension.

(ii) Peschel’s mapping in 2D: In a work by Peschel [38], it
was shown that a 2D classical Ising model with an isotropic
coupling K is in exact correspondence to a 1D quantum spin
chain with Hamiltonian

Hq = −
L− 1∑

i=1

σ [i]
x − δσ [L]

x − λ

L− 1∑

i=1

σ [i]
z σ [i+1]

z , (30)

where δ = cosh 2K and λ = sinh2 K , by using a transfer
matrix technique. The transverse field labeled as δ at the right
end can be neglected for large L. Then one arrives at the usual
homogeneous chain.

Let us briefly review how this is derived. Consider the
classical Hamiltonian of the 2D isotropic Ising model given
by

βHc = −
∑

i,j

K(s[i,j ]s[i,j+1] + s[i,j ]s[i+1,j ]), (31)

where s[i,j ] = ± 1 is a classical spin at site [i,j ] and β is the
inverse temperature. The partition function is given by

Zc =
∑

{s}
e(K

∑
i,j (s[i,j ]s[i,j+1]+s[i,j ]s[i+1,j ])). (32)

Firstly, by drawing the lattice diagonally (i.e., rotate the square
lattice by 45 degrees), the sites can form a row as shown
in Fig. 7, and these rows can be classified into two types:
open circles and solid circles. This means that the number
of rows must be even. Let now N be the number of rows
and M is the number of sites in each row. Moreover, let φr

denote all spins in row r with 2M possible values. In particular,
the partition function can be represented by the diagonal-to-
diagonal transfer matrix W and V as follows:

Zc =
∑

φ1

∑

φ2

· · ·
∑

φN

(D1)φ1,φ2 (D2)φ2,φ3 (D1)φ3,φ4

· · · (D1)φN− 1,φN
(D2)φN ,φ1 . (33)
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analogous to a 2D quantum Ising model in a transverse field
on the square lattice, only introduces one more relation in
addition to those Eq. (27) for an extra coupling along a spatial
direction, i.e.,

Kx = Js = Jzδτ, Ky = Js = Jzδτ,
(29)

Kz = Jτ = tanh− 1(e− 2δτJx ).

Such a d-dimensional quantum Ising model is mapped to
a corresponding (d + 1)-dimensional classical Ising model,
which has homogeneous couplings along d spatial dimensions
and is anisotropic in the extra (imaginary) temporal dimension.

(ii) Peschel’s mapping in 2D: In a work by Peschel [38], it
was shown that a 2D classical Ising model with an isotropic
coupling K is in exact correspondence to a 1D quantum spin
chain with Hamiltonian

Hq = −
L− 1∑

i=1

σ [i]
x − δσ [L]

x − λ

L− 1∑

i=1

σ [i]
z σ [i+1]

z , (30)

where δ = cosh 2K and λ = sinh2 K , by using a transfer
matrix technique. The transverse field labeled as δ at the right
end can be neglected for large L. Then one arrives at the usual
homogeneous chain.

Let us briefly review how this is derived. Consider the
classical Hamiltonian of the 2D isotropic Ising model given
by

βHc = −
∑

i,j

K(s[i,j ]s[i,j+1] + s[i,j ]s[i+1,j ]), (31)

where s[i,j ] = ± 1 is a classical spin at site [i,j ] and β is the
inverse temperature. The partition function is given by

Zc =
∑

{s}
e(K

∑
i,j (s[i,j ]s[i,j+1]+s[i,j ]s[i+1,j ])). (32)

Firstly, by drawing the lattice diagonally (i.e., rotate the square
lattice by 45 degrees), the sites can form a row as shown
in Fig. 7, and these rows can be classified into two types:
open circles and solid circles. This means that the number
of rows must be even. Let now N be the number of rows
and M is the number of sites in each row. Moreover, let φr

denote all spins in row r with 2M possible values. In particular,
the partition function can be represented by the diagonal-to-
diagonal transfer matrix W and V as follows:

Zc =
∑

φ1

∑

φ2

· · ·
∑

φN

(D1)φ1,φ2 (D2)φ2,φ3 (D1)φ3,φ4

· · · (D1)φN− 1,φN
(D2)φN ,φ1 . (33)
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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Notice that a similar Hamiltonian can also be defined individ-
ually for each one of the corners.

Depending on the symmetries of the CTMs, HC may be a
Hermitian operator or not. From the point of view of quantum
states of 1D quantum lattice systems, it is well known [5] that
operator e−HC is related to the reduced density matrix of half an
infinite chain (with HC Hermitian in this case), see Fig. 1(b). In
fact, the spectrum of Schmidt coefficients λα of half an infinite
quantum chain in its ground state is given by λα = ν2

α . These
Schmidt coefficients are related to the eigenvalues ωα of the
reduced density matrix of half an infinite quantum system (the
so-called “entanglement spectrum” [13]) by ωα = λ2

α = ν4
α ,

which are known to codify universal information about the
system when close enough to criticality [3]. In terms of ωα , the
contraction of the 2D TN reads Z =

∑χ
α=1 ωα . Additionally,

the eigenvalues εα of the corner Hamiltonian HC read

εα ≡ − log ωα. (5)

In this paper we call these eigenvalues εα’s corner energies.

B. Corner tensors

Similarly to CTMs for 2D TNs, one can define corner
objects for higher dimensions, which we generically call cor-
ner tensors (CT). Formally speaking, a CT is the (sometimes
approximate) contraction of all the tensors at one of the corners
of a TN. For instance, for a TN on a 3D cubic lattice, one would
have that its contraction Z is equivalent to the contraction of
eight CTs, i.e.,

Z = f (C1,C2,C3,C4,C5,C6,C7,C8), (6)

with Ci (i = 1, . . . ,8) eight three-index tensors (the CTs), and
f (·) a function specifying the contraction pattern, see Fig. 2.

For the case of systems with CTs it is also possible to
define corner Hamiltonians. For instance, contractions such as
the ones in Fig. 2 correspond, for the case of a 2D quantum
lattice system, to tracing over three quarters or half of the
infinite system. For quantum systems described by a 2D
PEPS, it is possible to obtain these types of contractions by
using the quantum state renormalization scheme from Sec. III.
In such cases, these contractions correspond to the reduced
density matrices ρ of either one quarter or half an infinite
2D system, with eigenvalues ωα , α = 1, . . . ,χ (entanglement

FIG. 2. 3D corner tensors which correspond to tracing over,
respectively, (a) three quarters and (b) half of a given 2D quantum
system.

spectrum). The contraction of the full 3D TN thus amounts
to Z =

∑χ
α=1 ωα , as in the lower-dimensional case of CTMs.

Again, it is possible to define a corner Hamiltonian HC and
corner energies εα in an analogous way as for CTMs.

C. Previous results

CTMs and CTs have proven to be important in a variety
of contexts, both for theory and numerics. In statistical
mechanics they were used to solve the hard hexagon model
and many others [1,2]. From the perspective of quantum
information, it is well known that the corner Hamiltonian HC

is related to a quantum system which, in some cases, can
be diagonalized exactly [3]. Numerically, Baxter developed
a variational method to approximate the partition function
per site of a 2D classical lattice model by truncating in
the eigenvalue spectrum of the CTM [6]. This was later
refined by Nishino and Okunishi, who developed the corner
transfer matrix renormalization group method (CTMRG) [8].
Alternative truncation schemes for CTMRG have also been
studied, based on a directional approach and with a direct
application in infinite-PEPS algorithms [4,23]. In fact, CTMs
have been applied extensively in the calculation of effective en-
vironments in infinite-PEPS simulations [25]. Moreover, they
have been used as well in the generalization to 2D of the time-
dependent variational principle [10], which is also useful in the
calculation of 2D excitations. As for generalizations, CTMs
have also been used in other 2D geometries, including lattice
discretizations of AdS manifolds [26]. Numerical methods
with CTMs were also implemented in systems with periodic
boundary conditions [27] as well as stochastic models [28].
Methods targeting directly the corner Hamiltonian have also
been considered [29,30]. Finally, the higher-dimensional
generalization to corner tensors has also been used to develop
new numerical simulation algorithms [5,11].

III. APPROACH AND METHODS

A. Generalities

In the following sections we shall show how the spectrum of
eigenvalues ωα , or equivalently the spectrum of corner energies
εα , encodes useful universal information when computed
numerically for a variety of classical and quantum lattice
systems. This is also true for the “corner entropy” given by

S ≡ −
∑

α

ωα log ωα. (7)

In particular, we will show explicitly how the spectrum as well
as the entropy exactly coincide if compared between some d-
dimensional quantum and (d + 1)-dimensional classical spin
systems, as expected from the quantum-classical correspon-
dence. Moreover, we will also study them for a variety of other
models, including several instances of topologically-ordered
states. We will see that this can be useful to pinpoint phase
transitions as well as to study edge physics of chiral topological
states.

Concerning numerical algorithms, in our simulations we
have used the following, depending on the nature of the system
to be studied:
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)

195170-2

corner spectrum

CTM method



CTM from tensor network (TN)

•  For 1d quantum:  from Hamiltonian ➜ (1+1)d TN
| (0)i

h (0)|

U(�⌧)

U(�⌧)

U(�⌧)

U(�⌧)⇤

U(�⌧)⇤

U(�⌧)⇤

[R. Orús  2012]

T1

T2

T3

T4

C4

C1 C2

C3

CHING-YU HUANG, TZU-CHIEH WEI, AND ROMÁN ORÚS PHYSICAL REVIEW B 95, 195170 (2017)

norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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Notice that a similar Hamiltonian can also be defined individ-
ually for each one of the corners.

Depending on the symmetries of the CTMs, HC may be a
Hermitian operator or not. From the point of view of quantum
states of 1D quantum lattice systems, it is well known [5] that
operator e−HC is related to the reduced density matrix of half an
infinite chain (with HC Hermitian in this case), see Fig. 1(b). In
fact, the spectrum of Schmidt coefficients λα of half an infinite
quantum chain in its ground state is given by λα = ν2

α . These
Schmidt coefficients are related to the eigenvalues ωα of the
reduced density matrix of half an infinite quantum system (the
so-called “entanglement spectrum” [13]) by ωα = λ2

α = ν4
α ,

which are known to codify universal information about the
system when close enough to criticality [3]. In terms of ωα , the
contraction of the 2D TN reads Z =

∑χ
α=1 ωα . Additionally,

the eigenvalues εα of the corner Hamiltonian HC read

εα ≡ − log ωα. (5)

In this paper we call these eigenvalues εα’s corner energies.

B. Corner tensors

Similarly to CTMs for 2D TNs, one can define corner
objects for higher dimensions, which we generically call cor-
ner tensors (CT). Formally speaking, a CT is the (sometimes
approximate) contraction of all the tensors at one of the corners
of a TN. For instance, for a TN on a 3D cubic lattice, one would
have that its contraction Z is equivalent to the contraction of
eight CTs, i.e.,

Z = f (C1,C2,C3,C4,C5,C6,C7,C8), (6)

with Ci (i = 1, . . . ,8) eight three-index tensors (the CTs), and
f (·) a function specifying the contraction pattern, see Fig. 2.

For the case of systems with CTs it is also possible to
define corner Hamiltonians. For instance, contractions such as
the ones in Fig. 2 correspond, for the case of a 2D quantum
lattice system, to tracing over three quarters or half of the
infinite system. For quantum systems described by a 2D
PEPS, it is possible to obtain these types of contractions by
using the quantum state renormalization scheme from Sec. III.
In such cases, these contractions correspond to the reduced
density matrices ρ of either one quarter or half an infinite
2D system, with eigenvalues ωα , α = 1, . . . ,χ (entanglement

FIG. 2. 3D corner tensors which correspond to tracing over,
respectively, (a) three quarters and (b) half of a given 2D quantum
system.

spectrum). The contraction of the full 3D TN thus amounts
to Z =

∑χ
α=1 ωα , as in the lower-dimensional case of CTMs.

Again, it is possible to define a corner Hamiltonian HC and
corner energies εα in an analogous way as for CTMs.

C. Previous results

CTMs and CTs have proven to be important in a variety
of contexts, both for theory and numerics. In statistical
mechanics they were used to solve the hard hexagon model
and many others [1,2]. From the perspective of quantum
information, it is well known that the corner Hamiltonian HC

is related to a quantum system which, in some cases, can
be diagonalized exactly [3]. Numerically, Baxter developed
a variational method to approximate the partition function
per site of a 2D classical lattice model by truncating in
the eigenvalue spectrum of the CTM [6]. This was later
refined by Nishino and Okunishi, who developed the corner
transfer matrix renormalization group method (CTMRG) [8].
Alternative truncation schemes for CTMRG have also been
studied, based on a directional approach and with a direct
application in infinite-PEPS algorithms [4,23]. In fact, CTMs
have been applied extensively in the calculation of effective en-
vironments in infinite-PEPS simulations [25]. Moreover, they
have been used as well in the generalization to 2D of the time-
dependent variational principle [10], which is also useful in the
calculation of 2D excitations. As for generalizations, CTMs
have also been used in other 2D geometries, including lattice
discretizations of AdS manifolds [26]. Numerical methods
with CTMs were also implemented in systems with periodic
boundary conditions [27] as well as stochastic models [28].
Methods targeting directly the corner Hamiltonian have also
been considered [29,30]. Finally, the higher-dimensional
generalization to corner tensors has also been used to develop
new numerical simulation algorithms [5,11].

III. APPROACH AND METHODS

A. Generalities

In the following sections we shall show how the spectrum of
eigenvalues ωα , or equivalently the spectrum of corner energies
εα , encodes useful universal information when computed
numerically for a variety of classical and quantum lattice
systems. This is also true for the “corner entropy” given by

S ≡ −
∑

α

ωα log ωα. (7)

In particular, we will show explicitly how the spectrum as well
as the entropy exactly coincide if compared between some d-
dimensional quantum and (d + 1)-dimensional classical spin
systems, as expected from the quantum-classical correspon-
dence. Moreover, we will also study them for a variety of other
models, including several instances of topologically-ordered
states. We will see that this can be useful to pinpoint phase
transitions as well as to study edge physics of chiral topological
states.

Concerning numerical algorithms, in our simulations we
have used the following, depending on the nature of the system
to be studied:
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN

…
…

…
…

C4

C1 C2

C3

(a)

(b)

…

…
…

…

C4

C1 C2

C3

ρ

Z

FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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Notice that a similar Hamiltonian can also be defined individ-
ually for each one of the corners.

Depending on the symmetries of the CTMs, HC may be a
Hermitian operator or not. From the point of view of quantum
states of 1D quantum lattice systems, it is well known [5] that
operator e−HC is related to the reduced density matrix of half an
infinite chain (with HC Hermitian in this case), see Fig. 1(b). In
fact, the spectrum of Schmidt coefficients λα of half an infinite
quantum chain in its ground state is given by λα = ν2

α . These
Schmidt coefficients are related to the eigenvalues ωα of the
reduced density matrix of half an infinite quantum system (the
so-called “entanglement spectrum” [13]) by ωα = λ2

α = ν4
α ,

which are known to codify universal information about the
system when close enough to criticality [3]. In terms of ωα , the
contraction of the 2D TN reads Z =

∑χ
α=1 ωα . Additionally,

the eigenvalues εα of the corner Hamiltonian HC read

εα ≡ − log ωα. (5)

In this paper we call these eigenvalues εα’s corner energies.

B. Corner tensors

Similarly to CTMs for 2D TNs, one can define corner
objects for higher dimensions, which we generically call cor-
ner tensors (CT). Formally speaking, a CT is the (sometimes
approximate) contraction of all the tensors at one of the corners
of a TN. For instance, for a TN on a 3D cubic lattice, one would
have that its contraction Z is equivalent to the contraction of
eight CTs, i.e.,

Z = f (C1,C2,C3,C4,C5,C6,C7,C8), (6)

with Ci (i = 1, . . . ,8) eight three-index tensors (the CTs), and
f (·) a function specifying the contraction pattern, see Fig. 2.

For the case of systems with CTs it is also possible to
define corner Hamiltonians. For instance, contractions such as
the ones in Fig. 2 correspond, for the case of a 2D quantum
lattice system, to tracing over three quarters or half of the
infinite system. For quantum systems described by a 2D
PEPS, it is possible to obtain these types of contractions by
using the quantum state renormalization scheme from Sec. III.
In such cases, these contractions correspond to the reduced
density matrices ρ of either one quarter or half an infinite
2D system, with eigenvalues ωα , α = 1, . . . ,χ (entanglement

FIG. 2. 3D corner tensors which correspond to tracing over,
respectively, (a) three quarters and (b) half of a given 2D quantum
system.

spectrum). The contraction of the full 3D TN thus amounts
to Z =

∑χ
α=1 ωα , as in the lower-dimensional case of CTMs.

Again, it is possible to define a corner Hamiltonian HC and
corner energies εα in an analogous way as for CTMs.

C. Previous results

CTMs and CTs have proven to be important in a variety
of contexts, both for theory and numerics. In statistical
mechanics they were used to solve the hard hexagon model
and many others [1,2]. From the perspective of quantum
information, it is well known that the corner Hamiltonian HC

is related to a quantum system which, in some cases, can
be diagonalized exactly [3]. Numerically, Baxter developed
a variational method to approximate the partition function
per site of a 2D classical lattice model by truncating in
the eigenvalue spectrum of the CTM [6]. This was later
refined by Nishino and Okunishi, who developed the corner
transfer matrix renormalization group method (CTMRG) [8].
Alternative truncation schemes for CTMRG have also been
studied, based on a directional approach and with a direct
application in infinite-PEPS algorithms [4,23]. In fact, CTMs
have been applied extensively in the calculation of effective en-
vironments in infinite-PEPS simulations [25]. Moreover, they
have been used as well in the generalization to 2D of the time-
dependent variational principle [10], which is also useful in the
calculation of 2D excitations. As for generalizations, CTMs
have also been used in other 2D geometries, including lattice
discretizations of AdS manifolds [26]. Numerical methods
with CTMs were also implemented in systems with periodic
boundary conditions [27] as well as stochastic models [28].
Methods targeting directly the corner Hamiltonian have also
been considered [29,30]. Finally, the higher-dimensional
generalization to corner tensors has also been used to develop
new numerical simulation algorithms [5,11].

III. APPROACH AND METHODS

A. Generalities

In the following sections we shall show how the spectrum of
eigenvalues ωα , or equivalently the spectrum of corner energies
εα , encodes useful universal information when computed
numerically for a variety of classical and quantum lattice
systems. This is also true for the “corner entropy” given by

S ≡ −
∑

α

ωα log ωα. (7)

In particular, we will show explicitly how the spectrum as well
as the entropy exactly coincide if compared between some d-
dimensional quantum and (d + 1)-dimensional classical spin
systems, as expected from the quantum-classical correspon-
dence. Moreover, we will also study them for a variety of other
models, including several instances of topologically-ordered
states. We will see that this can be useful to pinpoint phase
transitions as well as to study edge physics of chiral topological
states.

Concerning numerical algorithms, in our simulations we
have used the following, depending on the nature of the system
to be studied:
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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Notice that a similar Hamiltonian can also be defined individ-
ually for each one of the corners.

Depending on the symmetries of the CTMs, HC may be a
Hermitian operator or not. From the point of view of quantum
states of 1D quantum lattice systems, it is well known [5] that
operator e−HC is related to the reduced density matrix of half an
infinite chain (with HC Hermitian in this case), see Fig. 1(b). In
fact, the spectrum of Schmidt coefficients λα of half an infinite
quantum chain in its ground state is given by λα = ν2

α . These
Schmidt coefficients are related to the eigenvalues ωα of the
reduced density matrix of half an infinite quantum system (the
so-called “entanglement spectrum” [13]) by ωα = λ2

α = ν4
α ,

which are known to codify universal information about the
system when close enough to criticality [3]. In terms of ωα , the
contraction of the 2D TN reads Z =

∑χ
α=1 ωα . Additionally,

the eigenvalues εα of the corner Hamiltonian HC read

εα ≡ − log ωα. (5)

In this paper we call these eigenvalues εα’s corner energies.

B. Corner tensors

Similarly to CTMs for 2D TNs, one can define corner
objects for higher dimensions, which we generically call cor-
ner tensors (CT). Formally speaking, a CT is the (sometimes
approximate) contraction of all the tensors at one of the corners
of a TN. For instance, for a TN on a 3D cubic lattice, one would
have that its contraction Z is equivalent to the contraction of
eight CTs, i.e.,

Z = f (C1,C2,C3,C4,C5,C6,C7,C8), (6)

with Ci (i = 1, . . . ,8) eight three-index tensors (the CTs), and
f (·) a function specifying the contraction pattern, see Fig. 2.

For the case of systems with CTs it is also possible to
define corner Hamiltonians. For instance, contractions such as
the ones in Fig. 2 correspond, for the case of a 2D quantum
lattice system, to tracing over three quarters or half of the
infinite system. For quantum systems described by a 2D
PEPS, it is possible to obtain these types of contractions by
using the quantum state renormalization scheme from Sec. III.
In such cases, these contractions correspond to the reduced
density matrices ρ of either one quarter or half an infinite
2D system, with eigenvalues ωα , α = 1, . . . ,χ (entanglement

FIG. 2. 3D corner tensors which correspond to tracing over,
respectively, (a) three quarters and (b) half of a given 2D quantum
system.

spectrum). The contraction of the full 3D TN thus amounts
to Z =

∑χ
α=1 ωα , as in the lower-dimensional case of CTMs.

Again, it is possible to define a corner Hamiltonian HC and
corner energies εα in an analogous way as for CTMs.

C. Previous results

CTMs and CTs have proven to be important in a variety
of contexts, both for theory and numerics. In statistical
mechanics they were used to solve the hard hexagon model
and many others [1,2]. From the perspective of quantum
information, it is well known that the corner Hamiltonian HC

is related to a quantum system which, in some cases, can
be diagonalized exactly [3]. Numerically, Baxter developed
a variational method to approximate the partition function
per site of a 2D classical lattice model by truncating in
the eigenvalue spectrum of the CTM [6]. This was later
refined by Nishino and Okunishi, who developed the corner
transfer matrix renormalization group method (CTMRG) [8].
Alternative truncation schemes for CTMRG have also been
studied, based on a directional approach and with a direct
application in infinite-PEPS algorithms [4,23]. In fact, CTMs
have been applied extensively in the calculation of effective en-
vironments in infinite-PEPS simulations [25]. Moreover, they
have been used as well in the generalization to 2D of the time-
dependent variational principle [10], which is also useful in the
calculation of 2D excitations. As for generalizations, CTMs
have also been used in other 2D geometries, including lattice
discretizations of AdS manifolds [26]. Numerical methods
with CTMs were also implemented in systems with periodic
boundary conditions [27] as well as stochastic models [28].
Methods targeting directly the corner Hamiltonian have also
been considered [29,30]. Finally, the higher-dimensional
generalization to corner tensors has also been used to develop
new numerical simulation algorithms [5,11].

III. APPROACH AND METHODS

A. Generalities

In the following sections we shall show how the spectrum of
eigenvalues ωα , or equivalently the spectrum of corner energies
εα , encodes useful universal information when computed
numerically for a variety of classical and quantum lattice
systems. This is also true for the “corner entropy” given by

S ≡ −
∑

α

ωα log ωα. (7)

In particular, we will show explicitly how the spectrum as well
as the entropy exactly coincide if compared between some d-
dimensional quantum and (d + 1)-dimensional classical spin
systems, as expected from the quantum-classical correspon-
dence. Moreover, we will also study them for a variety of other
models, including several instances of topologically-ordered
states. We will see that this can be useful to pinpoint phase
transitions as well as to study edge physics of chiral topological
states.

Concerning numerical algorithms, in our simulations we
have used the following, depending on the nature of the system
to be studied:
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Notice that a similar Hamiltonian can also be defined individ-
ually for each one of the corners.

Depending on the symmetries of the CTMs, HC may be a
Hermitian operator or not. From the point of view of quantum
states of 1D quantum lattice systems, it is well known [5] that
operator e−HC is related to the reduced density matrix of half an
infinite chain (with HC Hermitian in this case), see Fig. 1(b). In
fact, the spectrum of Schmidt coefficients λα of half an infinite
quantum chain in its ground state is given by λα = ν2

α . These
Schmidt coefficients are related to the eigenvalues ωα of the
reduced density matrix of half an infinite quantum system (the
so-called “entanglement spectrum” [13]) by ωα = λ2

α = ν4
α ,

which are known to codify universal information about the
system when close enough to criticality [3]. In terms of ωα , the
contraction of the 2D TN reads Z =

∑χ
α=1 ωα . Additionally,

the eigenvalues εα of the corner Hamiltonian HC read

εα ≡ − log ωα. (5)

In this paper we call these eigenvalues εα’s corner energies.

B. Corner tensors

Similarly to CTMs for 2D TNs, one can define corner
objects for higher dimensions, which we generically call cor-
ner tensors (CT). Formally speaking, a CT is the (sometimes
approximate) contraction of all the tensors at one of the corners
of a TN. For instance, for a TN on a 3D cubic lattice, one would
have that its contraction Z is equivalent to the contraction of
eight CTs, i.e.,

Z = f (C1,C2,C3,C4,C5,C6,C7,C8), (6)

with Ci (i = 1, . . . ,8) eight three-index tensors (the CTs), and
f (·) a function specifying the contraction pattern, see Fig. 2.

For the case of systems with CTs it is also possible to
define corner Hamiltonians. For instance, contractions such as
the ones in Fig. 2 correspond, for the case of a 2D quantum
lattice system, to tracing over three quarters or half of the
infinite system. For quantum systems described by a 2D
PEPS, it is possible to obtain these types of contractions by
using the quantum state renormalization scheme from Sec. III.
In such cases, these contractions correspond to the reduced
density matrices ρ of either one quarter or half an infinite
2D system, with eigenvalues ωα , α = 1, . . . ,χ (entanglement

FIG. 2. 3D corner tensors which correspond to tracing over,
respectively, (a) three quarters and (b) half of a given 2D quantum
system.

spectrum). The contraction of the full 3D TN thus amounts
to Z =

∑χ
α=1 ωα , as in the lower-dimensional case of CTMs.

Again, it is possible to define a corner Hamiltonian HC and
corner energies εα in an analogous way as for CTMs.

C. Previous results

CTMs and CTs have proven to be important in a variety
of contexts, both for theory and numerics. In statistical
mechanics they were used to solve the hard hexagon model
and many others [1,2]. From the perspective of quantum
information, it is well known that the corner Hamiltonian HC

is related to a quantum system which, in some cases, can
be diagonalized exactly [3]. Numerically, Baxter developed
a variational method to approximate the partition function
per site of a 2D classical lattice model by truncating in
the eigenvalue spectrum of the CTM [6]. This was later
refined by Nishino and Okunishi, who developed the corner
transfer matrix renormalization group method (CTMRG) [8].
Alternative truncation schemes for CTMRG have also been
studied, based on a directional approach and with a direct
application in infinite-PEPS algorithms [4,23]. In fact, CTMs
have been applied extensively in the calculation of effective en-
vironments in infinite-PEPS simulations [25]. Moreover, they
have been used as well in the generalization to 2D of the time-
dependent variational principle [10], which is also useful in the
calculation of 2D excitations. As for generalizations, CTMs
have also been used in other 2D geometries, including lattice
discretizations of AdS manifolds [26]. Numerical methods
with CTMs were also implemented in systems with periodic
boundary conditions [27] as well as stochastic models [28].
Methods targeting directly the corner Hamiltonian have also
been considered [29,30]. Finally, the higher-dimensional
generalization to corner tensors has also been used to develop
new numerical simulation algorithms [5,11].

III. APPROACH AND METHODS

A. Generalities

In the following sections we shall show how the spectrum of
eigenvalues ωα , or equivalently the spectrum of corner energies
εα , encodes useful universal information when computed
numerically for a variety of classical and quantum lattice
systems. This is also true for the “corner entropy” given by

S ≡ −
∑

α

ωα log ωα. (7)

In particular, we will show explicitly how the spectrum as well
as the entropy exactly coincide if compared between some d-
dimensional quantum and (d + 1)-dimensional classical spin
systems, as expected from the quantum-classical correspon-
dence. Moreover, we will also study them for a variety of other
models, including several instances of topologically-ordered
states. We will see that this can be useful to pinpoint phase
transitions as well as to study edge physics of chiral topological
states.

Concerning numerical algorithms, in our simulations we
have used the following, depending on the nature of the system
to be studied:
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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Notice that a similar Hamiltonian can also be defined individ-
ually for each one of the corners.

Depending on the symmetries of the CTMs, HC may be a
Hermitian operator or not. From the point of view of quantum
states of 1D quantum lattice systems, it is well known [5] that
operator e−HC is related to the reduced density matrix of half an
infinite chain (with HC Hermitian in this case), see Fig. 1(b). In
fact, the spectrum of Schmidt coefficients λα of half an infinite
quantum chain in its ground state is given by λα = ν2

α . These
Schmidt coefficients are related to the eigenvalues ωα of the
reduced density matrix of half an infinite quantum system (the
so-called “entanglement spectrum” [13]) by ωα = λ2

α = ν4
α ,

which are known to codify universal information about the
system when close enough to criticality [3]. In terms of ωα , the
contraction of the 2D TN reads Z =

∑χ
α=1 ωα . Additionally,

the eigenvalues εα of the corner Hamiltonian HC read

εα ≡ − log ωα. (5)

In this paper we call these eigenvalues εα’s corner energies.

B. Corner tensors

Similarly to CTMs for 2D TNs, one can define corner
objects for higher dimensions, which we generically call cor-
ner tensors (CT). Formally speaking, a CT is the (sometimes
approximate) contraction of all the tensors at one of the corners
of a TN. For instance, for a TN on a 3D cubic lattice, one would
have that its contraction Z is equivalent to the contraction of
eight CTs, i.e.,

Z = f (C1,C2,C3,C4,C5,C6,C7,C8), (6)

with Ci (i = 1, . . . ,8) eight three-index tensors (the CTs), and
f (·) a function specifying the contraction pattern, see Fig. 2.

For the case of systems with CTs it is also possible to
define corner Hamiltonians. For instance, contractions such as
the ones in Fig. 2 correspond, for the case of a 2D quantum
lattice system, to tracing over three quarters or half of the
infinite system. For quantum systems described by a 2D
PEPS, it is possible to obtain these types of contractions by
using the quantum state renormalization scheme from Sec. III.
In such cases, these contractions correspond to the reduced
density matrices ρ of either one quarter or half an infinite
2D system, with eigenvalues ωα , α = 1, . . . ,χ (entanglement

FIG. 2. 3D corner tensors which correspond to tracing over,
respectively, (a) three quarters and (b) half of a given 2D quantum
system.

spectrum). The contraction of the full 3D TN thus amounts
to Z =

∑χ
α=1 ωα , as in the lower-dimensional case of CTMs.

Again, it is possible to define a corner Hamiltonian HC and
corner energies εα in an analogous way as for CTMs.

C. Previous results

CTMs and CTs have proven to be important in a variety
of contexts, both for theory and numerics. In statistical
mechanics they were used to solve the hard hexagon model
and many others [1,2]. From the perspective of quantum
information, it is well known that the corner Hamiltonian HC

is related to a quantum system which, in some cases, can
be diagonalized exactly [3]. Numerically, Baxter developed
a variational method to approximate the partition function
per site of a 2D classical lattice model by truncating in
the eigenvalue spectrum of the CTM [6]. This was later
refined by Nishino and Okunishi, who developed the corner
transfer matrix renormalization group method (CTMRG) [8].
Alternative truncation schemes for CTMRG have also been
studied, based on a directional approach and with a direct
application in infinite-PEPS algorithms [4,23]. In fact, CTMs
have been applied extensively in the calculation of effective en-
vironments in infinite-PEPS simulations [25]. Moreover, they
have been used as well in the generalization to 2D of the time-
dependent variational principle [10], which is also useful in the
calculation of 2D excitations. As for generalizations, CTMs
have also been used in other 2D geometries, including lattice
discretizations of AdS manifolds [26]. Numerical methods
with CTMs were also implemented in systems with periodic
boundary conditions [27] as well as stochastic models [28].
Methods targeting directly the corner Hamiltonian have also
been considered [29,30]. Finally, the higher-dimensional
generalization to corner tensors has also been used to develop
new numerical simulation algorithms [5,11].

III. APPROACH AND METHODS

A. Generalities

In the following sections we shall show how the spectrum of
eigenvalues ωα , or equivalently the spectrum of corner energies
εα , encodes useful universal information when computed
numerically for a variety of classical and quantum lattice
systems. This is also true for the “corner entropy” given by

S ≡ −
∑

α

ωα log ωα. (7)

In particular, we will show explicitly how the spectrum as well
as the entropy exactly coincide if compared between some d-
dimensional quantum and (d + 1)-dimensional classical spin
systems, as expected from the quantum-classical correspon-
dence. Moreover, we will also study them for a variety of other
models, including several instances of topologically-ordered
states. We will see that this can be useful to pinpoint phase
transitions as well as to study edge physics of chiral topological
states.

Concerning numerical algorithms, in our simulations we
have used the following, depending on the nature of the system
to be studied:
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FIG. 3. 2D PEPS on a square lattice and its renormalized version
with CTs.

(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by
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FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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Ref. [5] to obtain the corner spectrum ωα . As argued in Ref. [3]
we expect and verify that {λ2

α} agrees with {ωα}.
(ii) 2D classical Ising: The partition function is given by

Zc =
∑

{s}
e−βHc({s}), (9)

with classical Hamiltonian

Hc{s} = −
∑

⟨i,j⟩
s[i]s[j ], (10)

where β = 1/T is the inverse temperature, s[i] = ± 1 is a
classical spin variable at site i, {s} is a spin configuration, and
the sum in the Hamiltonian runs over nearest neighbors on the
square lattice. The model is exactly solvable, and the critical
point satisfies βc = 1

2 log (1 +
√

2). It is well known [31]
that the partition function Zc can be written as an exact 2D
tensor network with tensors on the sites of a square lattice.
The approximate contraction is therefore amenable to tensor
network methods. We use the directional CTM approach to
compute the corner spectra and corner entropy from the tensors
defining the partition function of the model.

(iii) 2D Ising PEPS: As explained in Ref. [22], it is actually
possible to write an exact projected entangled pair state
(PEPS) [14] with bond dimension D = 2 whose expectation
values are the ones of the 2D classical Ising model. The way
to construct this PEPS is simple: One starts by considering the
quantum state

|ψ(β)⟩ = 1
Zc

e( β
2

∑
⟨i,j⟩ σ [i]

z σ
[j ]
z )| + , + , · · · ,+⟩, (11)

with β some inverse temperature and |+⟩ the +1 eigenstate of
σx . It is easy to see that the expectation values of this quantum
state match the ones of the 2D classical Ising model, e.g.,

⟨ψ(β)|σ [i]
z σ [j ]

z |ψ(β)⟩ = 1
Zc

∑

{s}
s[i]s[j ]e−βHc({s})

= ⟨s[i]s[j ]⟩β , (12)

with Hc({s}) the classical Hamiltonian in Eq. (10), and ⟨·⟩β
the expectation value in the canonical ensemble at inverse
temperature β. For a square lattice, one can also see [22] that
the state |ψ(β)⟩ can be written exactly as a 2D PEPS with
bond dimension D = 2. If A is the tensor defining the PEPS,
its nonzero coefficients are given by

A+
0000 = (cosh(β/2))4

A−
0010 = (cosh(β/2))3(sinh(β/2))

A+
0110 = (cosh(β/2))2(sinh(β/2))2 (13)

A−
1110 = (cosh(β/2))(sinh(β/2))3

A+
1111 = (sinh(β/2))4

and permutations thereof. In the above equations, the conven-
tion for the PEPS indices is Ai

αβγ δ , with α,β,γ ,δ the left, up,
right, and down indices, and i the physical index (this time in
the +/− basis). By construction, this PEPS is critical at the
same critical βc as the classical Ising model and belongs also
to the same universality class. For the numerical simulations
it is sometimes convenient to parametrize the PEPS in terms

FIG. 5. (a) Entanglement spectra λ2
α and the entanglement en-

tropy obtained from iTEBD of 1D quantum Ising model with
parameter t(h) as the function of transverse field h. The corner spectra
ωα and the corner entropy S of: (b) also the 1D quantum Ising model
with parameter t(h) as the function of transverse field h, but computed
with the simplified one-directional 1D method [5]; (c) 2D classical
Ising model with temperature t = T/Tc; (d) 2D quantum Ising PEPS
with parameter t(g) as the function of g. In (c), (d) the corner tensors
are obtained from the rCTM setting, see also examples in Sec. VI. In
all cases, the bond dimension of the CTMs—equivalent to the bond
dimension of the MPS in case (a)—is χ = 40.

of g = 1
2 arcsin(e−β) and therefore gc ≈ 0.349596. For this

state, we computed the corner spectra and entropy from the
double-layer TN defining its norm, using the directional CTM
approach [4].

For these three models and the methods mentioned we
have computed the spectrum ωα as a function of the relevant
parameter (magnetic field, inverse temperature, perturba-
tion...), as well as the corner entropy S = −

∑
α ωα log ωα .

The results are shown in Fig. 5. The differences between
models correspond to rescalings in the defining variables and
parameters that map the different models among them. More
specifically, we can rescale the parameters h and g using the
2D classical Ising reduced temperature t = T/Tc as the basic
variable, which is related to the magnetic field h of the 1D
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FIG. 3. 2D PEPS on a square lattice and its renormalized version
with CTs.

(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by
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FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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Ref. [5] to obtain the corner spectrum ωα . As argued in Ref. [3]
we expect and verify that {λ2

α} agrees with {ωα}.
(ii) 2D classical Ising: The partition function is given by

Zc =
∑

{s}
e−βHc({s}), (9)

with classical Hamiltonian

Hc{s} = −
∑

⟨i,j⟩
s[i]s[j ], (10)

where β = 1/T is the inverse temperature, s[i] = ± 1 is a
classical spin variable at site i, {s} is a spin configuration, and
the sum in the Hamiltonian runs over nearest neighbors on the
square lattice. The model is exactly solvable, and the critical
point satisfies βc = 1

2 log (1 +
√

2). It is well known [31]
that the partition function Zc can be written as an exact 2D
tensor network with tensors on the sites of a square lattice.
The approximate contraction is therefore amenable to tensor
network methods. We use the directional CTM approach to
compute the corner spectra and corner entropy from the tensors
defining the partition function of the model.

(iii) 2D Ising PEPS: As explained in Ref. [22], it is actually
possible to write an exact projected entangled pair state
(PEPS) [14] with bond dimension D = 2 whose expectation
values are the ones of the 2D classical Ising model. The way
to construct this PEPS is simple: One starts by considering the
quantum state

|ψ(β)⟩ = 1
Zc

e( β
2

∑
⟨i,j⟩ σ [i]

z σ
[j ]
z )| + , + , · · · ,+⟩, (11)

with β some inverse temperature and |+⟩ the +1 eigenstate of
σx . It is easy to see that the expectation values of this quantum
state match the ones of the 2D classical Ising model, e.g.,

⟨ψ(β)|σ [i]
z σ [j ]

z |ψ(β)⟩ = 1
Zc

∑

{s}
s[i]s[j ]e−βHc({s})

= ⟨s[i]s[j ]⟩β , (12)

with Hc({s}) the classical Hamiltonian in Eq. (10), and ⟨·⟩β
the expectation value in the canonical ensemble at inverse
temperature β. For a square lattice, one can also see [22] that
the state |ψ(β)⟩ can be written exactly as a 2D PEPS with
bond dimension D = 2. If A is the tensor defining the PEPS,
its nonzero coefficients are given by

A+
0000 = (cosh(β/2))4

A−
0010 = (cosh(β/2))3(sinh(β/2))

A+
0110 = (cosh(β/2))2(sinh(β/2))2 (13)

A−
1110 = (cosh(β/2))(sinh(β/2))3

A+
1111 = (sinh(β/2))4

and permutations thereof. In the above equations, the conven-
tion for the PEPS indices is Ai

αβγ δ , with α,β,γ ,δ the left, up,
right, and down indices, and i the physical index (this time in
the +/− basis). By construction, this PEPS is critical at the
same critical βc as the classical Ising model and belongs also
to the same universality class. For the numerical simulations
it is sometimes convenient to parametrize the PEPS in terms

FIG. 5. (a) Entanglement spectra λ2
α and the entanglement en-

tropy obtained from iTEBD of 1D quantum Ising model with
parameter t(h) as the function of transverse field h. The corner spectra
ωα and the corner entropy S of: (b) also the 1D quantum Ising model
with parameter t(h) as the function of transverse field h, but computed
with the simplified one-directional 1D method [5]; (c) 2D classical
Ising model with temperature t = T/Tc; (d) 2D quantum Ising PEPS
with parameter t(g) as the function of g. In (c), (d) the corner tensors
are obtained from the rCTM setting, see also examples in Sec. VI. In
all cases, the bond dimension of the CTMs—equivalent to the bond
dimension of the MPS in case (a)—is χ = 40.

of g = 1
2 arcsin(e−β) and therefore gc ≈ 0.349596. For this

state, we computed the corner spectra and entropy from the
double-layer TN defining its norm, using the directional CTM
approach [4].

For these three models and the methods mentioned we
have computed the spectrum ωα as a function of the relevant
parameter (magnetic field, inverse temperature, perturba-
tion...), as well as the corner entropy S = −

∑
α ωα log ωα .

The results are shown in Fig. 5. The differences between
models correspond to rescalings in the defining variables and
parameters that map the different models among them. More
specifically, we can rescale the parameters h and g using the
2D classical Ising reduced temperature t = T/Tc as the basic
variable, which is related to the magnetic field h of the 1D
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FIG. 3. 2D PEPS on a square lattice and its renormalized version
with CTs.

(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by
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FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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Ref. [5] to obtain the corner spectrum ωα . As argued in Ref. [3]
we expect and verify that {λ2

α} agrees with {ωα}.
(ii) 2D classical Ising: The partition function is given by

Zc =
∑

{s}
e−βHc({s}), (9)

with classical Hamiltonian

Hc{s} = −
∑

⟨i,j⟩
s[i]s[j ], (10)

where β = 1/T is the inverse temperature, s[i] = ± 1 is a
classical spin variable at site i, {s} is a spin configuration, and
the sum in the Hamiltonian runs over nearest neighbors on the
square lattice. The model is exactly solvable, and the critical
point satisfies βc = 1

2 log (1 +
√

2). It is well known [31]
that the partition function Zc can be written as an exact 2D
tensor network with tensors on the sites of a square lattice.
The approximate contraction is therefore amenable to tensor
network methods. We use the directional CTM approach to
compute the corner spectra and corner entropy from the tensors
defining the partition function of the model.

(iii) 2D Ising PEPS: As explained in Ref. [22], it is actually
possible to write an exact projected entangled pair state
(PEPS) [14] with bond dimension D = 2 whose expectation
values are the ones of the 2D classical Ising model. The way
to construct this PEPS is simple: One starts by considering the
quantum state

|ψ(β)⟩ = 1
Zc

e( β
2

∑
⟨i,j⟩ σ [i]

z σ
[j ]
z )| + , + , · · · ,+⟩, (11)

with β some inverse temperature and |+⟩ the +1 eigenstate of
σx . It is easy to see that the expectation values of this quantum
state match the ones of the 2D classical Ising model, e.g.,

⟨ψ(β)|σ [i]
z σ [j ]

z |ψ(β)⟩ = 1
Zc

∑

{s}
s[i]s[j ]e−βHc({s})

= ⟨s[i]s[j ]⟩β , (12)

with Hc({s}) the classical Hamiltonian in Eq. (10), and ⟨·⟩β
the expectation value in the canonical ensemble at inverse
temperature β. For a square lattice, one can also see [22] that
the state |ψ(β)⟩ can be written exactly as a 2D PEPS with
bond dimension D = 2. If A is the tensor defining the PEPS,
its nonzero coefficients are given by

A+
0000 = (cosh(β/2))4

A−
0010 = (cosh(β/2))3(sinh(β/2))

A+
0110 = (cosh(β/2))2(sinh(β/2))2 (13)

A−
1110 = (cosh(β/2))(sinh(β/2))3

A+
1111 = (sinh(β/2))4

and permutations thereof. In the above equations, the conven-
tion for the PEPS indices is Ai

αβγ δ , with α,β,γ ,δ the left, up,
right, and down indices, and i the physical index (this time in
the +/− basis). By construction, this PEPS is critical at the
same critical βc as the classical Ising model and belongs also
to the same universality class. For the numerical simulations
it is sometimes convenient to parametrize the PEPS in terms

FIG. 5. (a) Entanglement spectra λ2
α and the entanglement en-

tropy obtained from iTEBD of 1D quantum Ising model with
parameter t(h) as the function of transverse field h. The corner spectra
ωα and the corner entropy S of: (b) also the 1D quantum Ising model
with parameter t(h) as the function of transverse field h, but computed
with the simplified one-directional 1D method [5]; (c) 2D classical
Ising model with temperature t = T/Tc; (d) 2D quantum Ising PEPS
with parameter t(g) as the function of g. In (c), (d) the corner tensors
are obtained from the rCTM setting, see also examples in Sec. VI. In
all cases, the bond dimension of the CTMs—equivalent to the bond
dimension of the MPS in case (a)—is χ = 40.

of g = 1
2 arcsin(e−β) and therefore gc ≈ 0.349596. For this

state, we computed the corner spectra and entropy from the
double-layer TN defining its norm, using the directional CTM
approach [4].

For these three models and the methods mentioned we
have computed the spectrum ωα as a function of the relevant
parameter (magnetic field, inverse temperature, perturba-
tion...), as well as the corner entropy S = −

∑
α ωα log ωα .

The results are shown in Fig. 5. The differences between
models correspond to rescalings in the defining variables and
parameters that map the different models among them. More
specifically, we can rescale the parameters h and g using the
2D classical Ising reduced temperature t = T/Tc as the basic
variable, which is related to the magnetic field h of the 1D
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FIG. 3. 2D PEPS on a square lattice and its renormalized version
with CTs.

(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by
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FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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Ref. [5] to obtain the corner spectrum ωα . As argued in Ref. [3]
we expect and verify that {λ2

α} agrees with {ωα}.
(ii) 2D classical Ising: The partition function is given by

Zc =
∑

{s}
e−βHc({s}), (9)

with classical Hamiltonian

Hc{s} = −
∑

⟨i,j⟩
s[i]s[j ], (10)

where β = 1/T is the inverse temperature, s[i] = ± 1 is a
classical spin variable at site i, {s} is a spin configuration, and
the sum in the Hamiltonian runs over nearest neighbors on the
square lattice. The model is exactly solvable, and the critical
point satisfies βc = 1

2 log (1 +
√

2). It is well known [31]
that the partition function Zc can be written as an exact 2D
tensor network with tensors on the sites of a square lattice.
The approximate contraction is therefore amenable to tensor
network methods. We use the directional CTM approach to
compute the corner spectra and corner entropy from the tensors
defining the partition function of the model.

(iii) 2D Ising PEPS: As explained in Ref. [22], it is actually
possible to write an exact projected entangled pair state
(PEPS) [14] with bond dimension D = 2 whose expectation
values are the ones of the 2D classical Ising model. The way
to construct this PEPS is simple: One starts by considering the
quantum state

|ψ(β)⟩ = 1
Zc

e( β
2

∑
⟨i,j⟩ σ [i]

z σ
[j ]
z )| + , + , · · · ,+⟩, (11)

with β some inverse temperature and |+⟩ the +1 eigenstate of
σx . It is easy to see that the expectation values of this quantum
state match the ones of the 2D classical Ising model, e.g.,

⟨ψ(β)|σ [i]
z σ [j ]

z |ψ(β)⟩ = 1
Zc

∑

{s}
s[i]s[j ]e−βHc({s})

= ⟨s[i]s[j ]⟩β , (12)

with Hc({s}) the classical Hamiltonian in Eq. (10), and ⟨·⟩β
the expectation value in the canonical ensemble at inverse
temperature β. For a square lattice, one can also see [22] that
the state |ψ(β)⟩ can be written exactly as a 2D PEPS with
bond dimension D = 2. If A is the tensor defining the PEPS,
its nonzero coefficients are given by

A+
0000 = (cosh(β/2))4

A−
0010 = (cosh(β/2))3(sinh(β/2))

A+
0110 = (cosh(β/2))2(sinh(β/2))2 (13)

A−
1110 = (cosh(β/2))(sinh(β/2))3

A+
1111 = (sinh(β/2))4

and permutations thereof. In the above equations, the conven-
tion for the PEPS indices is Ai

αβγ δ , with α,β,γ ,δ the left, up,
right, and down indices, and i the physical index (this time in
the +/− basis). By construction, this PEPS is critical at the
same critical βc as the classical Ising model and belongs also
to the same universality class. For the numerical simulations
it is sometimes convenient to parametrize the PEPS in terms

FIG. 5. (a) Entanglement spectra λ2
α and the entanglement en-

tropy obtained from iTEBD of 1D quantum Ising model with
parameter t(h) as the function of transverse field h. The corner spectra
ωα and the corner entropy S of: (b) also the 1D quantum Ising model
with parameter t(h) as the function of transverse field h, but computed
with the simplified one-directional 1D method [5]; (c) 2D classical
Ising model with temperature t = T/Tc; (d) 2D quantum Ising PEPS
with parameter t(g) as the function of g. In (c), (d) the corner tensors
are obtained from the rCTM setting, see also examples in Sec. VI. In
all cases, the bond dimension of the CTMs—equivalent to the bond
dimension of the MPS in case (a)—is χ = 40.

of g = 1
2 arcsin(e−β) and therefore gc ≈ 0.349596. For this

state, we computed the corner spectra and entropy from the
double-layer TN defining its norm, using the directional CTM
approach [4].

For these three models and the methods mentioned we
have computed the spectrum ωα as a function of the relevant
parameter (magnetic field, inverse temperature, perturba-
tion...), as well as the corner entropy S = −

∑
α ωα log ωα .

The results are shown in Fig. 5. The differences between
models correspond to rescalings in the defining variables and
parameters that map the different models among them. More
specifically, we can rescale the parameters h and g using the
2D classical Ising reduced temperature t = T/Tc as the basic
variable, which is related to the magnetic field h of the 1D
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FIG. 3. 2D PEPS on a square lattice and its renormalized version
with CTs.

(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by
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FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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Ref. [5] to obtain the corner spectrum ωα . As argued in Ref. [3]
we expect and verify that {λ2

α} agrees with {ωα}.
(ii) 2D classical Ising: The partition function is given by

Zc =
∑

{s}
e−βHc({s}), (9)

with classical Hamiltonian

Hc{s} = −
∑

⟨i,j⟩
s[i]s[j ], (10)

where β = 1/T is the inverse temperature, s[i] = ± 1 is a
classical spin variable at site i, {s} is a spin configuration, and
the sum in the Hamiltonian runs over nearest neighbors on the
square lattice. The model is exactly solvable, and the critical
point satisfies βc = 1

2 log (1 +
√

2). It is well known [31]
that the partition function Zc can be written as an exact 2D
tensor network with tensors on the sites of a square lattice.
The approximate contraction is therefore amenable to tensor
network methods. We use the directional CTM approach to
compute the corner spectra and corner entropy from the tensors
defining the partition function of the model.

(iii) 2D Ising PEPS: As explained in Ref. [22], it is actually
possible to write an exact projected entangled pair state
(PEPS) [14] with bond dimension D = 2 whose expectation
values are the ones of the 2D classical Ising model. The way
to construct this PEPS is simple: One starts by considering the
quantum state

|ψ(β)⟩ = 1
Zc

e( β
2

∑
⟨i,j⟩ σ [i]

z σ
[j ]
z )| + , + , · · · ,+⟩, (11)

with β some inverse temperature and |+⟩ the +1 eigenstate of
σx . It is easy to see that the expectation values of this quantum
state match the ones of the 2D classical Ising model, e.g.,

⟨ψ(β)|σ [i]
z σ [j ]

z |ψ(β)⟩ = 1
Zc

∑

{s}
s[i]s[j ]e−βHc({s})

= ⟨s[i]s[j ]⟩β , (12)

with Hc({s}) the classical Hamiltonian in Eq. (10), and ⟨·⟩β
the expectation value in the canonical ensemble at inverse
temperature β. For a square lattice, one can also see [22] that
the state |ψ(β)⟩ can be written exactly as a 2D PEPS with
bond dimension D = 2. If A is the tensor defining the PEPS,
its nonzero coefficients are given by

A+
0000 = (cosh(β/2))4

A−
0010 = (cosh(β/2))3(sinh(β/2))

A+
0110 = (cosh(β/2))2(sinh(β/2))2 (13)

A−
1110 = (cosh(β/2))(sinh(β/2))3

A+
1111 = (sinh(β/2))4

and permutations thereof. In the above equations, the conven-
tion for the PEPS indices is Ai

αβγ δ , with α,β,γ ,δ the left, up,
right, and down indices, and i the physical index (this time in
the +/− basis). By construction, this PEPS is critical at the
same critical βc as the classical Ising model and belongs also
to the same universality class. For the numerical simulations
it is sometimes convenient to parametrize the PEPS in terms

FIG. 5. (a) Entanglement spectra λ2
α and the entanglement en-

tropy obtained from iTEBD of 1D quantum Ising model with
parameter t(h) as the function of transverse field h. The corner spectra
ωα and the corner entropy S of: (b) also the 1D quantum Ising model
with parameter t(h) as the function of transverse field h, but computed
with the simplified one-directional 1D method [5]; (c) 2D classical
Ising model with temperature t = T/Tc; (d) 2D quantum Ising PEPS
with parameter t(g) as the function of g. In (c), (d) the corner tensors
are obtained from the rCTM setting, see also examples in Sec. VI. In
all cases, the bond dimension of the CTMs—equivalent to the bond
dimension of the MPS in case (a)—is χ = 40.

of g = 1
2 arcsin(e−β) and therefore gc ≈ 0.349596. For this

state, we computed the corner spectra and entropy from the
double-layer TN defining its norm, using the directional CTM
approach [4].

For these three models and the methods mentioned we
have computed the spectrum ωα as a function of the relevant
parameter (magnetic field, inverse temperature, perturba-
tion...), as well as the corner entropy S = −

∑
α ωα log ωα .

The results are shown in Fig. 5. The differences between
models correspond to rescalings in the defining variables and
parameters that map the different models among them. More
specifically, we can rescale the parameters h and g using the
2D classical Ising reduced temperature t = T/Tc as the basic
variable, which is related to the magnetic field h of the 1D
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and classical systems in d+1 dimensions 
(a) The partition-function method  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(c)  Suzuki’s method

• The main idea is that, for a d-dimensional quantum Hamiltonian Hq at inverse 
temperature β, the canonical quantum partition function  
can be evaluated by writing it as a path integral in imaginary time
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FIG. 3. 2D PEPS on a square lattice and its renormalized version
with CTs.

(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by
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FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by

(e)

T̃4

C̃4

(a)

C1 T1

C4 T3

T4

(d)

(c)

(f)

(g)

C̃1

(b) =
W

U

C̃1 C1

C4

W
U†

C̃4

T4

WU†

U

T̃4

C1

T4

C4

=

=

=
U†UU

DU

+C̃1 C̃1
†

(C̃4
T
)†C̃4

T

D
W W †+ =C̃1 C̃1

†
C̃1

T
(C̃1

T
)†

FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by
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FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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Phase of matter

• Conventional phases of matter: understood through  
spontaneous symmetry-breaking  
=> Local order parameters: distinguish different phases 

• New phases of matter: e.g. Fractional quantum Hall effect 
No local order parameters 
No symmetry breaking

[Landau]

[Tsui,  Stormer, & Gossard  ’82]

intrinsic Topological Order  Symmetry protected topological order

2D Z2 Toric code 1D Haldane phase
Ground state degeneracy NO

Fractional statistics of quasiparticles NO
Topological entanglement entropy NO

 Long range entanglement Short range entanglement
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Symmetry-protected topological order

• Ground state does not break symmetry G (no local Landau order 
parameter)

• Ground state is adiabatically connected to product state if symmetry is 
not respected- nontrivial short-range entanglement structure

• Unique ground state on periodic boundary, Usually gapless edge 
excitations

•  Example: Topological insulator, Haldane phase in spin-1 chain



Prominent example of SPT state: 
1D Affleck-Kennedy-Lieb-Tasaki state

• Each site: spin-1

[AKLT ’87,88]
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Prominent example of SPT state: 
1D Affleck-Kennedy-Lieb-Tasaki state

• Each site: spin-1

• Unique ground state on periodic chain;  4 gapless edge states if open

[AKLT ’87,88]
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Prominent example of SPT state: 
1D Affleck-Kennedy-Lieb-Tasaki state

• Each site: spin-1

• SO(3) fractionalizes to SU(2) (i.e. spin-1/2 representation) at open ends ! 
projective representation as signature of 1D SPT

• Unique ground state on periodic chain;  4 gapless edge states if open

[AKLT ’87,88]
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Characterization of 1D SPT phases

• Hamiltonian and ground state          with symmetry  
  
 
 
- bulk: Linear on-site representation                           (e.g. spin-1)  
- boundary: Projective representation                 (e.g. spin 1/2)

• 1D nontrivial SPT phases are characterized by projective representation of 
symmetry action at one end

• Classified by the second cohomology group H
2[G,U(1)]

| 0i G

| 0iUg

ug ug ug ug ug

UgUh = Ugh

V L
g V R

g

Vg

VgVh = !(g, h)Vgh

•  A projective representation respects group multiplication

U(1) phase [i.e. 2-cocycle] 



Example: spin-1 chain

Haldane 

1

H =
X

i

[~Si · ~Si+1 +D(Sz
i )

2]

D
|0i|0i...|0i
GH = G 0GH = G 0

• The second cohomology group H
2[Z2 ⇥ Z2, U(1)] = Z2

•  Haldane phase
Rx, Rz rotation symmetry represented by s=1/2 Pauli matrix 
�x�z = ��z�x ) ! = �1

• Large D phase 
Rx, Rz rotation symmetry represented by I ) ! = 1

• Rx, Rz rotation symmetry:  Rx Rz =Rz Rx
U(g) = [u(g)]⌦N , g 2 G

U(g1)U(g2) = U(g1g2)



2D SPT phases: characterization

• Characterized by obstruction of symmetry 
action on boundary with open ends

- on closed 2d manifold: U(g)| i = | i

- open 2d manifold →symmetry action on 
boundary  C

- consider region M of C → symmetry 
action 

Uc(g)| ci = | cic

Ma
b

3-cocycle (a U(1) phase ) 

⌦a(g1, g2)⌦a(g1g2, g3) = �(g1, g2, g3)⌦a(g2, g3)⌦a(g1, g2g3)

UM (g1)UM (g2) = ⌦(g1, g2)UM (g1, g2)

U(g) = [u(g)]⌦N , g 2 G

U(g1)U(g2) = U(g1g2)

- Associativity →  3-cocycle [a U(1) phase]



2d SPT phases: CZX model

• CZX model: nontrivial SPT 
order protected only by on-
site Z2  symmetry.

• On site  Z2  symmetry:
UCZX = UXUCZ

UX = X1 ⌦X2 ⌦X3 ⌦X4

UCZ = CZ12CZ23CZ34CZ41

• The Hamiltonian: 

• The ground state:  every four spins 
around a plaquette are entangled 
in the state

 [ Chen & Wen 2012]

| pli = |0000i+ |1111i



• non-trivial edge state

• 3-cocylce for the group 
generated by UCZX

 nontrivial 3-cocycle for the Z2 group

 [Chen & Wen 2012]

• The effective symmetry action on 
the boundary of CZX model can 
be expressed as MPO

Tg1Tg2 = P (g1, g2)Tg1g2

Pg1,g2Pg1g2,g3 =

�(g1, g2, g3)Pg2,g3Pg1,g2g3



Classification of (symmetry protected) topological order 
phase

• For bosonic system: 
Topological order 
→ Tensor category 
 
 
Symmetry protected  
topological order  
→ Group cohomology 

CHEN, GU, LIU, AND WEN PHYSICAL REVIEW B 87 , 155114 (2013)

TABLE I. (Color online) SPT phases of interacting bosonic systems in d-spatial dimensions protected by on-site symmetry G. In absence
of translation symmetry, the above table lists H1+d[G,UT (1)] whose elements label the SPT phases. Here Z1 means that our construction only
gives rise to the trivial phase. Zn means that the constructed nontrivial SPT phases plus the trivial phase are labeled by the elements in Zn. ZT

2
represents time-reversal symmetry, “trn” represents translation symmetry, U (1) represents U (1) symmetry, Zn represents cyclic symmetry, etc.
Also, (m,n) is the greatest common divisor of m and n. The red rows are for bosonic topological insulators and the blue rows bosonic topological
superconductors. The red/blue rows without translation symmetry correspond to strong bosonic topological insulators/superconductors and the
red/blue rows with translation symmetry also contain weak bosonic topological insulators/superconductors.

nontrivial SU (2) SPT phases in (2 + 4n) spatial dimension.
Those SU (2) SPT phases labeled by k ∈ Z. There is no
nontrivial SU (2) SPT phase in other dimensions. Similarly,
those SU (2) SPT phases in 2D can be described by continuous
nonlinear σ model with 2π -quantized topological θ term:

S =
∫

dτd2x

(
1

2ρ
Tr(∂µg†∂µg)

+ i
θ

2π2

ϵµνλ

6
1
2

Tr[(g− 1∂µg)(g− 1∂νg)(g− 1∂λg)]
)

, (3)

where g(x,t) is a 2 × 2 matrix in SU (2) and θ = 2πk, k ∈ Z.

C. U(1) SPT states

From H1+d[U (1),U (1)] = Z for even d and
H1+d[U (1),U (1)] = Z1 for odd d, we find that spin/boson
systems with U (1) on-site symmetry have infinite nontrivial
SPT phases labeled by nonzero integer in d= even dimensions.
This generalizes a result obtained by Levin for d= 2.62 We
note that H3[SU (2),U (1)] = H3[U (1),U (1)] = Z. The SPT
states with SU (2) symmetry can also be viewed as SPT states
with U (1) symmetry. We know that an SU (2) SPT state
labeled by k ∈ Z is described by Eq. (3) with θ = 2πk. Such

an SU (2) SPT state is also a nontrivial U (1) SPT state labeled
by k ∈ Z.

We like to point out that it is believed that all 2D
gapped phases with Abelian statistics are classified by K
matrix and the related U (1) Chern-Simons theory.68– 70 All the
quasiparticles in the 2D SPT phases are bosons. So the SPT
phases are also described by K matrices. We just need to find
a way to include symmetry in the K-matrix approach, which
is done in Ref. 49. In particular, Michael Levin71 pointed out
that a 2D U (1) SPT phase can be described by a U (1) × U (1)
Chern-Simons theory (or a double-layer quantum Hall state)
(see also Refs. 72 and 73),

L= 1
4π

KIJ aIµ∂νaJλϵ
µνλ + 1

2π
qIAµ∂νaIλϵ

µνλ + · · · , (4)

with the K matrix and the charge vector q:68– 70

K =
(

0 1
1 2k

)
, q =

(
1
1

)
. (5)

We note that such a K matrix has two null vectors n1 =
( 1

k ),n2 = ( 0
1 ) that satisfy nT

i K− 1ni = 0. The null vectors
correspond to quasiparticles with Bose statistics. Such null
vectors would destabilize the state if we did not have the U (1)

155114-4

[Chen, Gu,Liu & Wen 2013]
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nontrivial SU (2) SPT phases in (2 + 4n) spatial dimension.
Those SU (2) SPT phases labeled by k ∈ Z. There is no
nontrivial SU (2) SPT phase in other dimensions. Similarly,
those SU (2) SPT phases in 2D can be described by continuous
nonlinear σ model with 2π -quantized topological θ term:
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where g(x,t) is a 2 × 2 matrix in SU (2) and θ = 2πk, k ∈ Z.

C. U(1) SPT states

From H1+d[U (1),U (1)] = Z for even d and
H1+d[U (1),U (1)] = Z1 for odd d, we find that spin/boson
systems with U (1) on-site symmetry have infinite nontrivial
SPT phases labeled by nonzero integer in d= even dimensions.
This generalizes a result obtained by Levin for d= 2.62 We
note that H3[SU (2),U (1)] = H3[U (1),U (1)] = Z. The SPT
states with SU (2) symmetry can also be viewed as SPT states
with U (1) symmetry. We know that an SU (2) SPT state
labeled by k ∈ Z is described by Eq. (3) with θ = 2πk. Such

an SU (2) SPT state is also a nontrivial U (1) SPT state labeled
by k ∈ Z.

We like to point out that it is believed that all 2D
gapped phases with Abelian statistics are classified by K
matrix and the related U (1) Chern-Simons theory.68– 70 All the
quasiparticles in the 2D SPT phases are bosons. So the SPT
phases are also described by K matrices. We just need to find
a way to include symmetry in the K-matrix approach, which
is done in Ref. 49. In particular, Michael Levin71 pointed out
that a 2D U (1) SPT phase can be described by a U (1) × U (1)
Chern-Simons theory (or a double-layer quantum Hall state)
(see also Refs. 72 and 73),
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We note that such a K matrix has two null vectors n1 =
( 1

k ),n2 = ( 0
1 ) that satisfy nT

i K− 1ni = 0. The null vectors
correspond to quasiparticles with Bose statistics. Such null
vectors would destabilize the state if we did not have the U (1)
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Transition  between SPT

• The Z2 SPTk  (t=+1,-1) wave function

where                     is a tensor 

6

can be represented by the local tensor A[s1, s2, s3, s4] as
shown in Fig. 3, as follows:

A[0, 0, 0, 0] = A[1, 1, 1, 1] = 1

A[0, 0, 1, 1] = A[1, 1, 0, 0] = A[1, 0, 0, 1] = A[0, 1, 1, 0] = g
2

A[0, 1, 1, 1] = A[1, 0, 0, 0] = A[0, 0, 1, 0] = A[1, 1, 0, 1] = g
2

A[0, 0, 0, 1] = A[1, 1, 1, 0] = g
2

A[0, 1, 0, 0] = A[1, 0, 1, 1] = g
2

A[0, 1, 0, 1] = A[1, 0, 1, 0] = g
4 (14)

FIG. 3. The tensor representation on the square lattice. The
labels in circles are physical indices and the labels on the link
are inner indices.

At g = 1, this is the ground state of CZXmodel and the
corresponding state has non-trivial Z2 SPT order. At g =
0, the tensor represents a cat state |00...00i+|11...11i and
such a global superposition represents the spontaneous
symmetry breaking. At some critical point in gc, the
state must go through a phase transition. One way to
detect the phase transition is to apply our algorithm.
The MPO of CZX model can be given by X ⌦X↵, here
↵ = |00ih00|+ |01ih01|+ |10ih10|� |11ih11|.

We find that, at g > gc, state belongs to Z2 SPT order,
since we obtain nontrivial matrix T

2 (see Eq. 23 of k = 1
). While g < gc, we obtain the T

2 matrix in Eq. 21, and
the state is a symmetry breaking phase as shown in Fig. 4.
We determine gc to be between 0.802 and 0.8024.

As this model is mathematically equivalent to 2D clas-
sical Ising model where the transition point is known to
great accuracy. The double tensor of the norm is just two
copies of the partition function of classical Ising model
on the square lattice. We then have a relation between
the parameter g and the temperature T . The transition
point from the classical mapping is gc = 0.802243. The
transition point from our algorithm is quit close to the
exact mapping results. Our calculation for the quan-
tum model confirms the observation and shows that the
quantum phase transition is between symmetry protected
topological order and symmetry breaking.

D. 2D Symmetry breaking phase to ZN SPT

Let us begin by describing the construction of ZN SPT
wave functions through group cocycles and it can be gen-
eralized to any symmetry group. The system lives on

FIG. 4. The trace of T 2 for tensor [Eq. 14] as a function of
parameter g (Dcut = 16). The critical point is at gc ⇡ 0.802.

the honeycomb lattice, where each singe contain three
particle as shown in Fig 5. The tensor product state
(TPS) motivated by the ZN symmetry protected topo-
logically ordered phase is characterized by the tensor

A
(si,sj ,sk)
(↵,↵0,�,�0,�,�0) with three physical indices and six inter-

nal indices running over 0, 1, 2, ..., N � 1 on vertex. The
wave function is then given by

| i =
X

si

tT r(A⌦A...⌦A)|s1, s2, ...i. (15)

Specifically, the tensor A
(si,sj ,sk)
(↵,↵0,�,�0,�,�0) related to the 3-

cocycle of ZN symmetry and satisfy si = ↵ = ↵
0; sj =

� = �
0; sk = � = �

0.

FIG. 5. The tensor representation of ZN SPT. Each site
contain three particle.

There are N di↵erent group cohomology classes in
H

3(ZN , U(1)). The choices of 3-cocycle is specified by
k, where k = 0, 1, 2, ..., N � 1. The following are a

few example: For Z2 SPT, the tensor A
(si,sj ,sk)
(↵,↵0,�,�0,�,�0) ⌘

T (si, sj , sk) is given by

A(0, 0, 0) = A(1, 1, 1) = 1

A(0, 0, 1) = A(0, 1, 0) = A(1, 0, 0) = 1

A(1, 1, 0) = A(1, 0, 1) = A(0, 1, 1) = !
k
, (16)

where ! = e
2⇡/2 = �1. As k = 0, the tensor shows the

trivial Z2 SPT. On the other hand, It is a non-trivial Z2
SPT on k = 1.

• The wave function

SPT1 SPT0

tune parameter t

• t=1 ➔ Z2 SPT0;   t=-1 ➔ Z2 SPT1
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topological order and symmetry breaking.

D. 2D Symmetry breaking phase to ZN SPT

Let us begin by describing the construction of ZN SPT
wave functions through group cocycles and it can be gen-
eralized to any symmetry group. The system lives on

FIG. 4. The trace of T 2 for tensor [Eq. 14] as a function of
parameter g (Dcut = 16). The critical point is at gc ⇡ 0.802.

the honeycomb lattice, where each singe contain three
particle as shown in Fig 5. The tensor product state
(TPS) motivated by the ZN symmetry protected topo-
logically ordered phase is characterized by the tensor

A
(si,sj ,sk)
(↵,↵0,�,�0,�,�0) with three physical indices and six inter-

nal indices running over 0, 1, 2, ..., N � 1 on vertex. The
wave function is then given by

| i =
X

si

tT r(A⌦A...⌦A)|s1, s2, ...i. (15)

Specifically, the tensor A
(si,sj ,sk)
(↵,↵0,�,�0,�,�0) related to the 3-

cocycle of ZN symmetry and satisfy si = ↵ = ↵
0; sj =

� = �
0; sk = � = �

0.

FIG. 5. The tensor representation of ZN SPT. Each site
contain three particle.

There are N di↵erent group cohomology classes in
H

3(ZN , U(1)). The choices of 3-cocycle is specified by
k, where k = 0, 1, 2, ..., N � 1. The following are a

few example: For Z2 SPT, the tensor A
(si,sj ,sk)
(↵,↵0,�,�0,�,�0) ⌘

T (si, sj , sk) is given by

A(0, 0, 0) = A(1, 1, 1) = 1

A(0, 0, 1) = A(0, 1, 0) = A(1, 0, 0) = 1

A(1, 1, 0) = A(1, 0, 1) = A(0, 1, 1) = !
k
, (16)

where ! = e
2⇡/2 = �1. As k = 0, the tensor shows the

trivial Z2 SPT. On the other hand, It is a non-trivial Z2
SPT on k = 1.

• The wave function
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tune parameter t
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FIG. 19. One possible spin configuration of the symmetry
breaking phase starting from the first site tensor A[0, 1, 0, 0].
For simplicity, the labels around the red empty circle are the
physical indices on each site. Other three ordered phases
can be build up by starting from the first tensor A[0, 0, 0, 1],
A[1, 0, 1, 1], and A[1, 1, 1, 0].

D. Phase transition directly between two SPT
phases

Here we construct another family of Z2 symmetric
wavefunctions on the square lattice, with the local tensor
A[si, sj , sk, sl] parametrized by t [see Fig. 20(a)],

A[0, 0, 0, 0] = A[1, 1, 1, 1] = A[0, 0, 1, 1] = A[1, 1, 0, 0] = 1

A[1, 0, 0, 1] = A[0, 1, 1, 0] = A[0, 1, 0, 1] = A[1, 0, 1, 0] = 1

A[0, 0, 1, 0] = A[1, 1, 0, 1] = A[1, 0, 0, 0] = A[0, 1, 1, 1] = 1

A[0, 1, 0, 0] = A[0, 0, 0, 1] = t

A[1, 0, 1, 1] = A[1, 1, 1, 0] = |t|. (47)

The parent Hamiltonian is listed in Eq. (B4) and its con-
struction is explained in Appendix B. The ground-state
energy, by construction, is identically zero, and therefore,
we expect any transition arising from this Hamiltonian
and its ground state is continuous.

The symmetry action is generated by the Pauli �x on
all four partons on all sites, and one can verify that the
above wavefunction is indeed invariant under such a sym-
metry action. As t = 1, this tensor represents a fixed-
point wavefunction of the trivial Z2 SPT phase (SPT0).
As t = �1, this state is the fixed-point wavefunction of
the non-trivial Z2 SPT phase (SPT1). The wavefunctions
above smoothly interpolate between the two phases.

For large magnitudes of t, the tensor in Eq. (47)
has four dominant local physical configurations:
A[0, 1, 0, 0] = A[0, 0, 0, 1] = t; A[1, 0, 1, 1] =
A[1, 1, 1, 0] = |t|. Obviously, this shows an ordered
phase with a symmetry-breaking pattern of a 4 ⇥ 4
unit cell, represented by the e↵ective degree of freedom
on each plaquette as shown in Fig. 19. This gives rise
to four-fold symmetry breaking of the ground state.
With the symmetry breaking pattern understood we
can construct local order parameters to characterize
this phase. By computing the h�zi of the parton on the

FIG. 20. (a) The tensor representation on the square lattice.
The labels in circles are physical indices and the labels on the
link are inner indices. (b) A local term in the Hamiltonian,
which is tensor product of one four-site operator X4 and four
two-site operators P2.

top-left corner at the first site (labeled as a blue empty
circle in Fig. 19) and averaging it over all 4 ⇥ 4 unit
cells we obtain the behavior of the order parameter for
this symmetry-break phase, shown in Fig. 21, and find
quantum phase transitions at |t| ⇡ 1.73.

Given the understanding of symmetry-break phases at
large |t| and the existence of SPT phases around |t| =
1, a natural question is whether there is an additional
phase in between the two SPT phases? To answer this
we shall calculate the modular matrices for a wide range
of t. But we need to first examine the MPO’s related
to the symmetry action. The inner symmetry operator
for the wavefunction in Eq. (47) is X ⌦ X↵ and either
↵ = |00ih00| + |01ih01| + |10ih10| + |11ih11| for t � 0 or
↵ = |00ih00| + i|01ih01| + i|10ih10| + |11ih11| for t  0.
Then we use the HOTRG to evaluate the wavefunction
overlaps for the modular matrices by inserting various
combinations of MPO’s. Let us emphasize that when
we implement our scheme we numerically check which
MPO can make the wavefunction invariant and then take
that MPO for the evaluation of modular matrices (even
though we know which one should be).

Our results are shown in Fig. 21. First, we see that
when |t| � 1.7321, all components of 4 ⇥ 4 topological
invariant T 2 matrices are 0 except for T 2[1, 1] = 1. We
can thus deduce that these two regions are a symmetry-
break phase. We find that the SPT phases are in the
regions 0 < |t| < 1.7321 since we obtain nontrivial T 2

matrices, same as Eq. (39) for t > 0 and Eq. (41) for t <
0. Thus a quantum phase transition separates these two
SPT phases at t = 0. Is the transition is discontinuous
or continuous?

We need further evidence to determine what the tran-
sition is. The relevant quantity of interest is the correla-
tion function which can distinguish whether the transi-
tion point is critical or not, and it is defined as,

C⇥(|Ri � Rj |) = h⇥(Ri)⇥(Ri)i � h⇥(Ri)ih⇥(Ri)i,
(48)
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can be represented by the local tensor A[s1, s2, s3, s4] as
shown in Fig. 3, as follows:

A[0, 0, 0, 0] = A[1, 1, 1, 1] = 1

A[0, 0, 1, 1] = A[1, 1, 0, 0] = A[1, 0, 0, 1] = A[0, 1, 1, 0] = g
2

A[0, 1, 1, 1] = A[1, 0, 0, 0] = A[0, 0, 1, 0] = A[1, 1, 0, 1] = g
2

A[0, 0, 0, 1] = A[1, 1, 1, 0] = g
2

A[0, 1, 0, 0] = A[1, 0, 1, 1] = g
2

A[0, 1, 0, 1] = A[1, 0, 1, 0] = g
4 (14)

FIG. 3. The tensor representation on the square lattice. The
labels in circles are physical indices and the labels on the link
are inner indices.

At g = 1, this is the ground state of CZXmodel and the
corresponding state has non-trivial Z2 SPT order. At g =
0, the tensor represents a cat state |00...00i+|11...11i and
such a global superposition represents the spontaneous
symmetry breaking. At some critical point in gc, the
state must go through a phase transition. One way to
detect the phase transition is to apply our algorithm.
The MPO of CZX model can be given by X ⌦X↵, here
↵ = |00ih00|+ |01ih01|+ |10ih10|� |11ih11|.

We find that, at g > gc, state belongs to Z2 SPT order,
since we obtain nontrivial matrix T

2 (see Eq. 23 of k = 1
). While g < gc, we obtain the T

2 matrix in Eq. 21, and
the state is a symmetry breaking phase as shown in Fig. 4.
We determine gc to be between 0.802 and 0.8024.

As this model is mathematically equivalent to 2D clas-
sical Ising model where the transition point is known to
great accuracy. The double tensor of the norm is just two
copies of the partition function of classical Ising model
on the square lattice. We then have a relation between
the parameter g and the temperature T . The transition
point from the classical mapping is gc = 0.802243. The
transition point from our algorithm is quit close to the
exact mapping results. Our calculation for the quan-
tum model confirms the observation and shows that the
quantum phase transition is between symmetry protected
topological order and symmetry breaking.

D. 2D Symmetry breaking phase to ZN SPT

Let us begin by describing the construction of ZN SPT
wave functions through group cocycles and it can be gen-
eralized to any symmetry group. The system lives on

FIG. 4. The trace of T 2 for tensor [Eq. 14] as a function of
parameter g (Dcut = 16). The critical point is at gc ⇡ 0.802.

the honeycomb lattice, where each singe contain three
particle as shown in Fig 5. The tensor product state
(TPS) motivated by the ZN symmetry protected topo-
logically ordered phase is characterized by the tensor

A
(si,sj ,sk)
(↵,↵0,�,�0,�,�0) with three physical indices and six inter-

nal indices running over 0, 1, 2, ..., N � 1 on vertex. The
wave function is then given by

| i =
X

si

tT r(A⌦A...⌦A)|s1, s2, ...i. (15)

Specifically, the tensor A
(si,sj ,sk)
(↵,↵0,�,�0,�,�0) related to the 3-

cocycle of ZN symmetry and satisfy si = ↵ = ↵
0; sj =

� = �
0; sk = � = �

0.

FIG. 5. The tensor representation of ZN SPT. Each site
contain three particle.

There are N di↵erent group cohomology classes in
H

3(ZN , U(1)). The choices of 3-cocycle is specified by
k, where k = 0, 1, 2, ..., N � 1. The following are a

few example: For Z2 SPT, the tensor A
(si,sj ,sk)
(↵,↵0,�,�0,�,�0) ⌘

T (si, sj , sk) is given by

A(0, 0, 0) = A(1, 1, 1) = 1

A(0, 0, 1) = A(0, 1, 0) = A(1, 0, 0) = 1

A(1, 1, 0) = A(1, 0, 1) = A(0, 1, 1) = !
k
, (16)

where ! = e
2⇡/2 = �1. As k = 0, the tensor shows the

trivial Z2 SPT. On the other hand, It is a non-trivial Z2
SPT on k = 1.
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FIG. 19. One possible spin configuration of the symmetry
breaking phase starting from the first site tensor A[0, 1, 0, 0].
For simplicity, the labels around the red empty circle are the
physical indices on each site. Other three ordered phases
can be build up by starting from the first tensor A[0, 0, 0, 1],
A[1, 0, 1, 1], and A[1, 1, 1, 0].

D. Phase transition directly between two SPT
phases

Here we construct another family of Z2 symmetric
wavefunctions on the square lattice, with the local tensor
A[si, sj , sk, sl] parametrized by t [see Fig. 20(a)],

A[0, 0, 0, 0] = A[1, 1, 1, 1] = A[0, 0, 1, 1] = A[1, 1, 0, 0] = 1

A[1, 0, 0, 1] = A[0, 1, 1, 0] = A[0, 1, 0, 1] = A[1, 0, 1, 0] = 1

A[0, 0, 1, 0] = A[1, 1, 0, 1] = A[1, 0, 0, 0] = A[0, 1, 1, 1] = 1

A[0, 1, 0, 0] = A[0, 0, 0, 1] = t

A[1, 0, 1, 1] = A[1, 1, 1, 0] = |t|. (47)

The parent Hamiltonian is listed in Eq. (B4) and its con-
struction is explained in Appendix B. The ground-state
energy, by construction, is identically zero, and therefore,
we expect any transition arising from this Hamiltonian
and its ground state is continuous.

The symmetry action is generated by the Pauli �x on
all four partons on all sites, and one can verify that the
above wavefunction is indeed invariant under such a sym-
metry action. As t = 1, this tensor represents a fixed-
point wavefunction of the trivial Z2 SPT phase (SPT0).
As t = �1, this state is the fixed-point wavefunction of
the non-trivial Z2 SPT phase (SPT1). The wavefunctions
above smoothly interpolate between the two phases.

For large magnitudes of t, the tensor in Eq. (47)
has four dominant local physical configurations:
A[0, 1, 0, 0] = A[0, 0, 0, 1] = t; A[1, 0, 1, 1] =
A[1, 1, 1, 0] = |t|. Obviously, this shows an ordered
phase with a symmetry-breaking pattern of a 4 ⇥ 4
unit cell, represented by the e↵ective degree of freedom
on each plaquette as shown in Fig. 19. This gives rise
to four-fold symmetry breaking of the ground state.
With the symmetry breaking pattern understood we
can construct local order parameters to characterize
this phase. By computing the h�zi of the parton on the

FIG. 20. (a) The tensor representation on the square lattice.
The labels in circles are physical indices and the labels on the
link are inner indices. (b) A local term in the Hamiltonian,
which is tensor product of one four-site operator X4 and four
two-site operators P2.

top-left corner at the first site (labeled as a blue empty
circle in Fig. 19) and averaging it over all 4 ⇥ 4 unit
cells we obtain the behavior of the order parameter for
this symmetry-break phase, shown in Fig. 21, and find
quantum phase transitions at |t| ⇡ 1.73.

Given the understanding of symmetry-break phases at
large |t| and the existence of SPT phases around |t| =
1, a natural question is whether there is an additional
phase in between the two SPT phases? To answer this
we shall calculate the modular matrices for a wide range
of t. But we need to first examine the MPO’s related
to the symmetry action. The inner symmetry operator
for the wavefunction in Eq. (47) is X ⌦ X↵ and either
↵ = |00ih00| + |01ih01| + |10ih10| + |11ih11| for t � 0 or
↵ = |00ih00| + i|01ih01| + i|10ih10| + |11ih11| for t  0.
Then we use the HOTRG to evaluate the wavefunction
overlaps for the modular matrices by inserting various
combinations of MPO’s. Let us emphasize that when
we implement our scheme we numerically check which
MPO can make the wavefunction invariant and then take
that MPO for the evaluation of modular matrices (even
though we know which one should be).

Our results are shown in Fig. 21. First, we see that
when |t| � 1.7321, all components of 4 ⇥ 4 topological
invariant T 2 matrices are 0 except for T 2[1, 1] = 1. We
can thus deduce that these two regions are a symmetry-
break phase. We find that the SPT phases are in the
regions 0 < |t| < 1.7321 since we obtain nontrivial T 2

matrices, same as Eq. (39) for t > 0 and Eq. (41) for t <
0. Thus a quantum phase transition separates these two
SPT phases at t = 0. Is the transition is discontinuous
or continuous?

We need further evidence to determine what the tran-
sition is. The relevant quantity of interest is the correla-
tion function which can distinguish whether the transi-
tion point is critical or not, and it is defined as,

C⇥(|Ri � Rj |) = h⇥(Ri)⇥(Ri)i � h⇥(Ri)ih⇥(Ri)i,
(48)

Where is the transition point?
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FIG. 19. Corner spectra ω(r)
α for the norm of the Z2 SPT PEPS

with deformation g on the square lattice with χ = 40, together with
the corner entropy computed from the corner spectra.

At g = 1, this tensor represents a fixed-point wave function
for the trivial Z2 SPT phase. As g = −1, it is the fixed-point
wave function of the nontrivial Z2 SPT phase. As a function
of g, the tensor smoothly interpolates between the two phases.
For large |g| the tensor is also in an ordered phase.

We have computed the corner spectra ω(r)
α and corner

entropy for the double-layer norm tensor of this state by
using rCTM, which we show in Fig. 19. We can see clearly
that both the spectrum and entropy pinpoint all the phase
transitions mentioned above. We find the transition to the
ordered phase at |g| = 1.7, in agreement with the results from
Ref. [18].

VII. CHIRAL TOPOLOGICAL CORNER
ENTANGLEMENT SPECTRUM

We have seen earlier that given a 2D Hamiltonian we can
use CTs (in a 3D setup) to obtain the entanglement spectrum
of a bipartite cut separating two semi-infinite planes. We can
obtain this entanglement spectrum using the 2D quantum state
renormalization approach described earlier using CTs. In this
section, we first consider the so-called Ising PEPS [22,49]
which, by construction, has a quantum phase transition that
corresponds to the classical Ising transition, which was studied
earlier in Sec. V using the rCTM method. Here we use this
state to benchmark the method, and we show the entangle-
ment spectrum in the disordered phase. Then, we use this
approach to study the boundary theory of 2D chiral topological
quantum spin liquids that can be exactly described as a
PEPS.

A. The disorder phase: the Ising PEPS

Let us first consider the Ising PEPS [22,49] on the square
lattice with tensor A = |0⟩⟨θ,θ,θ,θ | + |1⟩⟨θ̄ ,θ̄ ,θ̄ ,θ̄ |, where the
ket (bra) corresponds to the physical (virtual) degrees of free-
dom, and |θ⟩ = cos θ |0⟩ + sin θ |1⟩ as well as |θ̄⟩ = sin θ |0⟩ +
cos θ |1⟩ with θ ∈ [0,π/4]. A corresponding local Hamiltonian
can be written down that has this PEPS as a ground state

FIG. 20. Entanglement spectra ωα(ρr ) of a half of 2D quantum
system (see Fig. 2) for the Ising PEPS model in disordered phase
from Ref. [22,49], for bond dimension (a) χ = 30, (b) χ = 40, and
(c) χ = 50.

(not shown here) [22,49]. In Ref. [22,49] it was shown
that there is a second-order quantum phase transition from
ordered phase to disorder phase occurring at θc ≈ 0.349596.
To illustrate that our method is not limited by the usage of
corner tensors, we include results from the 2D Ising PEPS in
the disorder phase with θ = 0.5 in Fig. 20. This was studied
previously in finite systems on a cylinder [22,49]. We observe
that, first, there is a unique lowest entanglement eigenvalue
(or one unique largest eigenvalue of corresponding transfer
matrix), which is clearly identified by our method. Second,
it is known that the low-lying entanglement spectrum seems
to form one-dimensional bands (vs momentum). Because of
the effective size introduced by the finite bond dimension, the
effective momenta are discrete and we expect that our CT
entanglement spectrum will see closely spaced values in one
band, separated by a large gap from other bands. The number
of such discrete values will depend on the bond dimension (see
Fig. 20), and the larger the bond dimension, the more points
will be picked up within a band. This is exactly what we
saw.
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN

…
…

…
…

C4

C1 C2

C3

(a)

(b)

…

…
…

…

C4

C1 C2

C3

ρ

Z

FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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FIG. 19. Corner spectra ω(r)
α for the norm of the Z2 SPT PEPS

with deformation g on the square lattice with χ = 40, together with
the corner entropy computed from the corner spectra.

At g = 1, this tensor represents a fixed-point wave function
for the trivial Z2 SPT phase. As g = −1, it is the fixed-point
wave function of the nontrivial Z2 SPT phase. As a function
of g, the tensor smoothly interpolates between the two phases.
For large |g| the tensor is also in an ordered phase.

We have computed the corner spectra ω(r)
α and corner

entropy for the double-layer norm tensor of this state by
using rCTM, which we show in Fig. 19. We can see clearly
that both the spectrum and entropy pinpoint all the phase
transitions mentioned above. We find the transition to the
ordered phase at |g| = 1.7, in agreement with the results from
Ref. [18].

VII. CHIRAL TOPOLOGICAL CORNER
ENTANGLEMENT SPECTRUM

We have seen earlier that given a 2D Hamiltonian we can
use CTs (in a 3D setup) to obtain the entanglement spectrum
of a bipartite cut separating two semi-infinite planes. We can
obtain this entanglement spectrum using the 2D quantum state
renormalization approach described earlier using CTs. In this
section, we first consider the so-called Ising PEPS [22,49]
which, by construction, has a quantum phase transition that
corresponds to the classical Ising transition, which was studied
earlier in Sec. V using the rCTM method. Here we use this
state to benchmark the method, and we show the entangle-
ment spectrum in the disordered phase. Then, we use this
approach to study the boundary theory of 2D chiral topological
quantum spin liquids that can be exactly described as a
PEPS.

A. The disorder phase: the Ising PEPS

Let us first consider the Ising PEPS [22,49] on the square
lattice with tensor A = |0⟩⟨θ,θ,θ,θ | + |1⟩⟨θ̄ ,θ̄ ,θ̄ ,θ̄ |, where the
ket (bra) corresponds to the physical (virtual) degrees of free-
dom, and |θ⟩ = cos θ |0⟩ + sin θ |1⟩ as well as |θ̄⟩ = sin θ |0⟩ +
cos θ |1⟩ with θ ∈ [0,π/4]. A corresponding local Hamiltonian
can be written down that has this PEPS as a ground state

FIG. 20. Entanglement spectra ωα(ρr ) of a half of 2D quantum
system (see Fig. 2) for the Ising PEPS model in disordered phase
from Ref. [22,49], for bond dimension (a) χ = 30, (b) χ = 40, and
(c) χ = 50.

(not shown here) [22,49]. In Ref. [22,49] it was shown
that there is a second-order quantum phase transition from
ordered phase to disorder phase occurring at θc ≈ 0.349596.
To illustrate that our method is not limited by the usage of
corner tensors, we include results from the 2D Ising PEPS in
the disorder phase with θ = 0.5 in Fig. 20. This was studied
previously in finite systems on a cylinder [22,49]. We observe
that, first, there is a unique lowest entanglement eigenvalue
(or one unique largest eigenvalue of corresponding transfer
matrix), which is clearly identified by our method. Second,
it is known that the low-lying entanglement spectrum seems
to form one-dimensional bands (vs momentum). Because of
the effective size introduced by the finite bond dimension, the
effective momenta are discrete and we expect that our CT
entanglement spectrum will see closely spaced values in one
band, separated by a large gap from other bands. The number
of such discrete values will depend on the bond dimension (see
Fig. 20), and the larger the bond dimension, the more points
will be picked up within a band. This is exactly what we
saw.
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
with a summary of the results, conclusions, and perspectives.

II. CORNER OBJECTS

A. Corner transfer matrices

CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN

…
…

…
…

C4

C1 C2

C3

(a)

(b)

…

…
…

…

C4

C1 C2

C3

ρ

Z

FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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FIG. 21. The Z2 SPT model represented by the tensor
[Eq. (47)]: the trace of topological invariant matrices T 2 (solid
blue square) and the magnetization h�zi at first site (empty
black circle) as functions of parameter t display the phase
transitions with Dcut = 16 and RG step = 10. It shows
the transition from symmetry breaking (SB) phase to non-
trivial Z2 symmetry protected topological order phase labeled
as SPT1 at tc1 ⇡ �1.7321 and from SPT1 phases to trivial Z2

symmetry protected topological order phase labeled as SPT0

at tc2 = 0 and from SPT0 phase to symmetry breaking phase
at tc3 ⇡ 1.7321.

FIG. 22. The correlation function at t = 0 as a function of
the distance r = |Ri �Rj |.

where the observable is chosen to be

⇥(Ri) = | 0 0
0 0 ih 0 0

0 0 | � | 1 1
1 1 ih 1 1

1 1 |, (49)

namely, ⇥(Ri) counts 1 (or -1) if the local state | 0 0
0 0 i (or

| 1 1
1 1 i) on the site Ri in a given configuration, and oth-

erwise 0. In our tensor renormalization calculations, the
correlation function at t = 0 is evaluated on the square
lattice with size being 128 ⇥ 128. The distance |Ri � Rj |

is chosen along the horizontal direction. The results with
bond dimension Dcut = 32 show that the correlation
function is algebraically decaying, as shown in Fig. 22
and the anomalous exponent ⌘ ⇡ 0.66. This shows that
t = 0 is a critical point and the transition is continuous.

V. CONCLUSION

We have described a scheme to evaluate the modular
matrices for investigating SPT phases. This tnST scheme
can also apply to topological phases and can be used
to detect symmetry-breaking phases as well. We have
demonstrated by various model studies that our scheme
can be implemented using tensor-network methods and
can accurately characterize and identify these di↵erent
phases and related phase transitions. Thus modular ma-
trices provide a unifying framework for characterizing
and identifying gapped phases and can be used as a theo-
retical order parameter. For the spontaneous symmetry-
breaking phases occurring in our constructions, we have
additionally characterized them by evaluating the tra-
ditional Landau-type local order parameters, and their
behavior agrees with that of modular matrices. The nu-
merical evaluations of modular matrices involve overlaps
of wavefunctions under symmetry twists, and we have
conveniently used the higher-order tensor renormaliza-
tion group for the actual numerical implementations but
any other contraction algorithm can be used.

In addition to classification of SPT phases, recently,
the nature of the phase transition between two SPT
phases has also been investigated [105, 121]. In particu-
lar, Tsui et al. [105] proposed that there are three scenar-
ios regarding the transition between one trivial and an-
other nontrivial SPT phases, if the nontrivial SPT phase
satisfies the so-called non-double-stacking condition: (i)
a direct continuous transition; (ii) a direct discontinuous
transition; (iii) an intermediate spontaneous symmetry-
breaking phase separating the two SPT phases. The non-
trivial Z2 SPT phase indeed satisfies this, and we have
constructed two Z2 models, where we know analytically
both their Hamiltonians and their ground states. For
the first one model, the two Z2 are separated by a spon-
taneous symmetry-breaking phase. This corresponds to
the scenario (iii), where it was argued that there is a cor-
responding 3D SPT with symmetry group being Z2 ⇥Z

T

2
but either Z2 symmetry or both Z2 and Z

T

2 are sponta-
neously broken. For the second model we constructed,
we found that the two SPT phases have a direct tran-
sition into each other and the quantum phase transition
is continuous, realizing the scenario (i). According to
Ref. [105], this corresponds to the case where the corre-
sponding 3D SPT phase has gapless boundary, but can be
gapped out by introducing a Z

T

2 breaking field. We have
remarked earlier (also in the Appendix) that as our con-
struction is wavefunction-based and the parent Hamilto-
nians are non-negative operators, the transitions arising
from our models will be continuous. But it was real-
ized that a Hamiltonian-based construction, e.g., a lin-
ear interpolation from the two parent Hamiltonians (H0

and H1) corresponding to two SPT fixed-point states,
H̃(�) = (1 � �)H0 + �H1, a first order transition can
occur [55, 105]. The nontrivial Z3 SPT phases do not
satisfy the non-double-stackable condition, so the pos-
sible transition scenarios are not as clear. But the Z3

• local order parameter  
and  modular T matrix

[C.-Y. Huang and Tzu-Chieh Wei  2016]
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FIG. 16. Corner spectra and corner entropy of: (a) 2D quantum
XY model with γ = 0.7 in a transverse field h by using the simplified
one-directional 2D method [5]; (b) the corresponding 3D anisotropic
classical Ising model as a function of h satisfying Eq. (58). The
corner bond dimension is χ = 4 in all cases. The correspondence of
parameters has a solution only for values of h larger than h ≈ 1.45,
and therefore the left hand side of the plot in the lower panel is empty.

VI. 2D CORNER PHASE TRANSITIONS

We now show how the study of corner properties can
provide other useful information when studying a quantum
or classical many-body system. In particular, we show how
the corner spectra and corner entropy from 2D rCTMs (i.e.,
the CTMs obtained from the 2D TN for the norm) are useful
in determining phase transitions without the need to compute
physical observables.

The usual way to study quantum and classical phase
transitions is through the study of observables, which have
specific properties at the transition point (e.g., the singular
behavior of the observable). The study of entanglement and
correlations in many-body systems has shown us that it is
actually possible to study these transitions from properties of
the state only, such as entanglement entropy, fidelities [43],
entanglement spectra [13], and similar quantities. Following
this trend, in this section we show that one can assess phase
transitions from properties of the corners only, in particular
the rCTM that we introduced in Sec. I. This is very useful
in the context of numerical simulations of, e.g., 2D quantum
many-body systems, since such corner objects are produced
“for free” (e.g., in the infinite-PEPS method with a full
or fast-full update [9,23]). In what follows we show three
practical examples where phase transitions, both topological
and nontopological, can be clearly pinpointed by looking only
at the corner objects.

FIG. 17. Corner spectra ω(r)
α for the norm of the numerical D = 2

PEPS for the XXZ model in a field, at % = 1.5, on the square lattice
with χ = 40, together with the corner entropy computed from the
corner spectra.

A. 2D quantum X X Z model

First we consider the 2D quantum XXZ model for spin-1/2
on an infinite square lattice, under the effect of a uniform
magnetic field h along the z axis. Its Hamiltonian is given by

Hq = −
∑

⟨i,j⟩

(
σ [i]

x σ [j ]
x + σ [i]

y σ [j ]
y − %σ [i]

z σ [j ]
z

)
− h

∑

i

σ [i]
z ,

(60)

where as usual the sum ⟨i,j ⟩ runs over nearest neighbors on the
2D square lattice, and % is the anisotropy. In the large % > 1
limit, it has been shown [44] that a first-order transition takes
place at some point h1 from a Néel phase to a spin-flipping
phase. As the field increases further, another phase transition
at h2 = 2(1 + %) occurs towards the fully polarized phase.

Here we consider the case with % = 1.5. We have ap-
proximated the ground state of the model using the iPEPS
algorithm with simple update and bond dimension D = 2 [45]
and then computed the reduced corner spectra ω(r)

α and entropy
of the double-layer tensor defining the norm via the directional
CTM approach, as a function of h. Our results are shown in
Fig. 17, where one can clearly see that the two phase transitions
are clearly pinpointed by the spectrum and the entropy. In
particular, we observe the first transition happening at h1 ≈ 1.8
and the second one at h2 = 5.0.

B. Perturbed ZN topological order

Here we consider exact wave functions that exhibit topo-
logical phase transitions for Z2 and Z3 topological order.

(i) 2D perturbed Z2 Toric code PEPS: We consider the
2D PEPS on a square lattice for the Toric code ground
state [22,46], perturbed by a string tension g. This can be
represented by a tensor A

i,j,k,l
αβγ δ with with four physical indices

i,j,k,l= 0,1 and four virtual indices α,β,γ ,δ = 0,1. The
coefficients of the tensor are given by

A
i,j,k,l
i,j,k,l =

{
gi+j+k+l, if i + j + k + l= 0 mod 2,

0, otherwise.
(61)
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one-directional 2D method [5]; (b) the corresponding 3D anisotropic
classical Ising model as a function of h satisfying Eq. (58). The
corner bond dimension is χ = 4 in all cases. The correspondence of
parameters has a solution only for values of h larger than h ≈ 1.45,
and therefore the left hand side of the plot in the lower panel is empty.
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or classical many-body system. In particular, we show how
the corner spectra and corner entropy from 2D rCTMs (i.e.,
the CTMs obtained from the 2D TN for the norm) are useful
in determining phase transitions without the need to compute
physical observables.

The usual way to study quantum and classical phase
transitions is through the study of observables, which have
specific properties at the transition point (e.g., the singular
behavior of the observable). The study of entanglement and
correlations in many-body systems has shown us that it is
actually possible to study these transitions from properties of
the state only, such as entanglement entropy, fidelities [43],
entanglement spectra [13], and similar quantities. Following
this trend, in this section we show that one can assess phase
transitions from properties of the corners only, in particular
the rCTM that we introduced in Sec. I. This is very useful
in the context of numerical simulations of, e.g., 2D quantum
many-body systems, since such corner objects are produced
“for free” (e.g., in the infinite-PEPS method with a full
or fast-full update [9,23]). In what follows we show three
practical examples where phase transitions, both topological
and nontopological, can be clearly pinpointed by looking only
at the corner objects.
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PEPS for the XXZ model in a field, at % = 1.5, on the square lattice
with χ = 40, together with the corner entropy computed from the
corner spectra.

A. 2D quantum X X Z model

First we consider the 2D quantum XXZ model for spin-1/2
on an infinite square lattice, under the effect of a uniform
magnetic field h along the z axis. Its Hamiltonian is given by

Hq = −
∑

⟨i,j⟩
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z σ [j ]
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)
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∑
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z ,

(60)

where as usual the sum ⟨i,j ⟩ runs over nearest neighbors on the
2D square lattice, and % is the anisotropy. In the large % > 1
limit, it has been shown [44] that a first-order transition takes
place at some point h1 from a Néel phase to a spin-flipping
phase. As the field increases further, another phase transition
at h2 = 2(1 + %) occurs towards the fully polarized phase.

Here we consider the case with % = 1.5. We have ap-
proximated the ground state of the model using the iPEPS
algorithm with simple update and bond dimension D = 2 [45]
and then computed the reduced corner spectra ω(r)

α and entropy
of the double-layer tensor defining the norm via the directional
CTM approach, as a function of h. Our results are shown in
Fig. 17, where one can clearly see that the two phase transitions
are clearly pinpointed by the spectrum and the entropy. In
particular, we observe the first transition happening at h1 ≈ 1.8
and the second one at h2 = 5.0.

B. Perturbed ZN topological order

Here we consider exact wave functions that exhibit topo-
logical phase transitions for Z2 and Z3 topological order.

(i) 2D perturbed Z2 Toric code PEPS: We consider the
2D PEPS on a square lattice for the Toric code ground
state [22,46], perturbed by a string tension g. This can be
represented by a tensor A

i,j,k,l
αβγ δ with with four physical indices

i,j,k,l= 0,1 and four virtual indices α,β,γ ,δ = 0,1. The
coefficients of the tensor are given by

A
i,j,k,l
i,j,k,l =

{
gi+j+k+l, if i + j + k + l= 0 mod 2,

0, otherwise.
(61)
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FIG. 3. 2D PEPS on a square lattice and its renormalized version
with CTs.

(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by

(e)

T̃4

C̃4

(a)

C1 T1

C4 T3

T4

(d)
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C̃4

T4

WU†

U

T̃4

C1

T4

C4

=

=
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†
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T
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†
C̃1

T
(C̃1

T
)†

FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from

195170-4



Quantum state 
renormalization scheme  

• The basic idea is to remove 
nonuniversal short-range 
entanglement related to the 
microscopic details of the 
system

• The fixed-point wave function 
we make use of corner tensors

CHING-YU HUANG, TZU-CHIEH WEI, AND ROMÁN ORÚS PHYSICAL REVIEW B 95, 195170 (2017)

≈

T1

T2

T3

T4

C4

C1 C2

C3

…
…

…
…

…
…

…
…

……

…

…
…

…
…

…
…

…
…

…

……|Ψ =

…

FIG. 3. 2D PEPS on a square lattice and its renormalized version
with CTs.

(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by
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FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by
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FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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(1) For 1D quantum: the infinite time-evolving block
decimation (iTEBD) [31] to approximate ground states. The
spectrum ωα obtained from CTMs is easily related [3] to the
Schmidt coefficients λα of a bipartition, readily available from
iTEBD or iDMRG [32], as ωα = λ2

α . In some instances we also
use the simplified one-directional 1D method from Ref. [5].

(2) For 2D classical: 2D directional CTM approach [4].
(3) For 2D quantum: if a quantum Hamiltonian is given,

then we use the 3D directional CTM approach [4] to compute
properties of CTs, as well as infinite-PEPS (iPEPS) [23] to
approximate ground states. If the ground state |ψG⟩ is given,
then we use the directional CTM approach for the double-layer
tensors of the norm [4] to compute the “reduced” spectrum
ω(r)

α from rCTM. Moreover, we also use the 2D quantum
state renormalization described in the next section to compute
properties of CTs. As we shall see, this method is single layer
and targets directly the quantum state.

(4) For 3D classical: simplified one-directional 2D
method [5].

B. 2D quantum state renormalization with CTs

The procedure of quantum state renormalization is impor-
tant in 2D to obtain the contractions from Fig. 2 in the quantum
case, which give the reduced density matrix by tracing spins
in three quadrants or a half-infinite plane. The entanglement
spectrum can then be obtained from the eigenvalues of such
a reduced density matrix. We have implemented our own
approach for the case of a 2D PEPS, using CTs and single-
layer contractions. This procedure, which is an independent
algorithm by itself, is explained in detail in what follows.

The quantum state renormalization group (QSRG) transfor-
mation acts directly on a quantum state and aims to extract a
fixed-point wave function encoding universal properties [33].
The basic idea is to remove nonuniversal short-range entan-
glement related to the microscopic details of the system. After
many rounds of QSRG, the original ground state flows to
a simpler fixed-point state, from which one can identify to
which phase the system belongs to.

In order to determine the fixed-point wave function we make
use of CTs, see Fig. 3. The distinction from the usual QSRG
is that here the fixed-point wave function will be encoded in
these CTs. The procedure is similar to the directional CTM
approach from Ref. [4], but this time acting directly on the
PEPS, which is single layer, and not on the TN for the norm,
which is double layer. An example of a left move is in Fig. 4,
where we show also a simple option to obtain the isometrics
needed for the coarse grainings. We follow this procedure by
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FIG. 4. 2D quantum state renormalization with corner tensors: a
left move, where one column is absorbed to the left. The procedure
is the same as in the directional CT approach from Ref. [5], but on
a single layer of PEPS tensors instead of two layers. Consequently,
at every step we need to renormalize with isometries not just the
bond indices, but also the physical indices, which proliferate at every
iteration. Several prescriptions are possible for the calculation of
the isometries, e.g, one could consider higher-order singular value
decompositions of the resulting tensors [34] or compute the reduced
density operators of the indices to be truncated [8].

absorbing rows and columns towards the left, up, right, and
down directions until convergence is reached. In the end, the
corner tensors C represent the renormalization of one quadrant
of the 2D PEPS, and the half-row/half-column tensors T to the
renormalization of half an infinite row or column of tensors
in the PEPS. One then follows the contractions in Fig. 2 to
obtain the corresponding reduced density matrix and hence
the entanglement spectrum.

IV. FIRST TEST: THE 1D QUANTUM ISING
UNIVERSALITY CLASS

In order to build some intuition about the numerical
information contained in the spectrum εα of corner energies,
we have first performed a series of numerical tests in systems
belonging to the universality class of the 1D quantum Ising
model in a transverse field. The analyzed models undergo
a second order quantum or classical phase transition, with
the critical point being described by an effective (1 + 1)-
dimensional CFT of a free fermion [35]. The models and
methods considered are:

(i) 1D quantum Ising: The quantum Hamiltonian is given
by

Hq = −
∑

i

σ [i]
x σ [i+1]

x − h
∑

i

σ [i]
z , (8)

with σ [i]
α the corresponding α-Pauli matrices at site i, and h

the transverse magnetic field, with critical point at hc = 1.
We used iTEBD to approximate the ground state by a matrix
product state (MPS) [36] and here the square of the Schmidt
coefficients λ2

α (hence the entanglement spectrum) is obtained.
We also use the simplified one-directional 1D method from
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B. SU(2)1 WZW chiral edge state

Next we study the exact 2D PEPS with D = 3 on a square
lattice corresponding to a chiral topological quantum spin
liquid with SU (2) symmetry from Ref. [20]. The state is
known to be critical and has a chiral gapless edge described
by a SU (2)1 Wess-Zumino-Witten (WZW) CFT. The gapless
edge state has been characterized previously by studying the
entanglement spectrum of the PEPS on an infinitely-long but
finite-circumference cylinder [13,20,21]. In that calculation it
was actually possible to find the degeneracies of the different
Virasoro towers of SU (2)1 corresponding to each of the highest
weight states. If no parity or topological sector are explicitly
fixed, then the numerical calculation of the entanglement
spectrum naturally produces the Virasoro tower of the CFT
vacuum state [21]. This wave function can be given by a
PEPS tensor As

i,j,k,lwith s = ±1/2 and i,j,k,l= 0,1,2, with
nonzero coefficients as follows:

A
−1/2
2,0,1,1 = −λ1 − iλ2, A

−1/2
2,1,1,0 = −λ1 + iλ2,

A
−1/2
2,1,0,1 = −λ0;

A
−1/2
1,1,2,0 = −λ1 − iλ2, A

−1/2
1,0,2,1 = −λ1 + iλ2,

A
−1/2
0,1,2,1 = −λ0;

A
−1/2
1,2,0,1 = λ1 + iλ2, A

−1/2
0,2,1,1 = λ1 − iλ2, A

−1/2
1,2,1,0 = λ0;

A
−1/2
0,1,1,2 = λ1 + iλ2, A

−1/2
1,1,0,2 = λ1 − iλ2, A

−1/2
1,0,1,2 = λ0;

A
1/2
2,1,0,0 = λ1 + iλ2, A

1/2
2,0,0,1 = λ1 − iλ2, A

1/2
2,0,1,0 = λ0;

A
1/2
0,0,2,1 = λ1 + iλ2, A

1/2
0,1,2,0 = λ1 − iλ2, A

1/2
1,0,2,0 = λ0;

A
1/2
0,2,1,0 = −λ1 − iλ2, A

1/2
1,2,0,0 = −λ1 + iλ2,

A
1/2
0,2,0,1 = −λ0;

A
1/2
1,0,0,2 = −λ1 − iλ2, A

1/2
0,0,1,2 = −λ1 + iλ2,

A
1/2
0,1,0,2 = −λ0, (66)

where λ0 = −2, λ1 = 1,and λ2 = 1.
Here we have computed the entanglement spectrum of this

PEPS wave function, using the quantum state renormalization
approach explained previously. Our results are in Fig. 21
for CT with a bond dimension χ = 50. In the case of
the entanglement spectrum for a quadrant, we see that the
eigenvalues obey an almost flat distribution with a sudden
drop. However, the spectrum of half an infinite system tends
to obey the expected degeneracies of the Virasoro tower for the
vacuum (which has angular momentum j = 0) of the SU (2)1
WZW model that describes the edge physics of this state. More
specifically, the degeneracies of the five largest multiplets of
eigenvalues are well converged and equal to 1,3,4,7 and 13,
exactly matching the first five degeneracies of the Virasoro
tower for the vacuum of the SU (2)1 WZW model [20,21]. We
suspect the reason that we are able to see discrete spectrum
rather than a continuous one is due to the effective size that the
finite bond dimension introduces, even though we are using the
infinite setting of the PEPS description. However, we do not

see the degeneracy corresponding to the angular momentum
j = 1/2 tower.

C. SU(2)2 WZW chiral edge state

Moreover, we consider the calculation of the entanglement
spectrum from the corner properties for the double-layer chiral
topological PEPS from Ref. [21], which has gapless edge
modes described by a SU (2)2 WZW model. The PEPS is
constructed simply from two layers of the tensors in Eq. (66)
symmetrizing the physical indices (i.e., projecting in the total
spin-1 subspace). Our results are in Fig. 22 for CT with a bond
dimension χ = 40. Once again we see an almost flat spectrum
with a sudden drop when we consider one quadrant. However,
for half an infinite system, we see that the degeneracies of the
four largest multiplets of eigenvalues tend to be 1,3,9 and 15,
in agreement with the first four degeneracies of the Virasoro
tower for the vacuum of the SU (2)2 WZW model [21].

Furthermore, our results on chiral topological states ob-
tained from CT agree well with the studies using cylindrical
geometry [20,21]. In those studies as well as in ours it is
found that those (discrete) degeneracy patterns show up in the
low-lying entanglement spectrum and agree with the counting
from conformal field theory.

FIG. 21. Entanglement spectra ωα(ρr ) of (a) one quarter and (b)
a half of 2D quantum system (see Fig. 2) for the chiral topological
state from Ref. [19], for bond dimension χ = 50. In (b) the largest
spectral values are mostly converged and coincide with the expected
degeneracies of the vacuum Virasoro tower of the SU (2)1 WZW
model describing the chiral gapless edge.
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B. SU(2)1 WZW chiral edge state

Next we study the exact 2D PEPS with D = 3 on a square
lattice corresponding to a chiral topological quantum spin
liquid with SU (2) symmetry from Ref. [20]. The state is
known to be critical and has a chiral gapless edge described
by a SU (2)1 Wess-Zumino-Witten (WZW) CFT. The gapless
edge state has been characterized previously by studying the
entanglement spectrum of the PEPS on an infinitely-long but
finite-circumference cylinder [13,20,21]. In that calculation it
was actually possible to find the degeneracies of the different
Virasoro towers of SU (2)1 corresponding to each of the highest
weight states. If no parity or topological sector are explicitly
fixed, then the numerical calculation of the entanglement
spectrum naturally produces the Virasoro tower of the CFT
vacuum state [21]. This wave function can be given by a
PEPS tensor As

i,j,k,lwith s = ±1/2 and i,j,k,l= 0,1,2, with
nonzero coefficients as follows:

A
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2,0,1,1 = −λ1 − iλ2, A

−1/2
2,1,1,0 = −λ1 + iλ2,

A
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2,1,0,1 = −λ0;
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where λ0 = −2, λ1 = 1,and λ2 = 1.
Here we have computed the entanglement spectrum of this

PEPS wave function, using the quantum state renormalization
approach explained previously. Our results are in Fig. 21
for CT with a bond dimension χ = 50. In the case of
the entanglement spectrum for a quadrant, we see that the
eigenvalues obey an almost flat distribution with a sudden
drop. However, the spectrum of half an infinite system tends
to obey the expected degeneracies of the Virasoro tower for the
vacuum (which has angular momentum j = 0) of the SU (2)1
WZW model that describes the edge physics of this state. More
specifically, the degeneracies of the five largest multiplets of
eigenvalues are well converged and equal to 1,3,4,7 and 13,
exactly matching the first five degeneracies of the Virasoro
tower for the vacuum of the SU (2)1 WZW model [20,21]. We
suspect the reason that we are able to see discrete spectrum
rather than a continuous one is due to the effective size that the
finite bond dimension introduces, even though we are using the
infinite setting of the PEPS description. However, we do not

see the degeneracy corresponding to the angular momentum
j = 1/2 tower.

C. SU(2)2 WZW chiral edge state

Moreover, we consider the calculation of the entanglement
spectrum from the corner properties for the double-layer chiral
topological PEPS from Ref. [21], which has gapless edge
modes described by a SU (2)2 WZW model. The PEPS is
constructed simply from two layers of the tensors in Eq. (66)
symmetrizing the physical indices (i.e., projecting in the total
spin-1 subspace). Our results are in Fig. 22 for CT with a bond
dimension χ = 40. Once again we see an almost flat spectrum
with a sudden drop when we consider one quadrant. However,
for half an infinite system, we see that the degeneracies of the
four largest multiplets of eigenvalues tend to be 1,3,9 and 15,
in agreement with the first four degeneracies of the Virasoro
tower for the vacuum of the SU (2)2 WZW model [21].

Furthermore, our results on chiral topological states ob-
tained from CT agree well with the studies using cylindrical
geometry [20,21]. In those studies as well as in ours it is
found that those (discrete) degeneracy patterns show up in the
low-lying entanglement spectrum and agree with the counting
from conformal field theory.

FIG. 21. Entanglement spectra ωα(ρr ) of (a) one quarter and (b)
a half of 2D quantum system (see Fig. 2) for the chiral topological
state from Ref. [19], for bond dimension χ = 50. In (b) the largest
spectral values are mostly converged and coincide with the expected
degeneracies of the vacuum Virasoro tower of the SU (2)1 WZW
model describing the chiral gapless edge.
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B. SU(2)1 WZW chiral edge state

Next we study the exact 2D PEPS with D = 3 on a square
lattice corresponding to a chiral topological quantum spin
liquid with SU (2) symmetry from Ref. [20]. The state is
known to be critical and has a chiral gapless edge described
by a SU (2)1 Wess-Zumino-Witten (WZW) CFT. The gapless
edge state has been characterized previously by studying the
entanglement spectrum of the PEPS on an infinitely-long but
finite-circumference cylinder [13,20,21]. In that calculation it
was actually possible to find the degeneracies of the different
Virasoro towers of SU (2)1 corresponding to each of the highest
weight states. If no parity or topological sector are explicitly
fixed, then the numerical calculation of the entanglement
spectrum naturally produces the Virasoro tower of the CFT
vacuum state [21]. This wave function can be given by a
PEPS tensor As

i,j,k,lwith s = ±1/2 and i,j,k,l= 0,1,2, with
nonzero coefficients as follows:

A
−1/2
2,0,1,1 = −λ1 − iλ2, A

−1/2
2,1,1,0 = −λ1 + iλ2,

A
−1/2
2,1,0,1 = −λ0;

A
−1/2
1,1,2,0 = −λ1 − iλ2, A

−1/2
1,0,2,1 = −λ1 + iλ2,

A
−1/2
0,1,2,1 = −λ0;

A
−1/2
1,2,0,1 = λ1 + iλ2, A

−1/2
0,2,1,1 = λ1 − iλ2, A

−1/2
1,2,1,0 = λ0;

A
−1/2
0,1,1,2 = λ1 + iλ2, A

−1/2
1,1,0,2 = λ1 − iλ2, A

−1/2
1,0,1,2 = λ0;

A
1/2
2,1,0,0 = λ1 + iλ2, A

1/2
2,0,0,1 = λ1 − iλ2, A

1/2
2,0,1,0 = λ0;

A
1/2
0,0,2,1 = λ1 + iλ2, A

1/2
0,1,2,0 = λ1 − iλ2, A

1/2
1,0,2,0 = λ0;

A
1/2
0,2,1,0 = −λ1 − iλ2, A

1/2
1,2,0,0 = −λ1 + iλ2,

A
1/2
0,2,0,1 = −λ0;

A
1/2
1,0,0,2 = −λ1 − iλ2, A

1/2
0,0,1,2 = −λ1 + iλ2,

A
1/2
0,1,0,2 = −λ0, (66)

where λ0 = −2, λ1 = 1,and λ2 = 1.
Here we have computed the entanglement spectrum of this

PEPS wave function, using the quantum state renormalization
approach explained previously. Our results are in Fig. 21
for CT with a bond dimension χ = 50. In the case of
the entanglement spectrum for a quadrant, we see that the
eigenvalues obey an almost flat distribution with a sudden
drop. However, the spectrum of half an infinite system tends
to obey the expected degeneracies of the Virasoro tower for the
vacuum (which has angular momentum j = 0) of the SU (2)1
WZW model that describes the edge physics of this state. More
specifically, the degeneracies of the five largest multiplets of
eigenvalues are well converged and equal to 1,3,4,7 and 13,
exactly matching the first five degeneracies of the Virasoro
tower for the vacuum of the SU (2)1 WZW model [20,21]. We
suspect the reason that we are able to see discrete spectrum
rather than a continuous one is due to the effective size that the
finite bond dimension introduces, even though we are using the
infinite setting of the PEPS description. However, we do not

see the degeneracy corresponding to the angular momentum
j = 1/2 tower.

C. SU(2)2 WZW chiral edge state

Moreover, we consider the calculation of the entanglement
spectrum from the corner properties for the double-layer chiral
topological PEPS from Ref. [21], which has gapless edge
modes described by a SU (2)2 WZW model. The PEPS is
constructed simply from two layers of the tensors in Eq. (66)
symmetrizing the physical indices (i.e., projecting in the total
spin-1 subspace). Our results are in Fig. 22 for CT with a bond
dimension χ = 40. Once again we see an almost flat spectrum
with a sudden drop when we consider one quadrant. However,
for half an infinite system, we see that the degeneracies of the
four largest multiplets of eigenvalues tend to be 1,3,9 and 15,
in agreement with the first four degeneracies of the Virasoro
tower for the vacuum of the SU (2)2 WZW model [21].

Furthermore, our results on chiral topological states ob-
tained from CT agree well with the studies using cylindrical
geometry [20,21]. In those studies as well as in ours it is
found that those (discrete) degeneracy patterns show up in the
low-lying entanglement spectrum and agree with the counting
from conformal field theory.

FIG. 21. Entanglement spectra ωα(ρr ) of (a) one quarter and (b)
a half of 2D quantum system (see Fig. 2) for the chiral topological
state from Ref. [19], for bond dimension χ = 50. In (b) the largest
spectral values are mostly converged and coincide with the expected
degeneracies of the vacuum Virasoro tower of the SU (2)1 WZW
model describing the chiral gapless edge.
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FIG. 22. Entanglement spectra ωα(ρr ) of (a) one quarter and (b)
a half of 2D quantum system (see Fig. 2) for the chiral topological
state from Ref. [19], for bond dimension χ = 40. In (b) the largest
spectral values are mostly converged and coincide with the expected
degeneracies of the vacuum Virasoro tower of the SU (2)2 WZW
model describing the chiral gapless edge.

VIII. CONCLUSIONS

In this paper we have shown that CTMs and CTs encode
universal properties of bulk physics in classical and quantum
lattice systems and that this can be computed efficiently with
current state-of-the-art numerical methods. We have seen this
for a wide variety of models in 1D, 2D, and 3D, both classical
and quantum. First we have checked the structure of the
corner energies and corner entropy for three models in the
universality class of 1D quantum Ising. Then, we have used
this formalism to check explicitly the correspondence between
quantum systems in d dimensions and classical systems in
(d + 1) dimensions. In this context, we have first used the
partition function approach to do this mapping and checked
numerically the correspondence for the 1D quantum Ising
and quantum Potts models vs 2D classical anisotropic Ising
and Potts models. Then, we have reviewed an approach by

Suzuki mapping the 2D anisotropic classical Ising model to
the 1D quantum XY model and for which the corner energies
and entropies showed a perfect match between the models.
For completeness we have also reviewed Peschel’s approach
for the quantum-classical mapping. We have also shown that
corner properties can be used to pinpoint phase transitions
in quantum lattice systems without the use of observable
quantities. We have shown this for the 2D quantum XXZ
model, perturbed 2D PEPS with Z2 and Z3 topological order,
and a PEPS with perturbed SPT order.

Perhaps more surprising is that the corner objects can be
used to obtain entanglement spectrums of 2D systems, even
with chiral topological order and gapless SU (2)k edge modes,
which we demonstrated for k = 1,2. For this we have proposed
a new quantum state RG in the setting of corner matrices
and tensors, which can be applied very generally to cases
where the wave function can be written in the PEPS form.
This enables efficient computation for entanglement spectrum
for 2D infinite systems, which is much harder than the 1D
case. Our state RG algorithm can also be straightforwardly
generalized to 3D systems. All in all, we have shown that
CTMs and CTs, apart from being useful numerical tools, also
encode by themselves very relevant physical information that
can be retrieved in a natural way from usual implementations
of numerical TN algorithms.

The results in this paper can be extended in a number of
ways. For instance, it would be interesting to check how dy-
namical properties affect corner properties. A similar analysis
should also be possible for dissipative systems and steady
states of 2D quantum systems [50], as well as for models with
non-Abelian topological order. Concerning the calculation of
2D entanglement spectra, two further considerations are in
order. First, notice that one could in principle compute the
“usual” entanglement spectrum on half an infinite cylinder
from the half-row and half-column tensors obtained from
rCTM, wrapping them around a cylinder of finite width and
proceeding as usual with the calculation of the reduced density
matrix. Second, notice that a limitation of our calculation
with corner tensors is that it does not provide a “natural”
way of labeling the different eigenvalues in terms of a
momenta quantum number. We believe however, that this may
be possible by defining appropriate translation operators on
CTMs. This idea will be pursued in future works.
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Notice that a similar Hamiltonian can also be defined individ-
ually for each one of the corners.

Depending on the symmetries of the CTMs, HC may be a
Hermitian operator or not. From the point of view of quantum
states of 1D quantum lattice systems, it is well known [5] that
operator e−HC is related to the reduced density matrix of half an
infinite chain (with HC Hermitian in this case), see Fig. 1(b). In
fact, the spectrum of Schmidt coefficients λα of half an infinite
quantum chain in its ground state is given by λα = ν2

α . These
Schmidt coefficients are related to the eigenvalues ωα of the
reduced density matrix of half an infinite quantum system (the
so-called “entanglement spectrum” [13]) by ωα = λ2

α = ν4
α ,

which are known to codify universal information about the
system when close enough to criticality [3]. In terms of ωα , the
contraction of the 2D TN reads Z =

∑χ
α=1 ωα . Additionally,

the eigenvalues εα of the corner Hamiltonian HC read

εα ≡ − log ωα. (5)

In this paper we call these eigenvalues εα’s corner energies.

B. Corner tensors

Similarly to CTMs for 2D TNs, one can define corner
objects for higher dimensions, which we generically call cor-
ner tensors (CT). Formally speaking, a CT is the (sometimes
approximate) contraction of all the tensors at one of the corners
of a TN. For instance, for a TN on a 3D cubic lattice, one would
have that its contraction Z is equivalent to the contraction of
eight CTs, i.e.,

Z = f (C1,C2,C3,C4,C5,C6,C7,C8), (6)

with Ci (i = 1, . . . ,8) eight three-index tensors (the CTs), and
f (·) a function specifying the contraction pattern, see Fig. 2.

For the case of systems with CTs it is also possible to
define corner Hamiltonians. For instance, contractions such as
the ones in Fig. 2 correspond, for the case of a 2D quantum
lattice system, to tracing over three quarters or half of the
infinite system. For quantum systems described by a 2D
PEPS, it is possible to obtain these types of contractions by
using the quantum state renormalization scheme from Sec. III.
In such cases, these contractions correspond to the reduced
density matrices ρ of either one quarter or half an infinite
2D system, with eigenvalues ωα , α = 1, . . . ,χ (entanglement

FIG. 2. 3D corner tensors which correspond to tracing over,
respectively, (a) three quarters and (b) half of a given 2D quantum
system.

spectrum). The contraction of the full 3D TN thus amounts
to Z =

∑χ
α=1 ωα , as in the lower-dimensional case of CTMs.

Again, it is possible to define a corner Hamiltonian HC and
corner energies εα in an analogous way as for CTMs.

C. Previous results

CTMs and CTs have proven to be important in a variety
of contexts, both for theory and numerics. In statistical
mechanics they were used to solve the hard hexagon model
and many others [1,2]. From the perspective of quantum
information, it is well known that the corner Hamiltonian HC

is related to a quantum system which, in some cases, can
be diagonalized exactly [3]. Numerically, Baxter developed
a variational method to approximate the partition function
per site of a 2D classical lattice model by truncating in
the eigenvalue spectrum of the CTM [6]. This was later
refined by Nishino and Okunishi, who developed the corner
transfer matrix renormalization group method (CTMRG) [8].
Alternative truncation schemes for CTMRG have also been
studied, based on a directional approach and with a direct
application in infinite-PEPS algorithms [4,23]. In fact, CTMs
have been applied extensively in the calculation of effective en-
vironments in infinite-PEPS simulations [25]. Moreover, they
have been used as well in the generalization to 2D of the time-
dependent variational principle [10], which is also useful in the
calculation of 2D excitations. As for generalizations, CTMs
have also been used in other 2D geometries, including lattice
discretizations of AdS manifolds [26]. Numerical methods
with CTMs were also implemented in systems with periodic
boundary conditions [27] as well as stochastic models [28].
Methods targeting directly the corner Hamiltonian have also
been considered [29,30]. Finally, the higher-dimensional
generalization to corner tensors has also been used to develop
new numerical simulation algorithms [5,11].

III. APPROACH AND METHODS

A. Generalities

In the following sections we shall show how the spectrum of
eigenvalues ωα , or equivalently the spectrum of corner energies
εα , encodes useful universal information when computed
numerically for a variety of classical and quantum lattice
systems. This is also true for the “corner entropy” given by

S ≡ −
∑

α

ωα log ωα. (7)

In particular, we will show explicitly how the spectrum as well
as the entropy exactly coincide if compared between some d-
dimensional quantum and (d + 1)-dimensional classical spin
systems, as expected from the quantum-classical correspon-
dence. Moreover, we will also study them for a variety of other
models, including several instances of topologically-ordered
states. We will see that this can be useful to pinpoint phase
transitions as well as to study edge physics of chiral topological
states.

Concerning numerical algorithms, in our simulations we
have used the following, depending on the nature of the system
to be studied:
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B. SU(2)1 WZW chiral edge state

Next we study the exact 2D PEPS with D = 3 on a square
lattice corresponding to a chiral topological quantum spin
liquid with SU (2) symmetry from Ref. [20]. The state is
known to be critical and has a chiral gapless edge described
by a SU (2)1 Wess-Zumino-Witten (WZW) CFT. The gapless
edge state has been characterized previously by studying the
entanglement spectrum of the PEPS on an infinitely-long but
finite-circumference cylinder [13,20,21]. In that calculation it
was actually possible to find the degeneracies of the different
Virasoro towers of SU (2)1 corresponding to each of the highest
weight states. If no parity or topological sector are explicitly
fixed, then the numerical calculation of the entanglement
spectrum naturally produces the Virasoro tower of the CFT
vacuum state [21]. This wave function can be given by a
PEPS tensor As

i,j,k,lwith s = ±1/2 and i,j,k,l= 0,1,2, with
nonzero coefficients as follows:

A
−1/2
2,0,1,1 = −λ1 − iλ2, A

−1/2
2,1,1,0 = −λ1 + iλ2,

A
−1/2
2,1,0,1 = −λ0;

A
−1/2
1,1,2,0 = −λ1 − iλ2, A

−1/2
1,0,2,1 = −λ1 + iλ2,

A
−1/2
0,1,2,1 = −λ0;

A
−1/2
1,2,0,1 = λ1 + iλ2, A

−1/2
0,2,1,1 = λ1 − iλ2, A

−1/2
1,2,1,0 = λ0;

A
−1/2
0,1,1,2 = λ1 + iλ2, A

−1/2
1,1,0,2 = λ1 − iλ2, A

−1/2
1,0,1,2 = λ0;

A
1/2
2,1,0,0 = λ1 + iλ2, A

1/2
2,0,0,1 = λ1 − iλ2, A

1/2
2,0,1,0 = λ0;

A
1/2
0,0,2,1 = λ1 + iλ2, A

1/2
0,1,2,0 = λ1 − iλ2, A

1/2
1,0,2,0 = λ0;

A
1/2
0,2,1,0 = −λ1 − iλ2, A

1/2
1,2,0,0 = −λ1 + iλ2,

A
1/2
0,2,0,1 = −λ0;

A
1/2
1,0,0,2 = −λ1 − iλ2, A

1/2
0,0,1,2 = −λ1 + iλ2,

A
1/2
0,1,0,2 = −λ0, (66)

where λ0 = −2, λ1 = 1,and λ2 = 1.
Here we have computed the entanglement spectrum of this

PEPS wave function, using the quantum state renormalization
approach explained previously. Our results are in Fig. 21
for CT with a bond dimension χ = 50. In the case of
the entanglement spectrum for a quadrant, we see that the
eigenvalues obey an almost flat distribution with a sudden
drop. However, the spectrum of half an infinite system tends
to obey the expected degeneracies of the Virasoro tower for the
vacuum (which has angular momentum j = 0) of the SU (2)1
WZW model that describes the edge physics of this state. More
specifically, the degeneracies of the five largest multiplets of
eigenvalues are well converged and equal to 1,3,4,7 and 13,
exactly matching the first five degeneracies of the Virasoro
tower for the vacuum of the SU (2)1 WZW model [20,21]. We
suspect the reason that we are able to see discrete spectrum
rather than a continuous one is due to the effective size that the
finite bond dimension introduces, even though we are using the
infinite setting of the PEPS description. However, we do not

see the degeneracy corresponding to the angular momentum
j = 1/2 tower.

C. SU(2)2 WZW chiral edge state

Moreover, we consider the calculation of the entanglement
spectrum from the corner properties for the double-layer chiral
topological PEPS from Ref. [21], which has gapless edge
modes described by a SU (2)2 WZW model. The PEPS is
constructed simply from two layers of the tensors in Eq. (66)
symmetrizing the physical indices (i.e., projecting in the total
spin-1 subspace). Our results are in Fig. 22 for CT with a bond
dimension χ = 40. Once again we see an almost flat spectrum
with a sudden drop when we consider one quadrant. However,
for half an infinite system, we see that the degeneracies of the
four largest multiplets of eigenvalues tend to be 1,3,9 and 15,
in agreement with the first four degeneracies of the Virasoro
tower for the vacuum of the SU (2)2 WZW model [21].

Furthermore, our results on chiral topological states ob-
tained from CT agree well with the studies using cylindrical
geometry [20,21]. In those studies as well as in ours it is
found that those (discrete) degeneracy patterns show up in the
low-lying entanglement spectrum and agree with the counting
from conformal field theory.

FIG. 21. Entanglement spectra ωα(ρr ) of (a) one quarter and (b)
a half of 2D quantum system (see Fig. 2) for the chiral topological
state from Ref. [19], for bond dimension χ = 50. In (b) the largest
spectral values are mostly converged and coincide with the expected
degeneracies of the vacuum Virasoro tower of the SU (2)1 WZW
model describing the chiral gapless edge.
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FIG. 19. Corner spectra ω(r)
α for the norm of the Z2 SPT PEPS

with deformation g on the square lattice with χ = 40, together with
the corner entropy computed from the corner spectra.

At g = 1, this tensor represents a fixed-point wave function
for the trivial Z2 SPT phase. As g = −1, it is the fixed-point
wave function of the nontrivial Z2 SPT phase. As a function
of g, the tensor smoothly interpolates between the two phases.
For large |g| the tensor is also in an ordered phase.

We have computed the corner spectra ω(r)
α and corner

entropy for the double-layer norm tensor of this state by
using rCTM, which we show in Fig. 19. We can see clearly
that both the spectrum and entropy pinpoint all the phase
transitions mentioned above. We find the transition to the
ordered phase at |g| = 1.7, in agreement with the results from
Ref. [18].

VII. CHIRAL TOPOLOGICAL CORNER
ENTANGLEMENT SPECTRUM

We have seen earlier that given a 2D Hamiltonian we can
use CTs (in a 3D setup) to obtain the entanglement spectrum
of a bipartite cut separating two semi-infinite planes. We can
obtain this entanglement spectrum using the 2D quantum state
renormalization approach described earlier using CTs. In this
section, we first consider the so-called Ising PEPS [22,49]
which, by construction, has a quantum phase transition that
corresponds to the classical Ising transition, which was studied
earlier in Sec. V using the rCTM method. Here we use this
state to benchmark the method, and we show the entangle-
ment spectrum in the disordered phase. Then, we use this
approach to study the boundary theory of 2D chiral topological
quantum spin liquids that can be exactly described as a
PEPS.

A. The disorder phase: the Ising PEPS

Let us first consider the Ising PEPS [22,49] on the square
lattice with tensor A = |0⟩⟨θ,θ,θ,θ | + |1⟩⟨θ̄ ,θ̄ ,θ̄ ,θ̄ |, where the
ket (bra) corresponds to the physical (virtual) degrees of free-
dom, and |θ⟩ = cos θ |0⟩ + sin θ |1⟩ as well as |θ̄⟩ = sin θ |0⟩ +
cos θ |1⟩ with θ ∈ [0,π/4]. A corresponding local Hamiltonian
can be written down that has this PEPS as a ground state

FIG. 20. Entanglement spectra ωα(ρr ) of a half of 2D quantum
system (see Fig. 2) for the Ising PEPS model in disordered phase
from Ref. [22,49], for bond dimension (a) χ = 30, (b) χ = 40, and
(c) χ = 50.

(not shown here) [22,49]. In Ref. [22,49] it was shown
that there is a second-order quantum phase transition from
ordered phase to disorder phase occurring at θc ≈ 0.349596.
To illustrate that our method is not limited by the usage of
corner tensors, we include results from the 2D Ising PEPS in
the disorder phase with θ = 0.5 in Fig. 20. This was studied
previously in finite systems on a cylinder [22,49]. We observe
that, first, there is a unique lowest entanglement eigenvalue
(or one unique largest eigenvalue of corresponding transfer
matrix), which is clearly identified by our method. Second,
it is known that the low-lying entanglement spectrum seems
to form one-dimensional bands (vs momentum). Because of
the effective size introduced by the finite bond dimension, the
effective momenta are discrete and we expect that our CT
entanglement spectrum will see closely spaced values in one
band, separated by a large gap from other bands. The number
of such discrete values will depend on the bond dimension (see
Fig. 20), and the larger the bond dimension, the more points
will be picked up within a band. This is exactly what we
saw.
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norm ⟨ψG|ψG⟩, which can be regarded as the partition function
of some fictitious 2D classical model with complex weights.
Throughout this paper we shall refer to this setup as reduction
CTM (rCTM), since it is a scheme that “reduces” the wave
function to a partition function. Such CTMs are, in fact, readily
available in several TN algorithms (such as the full update
and fast full update for infinite PEPS [9,23]). Along the way,
we also compare different schemes for the classical-quantum
correspondence, and provide some pedagogical derivations.

When the quantum state |ψG⟩ is explicitly given by a
TN, we can directly obtain its associated CTs. To do this we
propose a new scheme for quantum state renormalization. In
this case, the entanglement spectrum of a partition (of infinite
size) can be readily obtained by diagonalizing a contraction
of CTs, as we shall explain. First we use the Ising PEPS
in the disorder phase as an example to demonstrate how to
obtain the CTs entanglement spectrum. Then we also apply
this quantum state renormalization to two cases of chiral
topological ordered states, with SU (2)k edge modes (for
k = 1,2), and find the degeneracy pattern in the entanglement
spectrum matches that in the corresponding conformal tower
for the vacuum of the SU (2)k WZW model.

Our work is organized as follows: in Sec. II we provide a
reminder on CTMs, CTs, some of their properties, as well as a
summary of previous relevant results. In Sec. III we provide a
summary of the TN numerical methods used to study the 1D,
2D, and 3D classical and quantum lattice systems explored
in this paper. Moreover, we also provide a new numerical
scheme for quantum state renormalization in 2D using CTs.
In Sec. IV we analyze, as a first test, several models in
the universality class of the quantum Ising spin chain in a
transverse field. In Sec. V we show how the quantum-classical
correspondence can be identified from corner properties, for
1D quantum vs 2D classical and 2D quantum vs 3D classical
models. In this section we also review the theory behind
several approaches for the quantum-classical correspondence,
namely, the partition function approach, Peschel’s approach,
and Suzuki’s approach for the XY model [24]. Then, in
Sec. VI we provide further examples where the calculation
of corner properties is useful. In particular, we show how
corner properties can be used to pinpoint phase transitions
in quantum systems “almost for free” in common tensor
network numerical algorithms, without the need to compute
observables explicitly. We show this for several PEPS with
topological order, including symmetry-protected, as well as for
the 2D XXZ model. In Sec. VII we show how CTs can be used
to compute the entanglement spectrum of several bipartitions
of an infinite 2D system. In particular, we apply the idea to
chiral topological PEPS [20], showing that the obtained spectra
encode the expected symmetries of the chiral conformal field
theory (CFT) describing its gapless edge, specifically, SU (2)k
WZW models for k = 1,2. Finally, in Sec. VIII we wrap up
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II. CORNER OBJECTS
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CTMs are objects that can be defined for any 2D tensor
network. Here, for simplicity, we assume the case of a 2D TN
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FIG. 1. (a) The contraction of a 2D square lattice of tensors results
in a scalar Z, understood as the trace of the product of four CTMs,
one for each corner. (b) A reduced density matrix ρ of a system with
a CTM at every corner.

on a square lattice. Such a TN could be, e.g., the partition
function of a classical lattice model, the time-evolution of a
1D quantum system, or the norm of a 2D PEPS. To define
what a CTM is, we notice that the contraction of the 2D TN
can be obtained, at least theoretically, by multiplying four
matrices C1,C2,C3, and C4, one for each corner [see Fig. 1(a)].
Therefore, one has that

Z = tr(C1C2C3C4), (1)

where Z is the scalar resulting from the contraction. Matrices
C1,C2,C3, and C4 are the corner transfer matrices of the
system. They correspond to the (sometimes approximate)
contraction of all the tensors in each one of the four corners
of the 2D TN. In some cases, when the appropriate lattice
symmetries are present, the four CTMs are equal, i.e.,
C ≡ C1 = C2 = C3 = C4. For the sake of simplicity, in this
section we shall assume that this is the case, though in the
following sections the four CTMs are different when computed
numerically.

It is also convenient to define diagonal CTMs Cd =
PCP − 1. Depending on the symmetries of the system (and
thus of C), matrix P may be arbitrary, unitary, or orthogonal.
Let us call the eigenvalues να , with α = 1,2, . . . ,χ , and χ the
bond dimension of the CTM. Then, the contraction of the full
TN reads

Z = tr
(
C4

d

)
=

χ∑

α=1

ν4
α. (2)

In fact, one can understand this as the trace of the exponential
of a “corner Hamiltonian” HC , i.e.,

Z = tr(e− HC ), (3)

with

HC ≡ − log
(
C4

d

)
. (4)
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Ref. [5] to obtain the corner spectrum ωα . As argued in Ref. [3]
we expect and verify that {λ2

α} agrees with {ωα}.
(ii) 2D classical Ising: The partition function is given by

Zc =
∑

{s}
e−βHc({s}), (9)

with classical Hamiltonian

Hc{s} = −
∑

⟨i,j⟩
s[i]s[j ], (10)

where β = 1/T is the inverse temperature, s[i] = ± 1 is a
classical spin variable at site i, {s} is a spin configuration, and
the sum in the Hamiltonian runs over nearest neighbors on the
square lattice. The model is exactly solvable, and the critical
point satisfies βc = 1

2 log (1 +
√

2). It is well known [31]
that the partition function Zc can be written as an exact 2D
tensor network with tensors on the sites of a square lattice.
The approximate contraction is therefore amenable to tensor
network methods. We use the directional CTM approach to
compute the corner spectra and corner entropy from the tensors
defining the partition function of the model.

(iii) 2D Ising PEPS: As explained in Ref. [22], it is actually
possible to write an exact projected entangled pair state
(PEPS) [14] with bond dimension D = 2 whose expectation
values are the ones of the 2D classical Ising model. The way
to construct this PEPS is simple: One starts by considering the
quantum state

|ψ(β)⟩ = 1
Zc

e( β
2

∑
⟨i,j⟩ σ [i]

z σ
[j ]
z )| + , + , · · · ,+⟩, (11)

with β some inverse temperature and |+⟩ the +1 eigenstate of
σx . It is easy to see that the expectation values of this quantum
state match the ones of the 2D classical Ising model, e.g.,

⟨ψ(β)|σ [i]
z σ [j ]

z |ψ(β)⟩ = 1
Zc

∑

{s}
s[i]s[j ]e−βHc({s})

= ⟨s[i]s[j ]⟩β , (12)

with Hc({s}) the classical Hamiltonian in Eq. (10), and ⟨·⟩β
the expectation value in the canonical ensemble at inverse
temperature β. For a square lattice, one can also see [22] that
the state |ψ(β)⟩ can be written exactly as a 2D PEPS with
bond dimension D = 2. If A is the tensor defining the PEPS,
its nonzero coefficients are given by

A+
0000 = (cosh(β/2))4

A−
0010 = (cosh(β/2))3(sinh(β/2))

A+
0110 = (cosh(β/2))2(sinh(β/2))2 (13)

A−
1110 = (cosh(β/2))(sinh(β/2))3

A+
1111 = (sinh(β/2))4

and permutations thereof. In the above equations, the conven-
tion for the PEPS indices is Ai

αβγ δ , with α,β,γ ,δ the left, up,
right, and down indices, and i the physical index (this time in
the +/− basis). By construction, this PEPS is critical at the
same critical βc as the classical Ising model and belongs also
to the same universality class. For the numerical simulations
it is sometimes convenient to parametrize the PEPS in terms

FIG. 5. (a) Entanglement spectra λ2
α and the entanglement en-

tropy obtained from iTEBD of 1D quantum Ising model with
parameter t(h) as the function of transverse field h. The corner spectra
ωα and the corner entropy S of: (b) also the 1D quantum Ising model
with parameter t(h) as the function of transverse field h, but computed
with the simplified one-directional 1D method [5]; (c) 2D classical
Ising model with temperature t = T/Tc; (d) 2D quantum Ising PEPS
with parameter t(g) as the function of g. In (c), (d) the corner tensors
are obtained from the rCTM setting, see also examples in Sec. VI. In
all cases, the bond dimension of the CTMs—equivalent to the bond
dimension of the MPS in case (a)—is χ = 40.

of g = 1
2 arcsin(e−β) and therefore gc ≈ 0.349596. For this

state, we computed the corner spectra and entropy from the
double-layer TN defining its norm, using the directional CTM
approach [4].

For these three models and the methods mentioned we
have computed the spectrum ωα as a function of the relevant
parameter (magnetic field, inverse temperature, perturba-
tion...), as well as the corner entropy S = −

∑
α ωα log ωα .

The results are shown in Fig. 5. The differences between
models correspond to rescalings in the defining variables and
parameters that map the different models among them. More
specifically, we can rescale the parameters h and g using the
2D classical Ising reduced temperature t = T/Tc as the basic
variable, which is related to the magnetic field h of the 1D
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matter physics but also in field such as high-energy and
biophysics. The finite temperature phase transition in
two-dimensional (2D) ferromagnetic q-state Potts model
have been discussed. For a classical model, it is always
possible to find a tensor network representation of the
partition function. We also prove that the tensor rep-
resentation of ZN model is mathematically equal to the
partition function of q-state Potts model represented by
tensor representation. In particular, we find that the
could be exist in the Z3 model. Our results show that
the power of tensor-based numerical method preserved
symmetry to classify the topological order.

The paper is organized as follows. In Sec. II, we re-
view the notion of topological order and symmetry pre-
served tensor renormalization group (SPTRG) which can
be used to identify intrinsic topological orders; Sec. III
discusses how the deformation can be applied to the ZN

topologically ordered model represented by the tensor
product state and how to use SPTRG to identity the
topological order. We present the phase diagram of the
ZN (N = 2, 3, 4, 5) model by evaluating the entangle-
ment entropy and the modular matrices. We also find
the ZN model is mathematically equivalent to the two-
dimensional classical q-state Potts model; in Sec. IV,
we evaluate the topological entanglement entropy, mod-
ular matrices and correlation function for Z3 model and
discuss the critical phase. in Sec. V, we conclude our
discussion and talk about open questions.

II. REVIEW

A. Topological order

Investigation of topological orders for spin models is
under intensive study in the recent years, partly due to
its relation to the ground state of high Tc superconduc-
tor, the so called spin liquid phase, and partly because of
the enlightenment of quantum information to character-
ize the ground states by quantum entanglement. These
studies lead to new classification schemes of the quan-
tum phases beyond the usual Landau-Ginzburg-Wilson
paradigm. Instead, it could be characterized by the
ground state degeneracy [15, 16] , quasiparticle statis-
tics [9], existence of edge states, topological entanglement
entropy [2, 3], entanglement spectrum [5], geometric en-
tanglement [4]. One typical example for all the above
characteristics of topological ordered state is toric code
model.

The most common method to identify a topologically
ordered phase is through the use of the topological en-
tanglement entropy. However, this method is not unique
as multiple topologically ordered phases can have the
same topological entanglement entropy. For example, the
toric code model and double-semion model have the same
quantum dimension. The topological order is defined
through the physical properties of the robust ground
state degeneracy and the geometric phases corresponding

to the modular transformation of the degenerate ground
state. A more unique characterization is to directly cal-
culate the modular matrices, or S and T -matrices of the
phase. This approach has been used to detect topo-
logically ordered phases in a number of recent works
[9, 10, 17]. Mathematically, the braiding statistics is en-
coded in the modular matrices. The modular matrices,
or S and T matrices, are generated respectively by the
90� rotation and Dehn twist on torus. The elements of S
matrix express the mutual statistics of the quasiparticles.
In other wards, the S-matrix elements correspond to the
phase obtained when we move one of the quasiparticles
in a closed path around another particle. The T matrix
express the twisting a quasiparticle wave function along
an axes by 360�.
To obtain the modular matrices, we need to first deter-

mine all the degenerate ground states {| ai}Na=1 of the
system. The S and T matrices can be given by deter-
mining the overlap between the operator, as follows:

h a|Ŝ| bi = e�↵SV+o(1/V )Sab

h a|T̂ | bi = e�↵TV+o(1/V )Tab, (1)

where Ŝ and T̂ are the transformations of the 90� rotation
and Dehn twist respectively on a torus with lattice size V
[18, 19]. ↵S and ↵T are non-universal constant. Sab and
Tab are universal unitary matrices. The information of
quasiparticles statistics and their fusion rule are encoded
in the S and T matrices.
In particular, form the gauge structure of tensor prod-

uct state (TPS) [20–23], we know the degenerate ground
state can be obtained by inserting the gauge transforma-
tion to TPS. The degenerate ground state can be labeled
as | (g, h)i with gauge transformations (g, h) which ap-
plied on the internal indices along two directions. This
means that the di↵erent degenerate ground state can be
transformed to each other by the gauge operators.

B. Symmetry preserved tensor renormalization
group (SPTRG)

An symmetry preserved tensor renormalization group
procedure exists for 2D quantum states based on the ten-
sor product representation

| i =
X

s1,s2,...sm...

tTr(T s1T s2 ...T sm ...)|s1s2...sm...i (2)

where T s

↵��...
is a local tensor with physical index s and

internal indices ↵�� etc. tTr denotes tensor contraction
of all the connected inner indices according to the un-
derlying lattice structure. The norm of the state can be
given by

h | i = tT r(T1T2T3...Tm...), (3)

where the local double tenser Ti can be formed by merg-
ing two layers tensors T and T ⇤ with the physical indices
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