## Flavor structure of the nucleon sea from lattice QCD

Jiunn-Wei Chen National Taiwan U.

Collaborators: Huey-Wen Lin, Saul D. Cohen, Xiangdong Ji, Luchang Jin, Jianhui Zhang

arXiv: 1402.1462 + 1603.06664

+ 1609.08102 + 1702.00008

# Why is computational physics important?

Life = Physical Laws?

Life = Physical Laws?

Or more specifically,

Life = known Physical Laws?

Life = Physical Laws?

Or more specifically,

Life = known Physical Laws?

A computational problem!

## Feynman's Parton Model



The momentum distributions of partons (quarks, antiquarks and gluons) become one dimensional distributions in the infinite momentum frame.

## Measuring Parton Distributions Using DIS experiments



## Parton Distribution Function (PDF) in QCD



## Parton Distribution Function (PDF) in QCD



The struck parton moves on a light cone at the leading order in the twist-expansion.

$$q(x,\mu^{2}) = \int \frac{d\xi^{-}}{4\pi} e^{ix\xi^{-}P^{+}} \left\langle P \left| \overline{\psi}(0)\lambda \cdot \gamma \Gamma \psi(\xi^{-}\lambda) \right| P \right\rangle$$

## PDFs from QCD----why is it so hard?

• Quark PDF in a proton:  $(\lambda^2 = 0)$ 

$$q(x,\mu^{2}) = \int \frac{d\xi^{-}}{4\pi} e^{ix\xi^{-}P^{+}} \left\langle P \left| \overline{\psi}(0)\lambda \cdot \gamma \Gamma \psi(\xi^{-}\lambda) \right| P \right\rangle$$

- Non-perturbative, infinite dof, need lattice QCD
- Euclidean lattice: light cone operators cannot be distinguished from local operators
- Moments of PDF given by local twist-2 operators; limited to first few moments but carried out successfully

### Beyond the first few moments

- Smeared sources: Davoudi & Savage
- Gradient flow: Monahan & Orginos
- Current-current correlators: K.-F. Liu & S.-J. Dong; Braun & Müller; Detmold & Lin; QCDSF
- Xiangdong Ji (Phys. Rev. Lett. 110 (2013) 262002): quasi-PDF: computing the x -dependence directly.

#### Ji's idea

• Quark PDF in a proton:  $(\lambda^2 = 0)$ 

$$q(x,\mu^2) = \int \frac{d\xi^-}{4\pi} e^{ix\xi^- P^+} \left\langle P \left| \overline{\psi}(0)\lambda \cdot \gamma \Gamma \psi(\xi^- \lambda) \right| P \right\rangle$$

- Boost invariant in the z-direction, rest frame OK
- Quark bilinear op. always on the light cone
- What if the quark bilinear is slightly away from the light cone (space-like) in the proton rest frame?

- Then one can find a frame where the quark bilinear is of equal time but the proton is moving.
- Analogous to HQET: need power corrections & matching---LaMET

## Review: Ji's LPDF (LaMET)

$$\widetilde{q}(x,\mu^{2},P^{z}) = \int \frac{dz}{4\pi} e^{-ixzP^{z}} \left\langle P \left| \overline{\psi}(0)\lambda \cdot \gamma \Gamma \psi(z\lambda) \right| P \right\rangle$$

$$\equiv \int \frac{dz}{2\pi} e^{-ixzP^{z}} h(zP^{z}) P^{z}$$

$$\lambda^{\mu} = (0, 0, 0, 1)$$

Taylor expansion yields

$$\overline{\psi}\lambda \cdot \gamma \Gamma \left(\lambda \cdot D\right)^n \psi = \lambda_{\mu_1} \lambda_{\mu_2} \cdots \lambda_{\mu_n} O^{\mu_1 \cdots \mu_n}$$

op. symmetric but not traceless

## Review: Ji's LPDF (LaMET)

$$\langle P | O^{(\mu_1 \cdots \mu_n)} | P \rangle = 2a_n P^{(\mu_1} \cdots P^{\mu_n)}$$

- LHS: trace, twist-4  $\mathcal{O}(\Lambda_{QCD}^2/(P^z)^2)$  corrections, parametrized in this work
- RHS: trace  $\mathcal{O}(M^2/(P^z)^2)$
- One loop matching  $\alpha_s \ln P^z$ , OPE

$$ilde{q}(x,\Lambda,P_z) = \int rac{dy}{|y|} Z\left(rac{x}{y},rac{\mu}{P_z},rac{\Lambda}{P_z}
ight) q(y,\mu) + \mathcal{O}\left(rac{\Lambda_{ ext{QCD}}^2}{P_z^2},rac{M^2}{P_z^2}
ight) + \ldots$$

## First (isovector) LPDF Computation

• Lattice:  $24^3 \times 64$ 

$$a \approx 0.12 \text{ fm}$$
  $L \approx 3 \text{ fm}$ 

• Fermions: MILC highly improved staggered quarks (HISQ) Clover (valence)

$$N_f = 2 + 1 + 1$$
  $M_{\pi} \approx 310 \text{ MeV}$ 

• Gauge fields/links: hypercubic (HYP) smearing, 461 config.

• 
$$P^z = \frac{2\pi}{L}n = n \times 0.43 \ GeV$$
  $n = 1,2,3...$ 

(high momentum smearing: Bali, Lang, Musch, Schafer)

## Quasi-PDF (unpolarized)



$$P^z = \frac{2\pi}{L}n = n \times 0.43 \ GeV \quad n = 1, 2, 3.$$

#### RG of Wilson Coefficient

$$\begin{split} \tilde{q}(x,\Lambda,P_z) &= \int \frac{dy}{|y|} Z\left(\frac{x}{y},\frac{\mu}{P_z},\frac{\Lambda}{P_z}\right) q(y,\mu) \\ &+ \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{P_z^2},\frac{M_N^2}{P_z^2}\right) + \ldots . \end{split}$$

Xiong, Ji, Zhang, Zhao (GPD: Ji, Schafer, Xiong, Zhang; Xiong, Zhang) Factorization (Ma, Qiu; Li), Linear divergence & LPT (Ishikawa, Ma, Qiu, Yoshida; JWC, Ji, Zhang), RI (Monahan & Orginos; Yong & Stewart; Constantinou et al.), E vs. M spaces (Carlson et al.; Briceno et al.)

## $\mathcal{O}(M^2/(P^z)^2)$ ·Corrections

$$P^z = \frac{2\pi}{L}n = n \times 0.43 \ GeV$$

• Computed to all orders in  $\mathcal{O}(M^2/(P^z)^2)$ 

$$q(x) = \sqrt{1+4c} \sum_{n=0}^{\infty} \frac{f_-^n}{f_+^{n+1}} \Big[ (1+(-1)^n) \tilde{q} \Big( \frac{f_+^{n+1} x}{2f_-^n} \Big) + (1-(-1)^n) \tilde{q} \Big( \frac{-f_+^{n+1} x}{2f_-^n} \Big) \Big]$$

$$f_{\pm} = \sqrt{1+4c} \pm 1$$
  $c = M^2/4P_z^2$ 

## $\mathcal{O}(\Lambda_{OCD}^2/(P^z)^2)$ Corrections

#### • Twist-4:

$$q_{tr}(x,\mu^2,P^z) = \frac{\lambda^2}{8\pi} \int_{-\infty}^{\infty} dz \int_{0}^{1} \frac{dt}{t} e^{i\frac{zk^z}{t}} \left\langle P \left| \widetilde{\mathcal{O}}_{tr}(z) \right| P \right\rangle$$

$$\widetilde{\mathcal{O}}_{tr}(z) = \int_0^z dz_1 \overline{\psi}(0) \left[ \gamma^{\nu} \Gamma(0, z_1) D_{\nu} \Gamma(z_1, z) + \int_0^{z_1} dz_2 \lambda \cdot \gamma \Gamma(0, z_2) D^{\nu} \Gamma(z_2, z_1) D_{\nu} \Gamma(z_1, z) \right] \psi(z\lambda)$$



Parameterized ( $\alpha(x) + \beta(x)/P_z^2$ ) Additional complications? E.g. Radvushkin

#### Quasi-PDF (green) w/ loop (red) w/ loop + mass (blue)



$$P^z = \frac{2\pi}{L}n = n \times 0.43 \ GeV$$
  $n = 2 \text{ (upper) \& 3}$ 

## Unpolarized Isovector Proton PDF







Quark mass effect!

### Follow-up works

(Alexandrou et. al.:1504.07455+1610.03689)





## Follow-up works

(Alexandrou et. al.)

1504.07455

 $Pz=6\pi/L$ 

5 steps HYP smearing



1610.03689



### Isovector Proton Helicity and Transversity



### **Isovector Proton Helicity**



### **Isovector Proton Transversity**



### Pion Light Cone DA-Zhang, JWC, Ji, Jin, Lin



$$\phi_{\pi}(x, \mu) + 3\phi_{\eta}(x, \mu) = 2[\phi_{K^{+}}(x, \mu) + \phi_{K^{-}}(x, \mu)]$$

$$= 2[\phi_{K^{0}}(x, \mu) + \phi_{\overline{K}^{0}}(x, \mu)],$$
No leading chiral log

JWC, Iain W. Stewart, Phys.Rev.Lett. 92 (2004) 202001

#### Outlook

• Further tests (non-singlet): wee partons (smaller quark mass, momentum smearing, NP RI/MOM renormalization), small x: larger boxes, large x: twist-4; factorization proof.

Know whether it works within 5 years ( $\sim$ 20%)?

- Singlet PDF's: s, c, b and gluons Additional 3-5 yrs?
- If it works, complimentary to exp.: PDF (isov. sea, small and large x's, non-valence partons), DA, GPD, TMD ...

## Backup slides

## Pion Light Cone Distribution Amplitude

Zhang, JWC, Ji, Jin, Lin



(Ishikawa, Ma, Qiu, Yoshida; JWC, Ji, Zhang)



(Ishikawa, Ma, Qiu, Yoshida; JWC, Ji, Zhang)



Equivalent to



(Ishikawa, Ma, Qiu, Yoshida; JWC, Ji, Zhang)









$$p$$
  $p$ 

$$ilde{q}_{ ext{imp}}(x,\Lambda,p^z) = \int_{-\infty}^{\infty} rac{dz}{4\pi} e^{izk^z - \delta m|z|} \langle p|\overline{\psi}(0,0_{\perp},z)\gamma^z L(z,0)\psi(0)|p
angle$$

Ishikawa, Ma, Qiu, Yoshida: x-space JWC, Ji, Zhang: p-space

$$ilde{q}_{ ext{imp}}(x,a_L,p^z) = \int_{-1}^1 rac{dy}{|y|} Z\left(rac{x}{y},p^z a_L,rac{\mu}{p^z}
ight) q(y,\mu) + \mathcal{O}\left(\Lambda_{ ext{QCD}}^2/(p^z)^2,M^2/(p^z)^2
ight)$$

$$Z(\xi) = \delta(\xi - 1) + \frac{\alpha_s}{2\pi} \left[ Z^{(1)}(\xi) - \int dy Z^{(1)}(y) \, \delta(\xi - 1) \right] + \dots$$

$$Z^{(1)}/C_{F} = \begin{cases} \left(\frac{1+\xi^{2}}{1-\xi}\right) \ln \frac{\xi}{\xi-1} + 1 , & \xi > 1 ,\\ \left(\frac{1+\xi^{2}}{1-\xi}\right) \ln \frac{(p^{z})^{2}}{\mu^{2}} + \left(\frac{1+\xi^{2}}{1-\xi}\right) \ln \left[4\xi(1-\xi)\right] - \frac{2\xi}{1-\xi} + 1 , & 0 < \xi < 1 ,\\ \left(\frac{1+\xi^{2}}{1-\xi}\right) \ln \frac{\xi-1}{\xi} - 1 , & \xi < 0 , \end{cases}$$

In progress: Stewart & Zhang, NP RI/MOM renorm.

+ one-loop RI/MOM MS-bar matching

## Helicity and Transversity (isovector)



## Quasi-PDF (Helicity and Transversity)



$$P^z = \frac{2\pi}{L}n = n \times 0.43 \ GeV \quad n = 1, 2, 3.$$

#### Quasi-PDF (green) w/ loop (red) w/ loop + mass (blue)



$$P^z = \frac{2\pi}{L}n = n \times 0.43 \ GeV$$
  $n = 2 \text{ (upper) \& 3}$