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Introduction
e Stueckelberg Lagrangian (1938)
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e Massive QED. Unitarity and renormalizability are manifest!



e Stueckelberg mechanism only works for abelian group!

e However, Stueckelberg shows up in compactification and string

theory.
e Stueckelberg extension of SM [Kors and Nath (2004)
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e 75 is the matter (both visible and hidden sectors in general)

current that couples to the hidden gauge field C,,. More later.



o After EW symmetry breaking by the Higgs mechanism (®) = v//2
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e Diagonalize the mass matrix
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e The m%, and m% are given by
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e The orthogonal matrix O is parameterized as
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where sy = sin @, ¢y = cos ¢ etc.



e Without Ux (1), one would end up massive photon! Model would
be highly constrained! But PDG has

M~ < 0 X 10717 eV

Ryutov (1997), magneto-hydrodynamics of solar wind to earth’s
orbit].

e The angles are related to the parameters in the Lagrangian Lsism

by
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where myy = gov/2.



e The Stueckelberg Z’ decouples from the SM when ¢ — 0, since
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where 0y, is the Weinberg angle.

Matter current Jx:
e If SM fermion carries X charge, one can has

Qu =3~ ZtanoQx(, Qu=—5— L tangQux(d)

However, Qpeutron = 0 implies ), + 204 = 0 to high precision.
Qx(SM particle) =0 = Jx" =0
But, for the hiddden sector, one can has

Qx (hidden particle) # 0 = Juddensector o g
X



e Mixing effects in neutral current of SM fermions )
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e Constraints on StSM.
'Feldman, Liu, and Nath, PRL 97, 021801 (2006)]

e 7 mass shift requires (myz/M; < 1)

6] < 0.061+/1 — (my/M;)?
e Drell-Yan data of Stueckelberg 2’

my > 250 GeV  for 0 ~0.035,
myz > 375 GeV  for 0~ 0.06.

e /' width is narrow, since Z' — SM fermions are suppressed by

mixing angles!



[Feldman, Liu, and Nath, PRL 97, 021801 (2006)]
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FIG. 1 (color online). Z’ signal in StSM using the CDF [1] and
DO [2] data. The data put a lower limit of about 250 GeV on M,
for € = 0.035 and 375 GeV for € = 0.06.



Hidden Fermions

e Adding a pair of Dirac fermion y and ) in the hidden sector

Ix* = X7""QxXx
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e /' couples to y is not sup

pressed. Its width needs not to be narrow.

Drell-Yan constraint may be relaxed, if Z' — yx is kinematic allowed.

e Photon couples to x can |

e Y is stable! In general, al

be milli-charged! (eX < e)

| hidden fermions are stable w.r.t. U(1)x.

Feinberg, Kabir, and Wein|

berg, PRL 3, 527 (1957)]



Collider Phenomenology

e /' — invisible xx mode is dominant.

branching ratio
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e LEPII constraint (eTe™ — Z'v — v + missing energy).
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e CDF Drell-Yan constraint (pp — Z' — ete™)
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e LHC prediction: pp — Z’+ monojet
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e ILC prediction: ete™ — Z/ 4+~
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Astrophysical Implication

e \ as milli-charged dark matter candidate.

|Goldberg and Hall (1986); Holdom (1986)]

e WMAP constraint [Q=>".Q;, => . p;/p. and p. = 3H7 /87 G]
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e Relic density calculation — xx¥ — fomfom,¥Z', ZZ' are considered;

thermal average in owv is ignored, and v? ~ 0.1 is used.
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¢ WMAP constraint = gx ~ g2 and 6 = tan¢ = My /M7 ~ 0(10_2)



e Indirect detection of y

e Monochromatic line from yx — ~v,vZ,~vZ" could be “smoking

gun” signal of dark matter annihilation at Galaxy center.

e Photon flux
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with the quantity J(v) defined by
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e J(7)) depends on the halo profile p of the dark matter




e TeV gamma-rays from Sgr A* (hypothetical super-massive black
hole) near the Galactic center had been observed recently by

CANGAROO, Whipple, HESS.

e These may play the role of continuum background for dark matter

detection. Detectability of photon line above continuum background
at GLAST and HESS |[Zaharijas and Hooper, PRD 73 (2006) 103501]

Photon flux > 1.9 x (TeV/m,)* x (107'* = 107") cm ™% s
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Fic. 1.—Broadband spectral energy distribution (SED) of Sgr A*. Radio
data are from Zylka et al. (1995), and the IR data for quiescent state and for
flare are from Genzel et al. (2003). X-ray fluxes measured by Chandra in the
quiescent state and during a flare are from Baganoff et al. (2001, 2003). XMM-
Newton measurements of the X-ray flux in a flaring state is from Porquet et al.
(2003). In the same plot we also show the recent INTEGRAL detection of a
hard X-ray flux; however, because of relatively poor angular resolution, the
relevance of this flux to Sgr A* hard X-ray emission (B¢langer et al. 2004)
is not yet established. The same is true also for the EGRET data (Mayer-
Hasselwander et al. 1998), which do not allow localization of the GeV source
with accuracy better than 1°. The very high energy gamma-ray fluxes are ob-
tained by the CANGAROO (Tsuchiya et al. 2004), Whipple (Kosack et al.
2004), and HESS (Aharonian et al. 2004) groups. Note that the GeV and TeV
gamma-ray fluxes reported from the direction of the Galactic center may orig-
inate in sources different from Sgr A*; therefore, strictly speaking, they should
be considered as upper limits of radiation from Sgr A*. [See the electronic
edition of the Journal for a color version of this figure.]

Aharonian and Neronov, Astrophys. Journal 619, 306 (2005)



Gamma Ray Fluxes from xx - YY,YZ,YZ’
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FIG. 4: An exhibition of the dilepton signal o - Br(Z' —
[T17) at the Tevatron consistent with the WMAP-3 relic
density constraint as a function of Mz, when 2M, = 300
GeV. The curves in ascending order are for values of € in
the range (0.01—0.06) in steps of 0.01. The dilepton signal
has a dramatic fall as M/ crosses the point 2M, = 300
GeV where the Z’ decay into the hidden sector fermions is
kinematically allowed, widening enormously the Z’ decay
width. The green shaded regions are where the WMAP-
3 relic density constraints are satisfied for the case when
there is no kinetic mixing. Red and blue regions are for
the case when kinetic mixing is included. The D@ data set
48] was collected in the search for narrow resonances (RS)
and is a stronger constraint to apply on this model than
the recent CDF [47] data which put constraints on the
parameter space when the Z’ can decay only into matter
in the visible sector.

Feldman, Liu, Nath
(hep-ph/0702123)



Conclusions

Phenomenology of Stueckelberg Z’ is different from traditional

Z'. Mass limits can be much lower.
Hidden fermion — milli-charge, viable dark matter candidate.
New invisible decay mode of Z' — yx other than neutrinos.

Hidden fermion annihilation at Galactic center can give rise
“smoking gun” signal of monochromatic line that can be probed
by next generation of gamma-ray exps. However, it faces big
challenge from astrophysical background, e.g. gamma-ray from
Sgr A*. Perhaps continuum spectrum from secondary photons
due to processes like xx — fon font, WHW —, ... are important!

Other impacts in CMB, BBN, density fluctuations, direct

detection .... needs further studies.



