Parton Distribution Functions for Collider Physics

Hung-Liang Lai

Taipei Municipal University of Education

HEP & QIS Joint Seminar at Chung-Yuan Christian University March 3, 2011

CTEQ-Tung Et Al.: recent activities

- Uncertainty induced by α_s in the CTEQ-TEA PDF analysis (PRD, arXiv:1004.4624)
- New PDFs for collider physics
 - ► CTEQ6.6 set (published in 2008) → CT09
 → CT10 (PRD arXiv:1007.2241)
 - new experimental data, statistical methods, and parametrization forms
- PDFs for Event Generators (JHEP, arXiv:0910.4183)
- PDFs at NNLO with General Mass treatment (in preparation)

Uncertainty induced by α_s in the PDF analyses

Questions addressed:

- ▶ Two leading theoretical uncertainties in LHC processes are due to α_s and the PDFs;
- ► These are not independent uncertainties; how can one quantify their correlation?
- ▶ Which central $\alpha_s(M_Z)$ and which error on $\alpha_s(M_Z)$ are to be used with the existing PDFs?
- ▶ What are the consequences for key LHC processes $(gg \rightarrow H^0$, etc.)?

Uncertainty induced by α_s in the PDF analyses

Recent activity to examine these questions, e.g.:

- **MSTW** (arXiv:0905.3531)
 - $ightharpoonup lpha_s(M_Z)$ is an **output** of the global fit (constrained by the hadronic scattering only)
 - lacktriangle several sets of error PDFs, each with its own $lpha_s(M_Z)$ value \Rightarrow lengthier calculations
 - lacktriangle The $lpha_s$ uncertainty and PDF uncertainty are inseparable
- NNPDF (in 2009 Les Houches Proceedings, arXiv:1004.0962):
 - $ightharpoonup lpha_s(M_Z) = 0.119 \pm 0.002$ is taken as an **input**
 - ho $lpha_s-$ PDF correlation is examined with ~ 1000 PDF replicas and found to be small
- H1+ZEUS (arXiv:0911.0884): sensitivity of the HERAPDF set to $\delta\alpha_s(M_Z)=\pm0.002$ is explored

Our findings

Total PDF+ α_s errors ΔX are the **same** when found (a) from a full fit with floating α_s , or (b) by adding ΔX_{PDF} and ΔX_{α_s} in quadrature

- black CTEQ6.6 PDF uncertainty
- Blue filled PDF+ α_s uncertainty of the fit with floating $\alpha_s(M_Z)$
- Green hatched PDF+ α_s uncertainty added in quadrature

Also, agreement in cross section predictions ⇒ backup slides

Our findings

Total PDF+ α_s errors ΔX are the same if found either from a full fit with floating α_s , or by adding ΔX_{PDF} and ΔX_{α_s} in quadrature

This agreement is a rigorous consequence of the quadratic approximation

Details of the CTEQ6.6FAS analysis

■ Take the "world-average" $\alpha_s(M_Z) = 0.118 \pm 0.002$ as an **input**:

$$\alpha_s(M_Z)|_{\mbox{in}}=0.118\pm0.002$$
 at 90% C.L.

■ Find the theory parameter $\alpha_s(M_Z)$ as an **output** of a global fit (CTEQ6.6FAS):

$$\alpha_s(M_Z)|_{\text{OUT}} = 0.118 \pm 0.0019$$
 at 90% C.L.

■ The combined PDF+ α_s uncertainty is estimated as

$$\Delta X = \frac{1}{2} \sqrt{\sum_{i=1}^{22+1} \left(X_i^{(+)} - X_i^{(-)} \right)^2}$$

- **Problem**: each PDF set comes with its own α_s ⇒ cumbersome
- A simple workaround exists!

A quadrature sum reproduces the full $lpha_s$ -PDF uncertainty

Theorem

In the quadratic approximation, the total α_s+PDF uncertainty $\Delta\sigma$ of the CTEQ6.6FAS set, with all correlation, reduces to

$$\Delta X = \sqrt{\Delta X_{CTEQ6.6}^2 + \Delta X_{\alpha_s}^2},$$

where

- $lacktriangledown \Delta X_{CTEQ6.6}$ is the CTEQ6.6 PDF uncertainty from 44 PDFs with the same $lpha_s(M_Z)=0.118$
- $\Delta X_{\alpha_s}=(X_{high}-X_{low})/2$ is the α_s uncertainty computed with upper/lower α_s PDFs, e.g. CTEQ6.6AS PDFs for $\alpha_s(M_Z)=0.120$ and 0.116

Main Idea

Based on the Hessian method, we can write the variation from the global χ^2 minimum approximately as

$$\delta \chi^2 = A^{\dagger} H A = A^{\dagger} V^{\dagger} D V A = Y^{\dagger} Y,$$

where $Y = D^{1/2}VA$

We can further rotate according to "Data Set Diagonalization" on a function of α_s variation, e.g.

$$g = \left(\frac{\alpha_S(M_Z) - \alpha_{S0}(M_Z)}{\triangle \alpha_{S0}}\right)^2,$$

when expanded in the y space around the minimum:

$$\delta g = Y^{\dagger}GY = Y^{\dagger}U^{\dagger}\Lambda UY$$

It can be proved that Λ , the diagonal matrix, has only one non-zero eigenvalue.

Main Idea

Now, we can insert the unitary matrix U back to the global χ^2 ,

$$\delta\chi^2 = Y^\dagger Y = Y^\dagger U^\dagger U Y = Z^\dagger Z.$$

We have only z_1 that is fully correlated to G, i.e. α_S , whereas all the other directions are uncorrelated to α_S .

The space that spanned by $\{z_2,...z_n\}$ would be (n-1) dimensions with no correlation with α_S , which would be the same space spanned by $\{a_i; i \neq \alpha\}$ with α_S fixed at the best fitted value. Therefore, the total uncertainty can be added up in quadrature for those due to PDFs with fixed α_S (corresponding to $\{z_2,...z_n\}$) and the best fitted PDFs of α_S variation (corresponding to z_1).

The full proof is given in the paper; the main idea is illustrated for 1 PDF parameter a_1 and α_s parameter a_2

Illustration of the theorem for 2 parameters

$$\Delta X_1^2 = \frac{1}{4} (X(B) - X(D))^2$$
 $\Delta X_2^2 = \frac{1}{4} (X(A) - X(C))^2$

Illustration of the theorem for 2 parameters, cont.

$$\Delta X^{2} = \frac{1}{4} \left[(X(A) - X(C))^{2} + (X(B) - X(D))^{2} \right]$$

= $\Delta X_{1}^{2} + \Delta X_{2}^{2}$

Our findings (PRD, arXiv:1004.4624)

Theorem

In the quadratic approximation, the total α_s+PDF uncertainty ΔX , with all correlation, reduces to

$$\Delta X = \sqrt{\Delta X_{PDF}^2 + \Delta X_{\alpha_s}^2},$$

where

- ΔX_{PDF} is the PDF uncertainty with fixed α_s , e.g. uncertainty from 44 CTEQ6.6 PDFs with the same $\alpha_s(M_Z) = 0.118$
- \blacksquare $\Delta X_{\alpha_s}=(X_{high}-X_{low})/2$ is the α_s uncertainty computed with upper/lower α_s PDFs, e.g. CTEQ6.6AS PDFs for $\alpha_s(M_Z)=0.120$ and 0.116

The full proof is given in the paper

CTEQ-Tung Et Al.: CT10 analysis (PRD, arXiv:1007.2241)

- lacksquare Uncertainty induced by $lpha_s$ in the CTEQ-TEA PDF analysis
- New PDFs for collider physics

CT10 analysis

Experimental data

- Combined HERA-1 neutral-current and charged-current DIS data with 114 correlated systematic effects (see Guzzi's talk)
 - ▶ replaces 11 separate HERA-1 sets used in the CTEQ6.6 fit
- CDF Run-2 and D0 Run-2 inclusive jet production
- Tevatron Run-2 Z rapidity distributions from both CDF and D0
- W electron asymmetry from CDF II and D0 II; W muon asymmetry from D0 II (CT10W set)
- Other data sets inherited from CTEQ6.6

CT10 analysis

Developments in techniques

- lacktriangle Experimental normalizations N_i are treated on the same footing as other correlated systematic errors
- Set all data weights of 1, unless otherwise specified
- Require 90% CL for each experiment dynamically
- More flexible (i.e. less biased) parametrizations for $g(x,Q_0)$, $d(x,Q_0)$, and $s(x,Q_0)$
- Apply soft constraint on $R_s = \lim_{x\to 0} \left(s(x) + \bar{s}(x)\right) / \left(\bar{u}(x) + \bar{d}(x)\right)$ which has little information from current data

More flexible parametrizations

CT10(green) vs. CTEQ6.6(blue)

g(x,Q): large uncertainty at $x<10^{-3}$, despite tighter constraints by the combined HERA data

s(x,Q): wider uncertainty, covers both CTEQ6.6 and MSTW'08

Agreement between data sets

- Good overall agreement: $\chi^2/d.o.f.=1.1$ (out of ~2800 data points)
- Noticable observations on the quality of the fit:
 - ▶ **Tevatron single-inclusive jet production**: Run-1 and Run-2 sets are moderately compatible (arXiv:0904.2424)
 - ► **Tevatron Run-2 Z rapidity:** D0 well described; CDF acceptable (higher stat.)
 - ▶ Tevatron Run-2 W lepton asymmetry
 - \diamond is precise; constrains d(x)/u(x) at $x \to 1$
 - \diamond apparently disagrees with existing constraints on d/u, mainly provided by the NMC F_2^d/F_2^p and Run-1 W lepton asymmetry data; minor tension against BCDMS F_2^d data

Agreement between data sets

- Reaonable fits to electron (e) asymmetry data are possible without NMC and BCDMS; and vice versa
- No acceptable fit to D0 II e asymmetry and NMC/BCDMS data can be achieved, if they are included on the same footing
- lacktriangle Tension between Run-2 e asymmetry and μ asymmetry
- Good agreement between Run-2 $e\ W$ asymmetry data and Z y data
- With special emphasis on D0 II e asymmetry data (weight>1), it is possible to obtain a reasonable agreement for W asymmetry ($\chi^2/d.o.f.=1-2$), with some remaining tension with NMC & BCDMS data, especially at x>0.4

CT10 family

- Two series of PDFs are produced:
 - ▶ CT10: no D0 Run-2 W asymmetry data are included
 - ▶ CT10W: include D0 Run-2 W asymmetry, with an extra weight

CT10 and CT10W fits with Tevatron Run-2 data

CT10W agrees better with W asy data; has smaller uncertainty than CTEQ6.6 or CT10

Tevatron Dijet invariant mass data

Agreement much improved with more consistent scale choice, as compared to shown in the original D0 paper; With Run-II inclusive jets, CT10(W) show better agreement than CTEQ6.6.

d(x,Q)/u(x,Q) at Q=85 GeV

CT10W prefers larger d/u, has smaller uncertainty than CTEQ6.6 or CT10

CT10 & CT10W predictions for the LHC & Tevatron

CT10 & CT10W predictions for the LHC

 $\sigma(W^+)/\sigma(W^-)$ rapidity dist.

CT10W Uncertainty (blue) is clearly smaller than that of CT10 & CTFQ6.6.

 $\sigma(W^\pm)/\sigma(Z^0)$ rapidity dist.

CT10 (green) & CT10W (blue) uncertainties in central y region are larger than that of CTEQ6.6 (red), mainly due to larger uncertainty on s distribution.

CT10 & CT10W predictions for the LHC

CT10 & CT10W predictions for the LHC

Heavy flavor contributions at NNLO

- General-Mass (GM) treatment of heavy quark contributions in DIS is essential for precision W, Z predictions at the LHC (Tung et al., hep-ph/0611254)
- Several quark mass effects are comparable to NNLO radiative contributions, therefore, must be included in a consistent way
- Simplified Aivazis-Collins-Olness-Tung (S-ACOT) scheme with GM treatment is now implemented at NNLO accuracy

S-ACOT scheme

- The default mass scheme of CTEQ6.6 and CT10 PDFs
- Based upon the proof of QCD factorization for DIS with massive quarks (Collins, PRD, 1998)
- Relatively simple: sets $m_Q=0$ in ME with incoming c or b (Collins, 1998; Kramer, Olness, Soper, PRD, 2000)
- \blacksquare Reduces to the ZM \overline{MS} scheme at $Q^2\gg m_Q^2$, and to the FFN scheme at $Q^2\approx m_Q^2$

28

NNLO computation

- NNLO evolution for α_s and PDFs (HOPPET)
- NNLO both massless and massive Wilson coefficient functions (Moch, Vermaseren, Vogt; Smith, van Neerven, et al.)
- lacksquare matching coefficients relating the PDFs in N_f and N_f+1 flavors schemes
- code validated; physical results in progress; paper in preparation

Summary I

CTEQ6.6AS & CT10(W)AS PDF sets (available in the LHAPDF library):

alternative CTEQ6.6 & CT10(W) fits for

$$\alpha_s(M_Z) = 0.116, .117, .119, .120$$

- \blacksquare sufficient to compute uncertainty in $\alpha_s(M_Z)$ at $\approx\!\!68\%$ and 90% C. L., including the world-average $\alpha_s(M_Z)=0.118\pm0.002$ as an input data point
- The CTEQ6.6AS α_s uncertainty should be combined with the CTEQ6.6 PDF uncertainty as

$$\Delta X = \sqrt{\Delta X_{CTEQ6.6}^2 + \Delta X_{CTEQ6.6AS}^2}$$

■ The total uncertainty ΔX reproduces the full correlation between $\alpha_s(M_Z)$ and PDFs, also applicable to CT10 family and future PDFs.

Summary II

Tevatron Run-2 W asymmetry data...

...increasingly complete and precise, cannot be explained based on the d/u ratio provided by the previously existing data

- Higher-twist and nuclear corrections in the large-*x* BCDMS/NMC deuterium data are the usual suspects (Virchaux and Milsztain: Alekhin: Accardi et al.)
- \blacksquare CT10 and CT10W sets of PDFs for practical applications, without and with constraints from the D0 Run-2 W asymmetry

Tevatron Run-2 Dijet invariant mass data: consistent with current analysis; still large scale uncertainty

Backup slides

Full and reduced fits with variable α_s : cross sections

Process	CTEQ6.6+CTEQ6.6AS				CTEQ6.6FAS
$t\overline{t}$ (171 GeV)	σ_0	$\Delta \sigma_{PDF}$	$\Delta \sigma_{\alpha_S}$	$\Delta \sigma$	$\sigma_0 \pm \Delta \sigma$
LHC 7 TeV	157.41	10.97	7.54	13.31	160.10 ± 13.93
LHC 10 TeV	396.50	18.75	16.10	24.71	400.48 ± 25.74
LHC 14 TeV	877.19	28.79	30.78	42.15	881.62 ± 44.27
$gg \to H \ (120 \ {\rm GeV})$	σ_0	$\Delta \sigma_{PDF}$	$\Delta \sigma_{\alpha_S}$	$\Delta \sigma$	$\sigma_0 \pm \Delta \sigma$
Tevatron 1.96 TeV	0.63	0.042	0.032	0.053	0.64 ± 0.055
LHC 7 TeV	10.70	0.31	0.32	0.45	10.70 ± 0.48
LHC 10 TeV	20.33	0.66	0.56	0.87	20.28 ± 0.93
LHC 14 TeV	35.75	1.31	0.94	1.61	35.63 ± 1.70
$gg \to H \ (160 \ {\rm GeV})$	σ_0	$\Delta \sigma_{PDF}$	$\Delta \sigma_{\alpha_S}$	$\Delta \sigma$	$\sigma_0 \pm \Delta \sigma$
Tevatron 1.96 TeV	0.26	0.026	0.015	0.030	0.26 ± 0.031
LHC 7 TeV	5.86	0.16	0.18	0.24	5.88 ± 0.26
LHC 10 TeV	11.73	0.33	0.33	0.47	11.72 ± 0.50
LHC 14 TeV	21.48	0.68	0.56	0.88	21.43 ± 0.94
$gg \to H \ (250 \ {\rm GeV})$	σ_0	$\Delta \sigma_{PDF}$	$\Delta \sigma_{\alpha_S}$	$\Delta \sigma$	$\sigma_0 \pm \Delta \sigma$
Tevatron 1.96 TeV	0.055	0.0099	0.0044	0.011	0.058 ± 0.012
LHC 7 TeV	2.30	0.085	0.081	0.12	2.32 ± 0.12
	5.08	0.14	0.15	0.21	5.10 ± 0.22
LHC 10 TeV	5.06	0.14	0.10	0.21	0.10 1 0.11

The full (CTEQ6.6FAS) and reduced (CTEQ6.6+CTEQ6.6AS) methods perfectly agree