The Tiniest Droplet of the (most) Perfect Fluid

Chin-Hao Chen 陳勁豪

LeCosPA, NTU

CYCU, 2016/05/02

Outline

- What is quark gluon plasma (QGP)?
- Collective motion and initial state geometry
- From little bang to tiny bang

A hot, dense mess

- At the beginning of the universe, it was supposed to be a high energy density state!
- How does it look like?

Quarks are confined

Quark composition of a proton and a neutron (diagrams from Wikipedia)

- Quarks are confined in protons and neutrons
- The further quarks apart, the stronger the force; the closer the quarks, the weaker the interaction
- What will happen if we increase the energy "high enough"?

How do we melt the ice?

- We heat up the ice
- It will melt at critical temperature (0 Celsius)
- A phase transition from ice to water

Melt the nucleons!

Ideally speaking...

Creating the Mini-Bang

- RHIC
- Collides p+p, Au+Au at √s_{NN} = 200
 GeV
- and other species (Cu+Cu, Cu+Au, U+U...) at various energies ($\sqrt{s_{NN}}$ = 7.7-200 GeV)!!

- LHC
- Collides p+p, p+Pb, Pb+Pb at $\sqrt{s_{NN}} = 2.76 (5.02) \text{ TeV}$

What happens in heavy ion collisions

- The beams travel at 99.995% the speed of light.
- The two ions look flat as a pancake due to Relativity. (γ ~106 at full energy collision @ RHIC).
- The two ions collide and smash through each other for 10⁻²³ s
- The collision "melts" protons and neutrons, and liberates the quark and gluons.
- Thousands of particles are created and fly out from the collision area; plasma cools off.

Events viewed by detectors

~1500 charged particles are created in one Au+Au collisions!

CYCU, 2016/05/02 [5]

Pb-Pb @ 5.02 TeV @LHC

Some useful terminology

Au: 197 nucleons

Pb: 208 nucleons

Central collision:

the two nuclei collide "head on". Most energetic collisions, with highest multiplicity. Roughly 300-350 participating nucleons.

Peripheral collision:

the two nuclei touch by edge, with fewer multiplicity. Roughly ~10 participating nucleons

p+p collision: no QGP (at least
at RHIC energy)

How do the particles move?

- Collision area has "almond" shape due to overlap geometry of the nuclei.
- Almond shape leads to ununiform momentum distribution.
- Pressure gradient pushes the "almond" harder in the short direction.
- For a symmetric colliding area,
 v_{odd} = 0
- If v₂ = 0 → particle distributed homogeneously in φ direction

$$\frac{d^2N}{d\phi \, dp_T} = N_0 \left(1 + 2 \underline{v_2(p_T)} \cos(2\phi) \right)$$

CYCU, 2016/05/02 陳勁豪

How do we measure it?

• Determine the direction of the event plane (ψ_2)

$$\Psi_n = \frac{1}{n} \tan^{-1} \left(\frac{Y_n = \sum_i w_i \sin(n\phi_i)}{X_n = \sum_i w_i \cos(n\phi_i)} \right)$$

• Measure the particle distribution $(\phi - \psi_2)$

$$\frac{d^2N}{d\phi \, dp_T} = N_0 \big(1 + 2v_2(p_T) \cos(2\phi) \big).$$

Determine the event plane

v_2 vs p_T

- Au+Au vs Cu+Cu
 - Size difference
 - Geometry difference (different eccentricity, ε_{γ})
- Non-zero v₂
- Central collisions (0-10%): smaller v_2

• Mid-central collisions (30-40%): larger v_2

Geometry dependence

- Different geometry of the interaction area leads to different
 V₂
- Use the eccentricity to remove the geometrical contributions
- Central collision, $\varepsilon_2 \sim 0$
- ε_2 increases when moving to peripheral collisions

Phys. Rev. Lett. 98, 162301 (2007)

V₂ VS P_T

- After normalized by ε_2 , Au+Au/Cu+Cu in different centralities follows a universal curve
- $V_2 \mu \epsilon_2$

陳勁豪 19 CYCU, 2016/05/02

How do the particles flow?

- v_2 is particle type dependent
- In higher p_{τ} , the v_{γ} is saturated

- $V_{2,M}(p_T) \sim 2V_{2,q}(p_T/2)$ $V_{2,B}(p_T) \sim 3V_{2,q}(p_T/3)$
 - The quarks have collective motion.

Moving to higher p_T

- Scaling breaks after 1GeV
- Different particle production mechanism
- High p_↑ → hard scattering

Measuring the shape fluctuations

• The nucleus is not perfect in

- The nucleus is not perfect in shape
- Nucleon distribution is not smooth
- Azimuthal symmetry of the colliding area no longer available
- v_{old} is possible, due to shape fluctuations
- Measuring v_{old}, effectively means measuring the fluctuations of the initial geometry
- More constraints to theory predictions!

陳勁豪

Fluctuations in Cosmic Microwave Background

- Microwave background shows the tiny temperature fluctuations
- Multi-pole expansion shows the structure of the fluctuation distribution

Phys. Rev. C 85, 024901 (2012)

v_n vs viscosity

- Hydro + viscosity describes the data!
- $\eta/s = 1/4\pi$
- Universal lower bound from AdS/CFT

!勁豪

v_n and c_n

Measuring the flow coefficient with event plane method

```
- dN/d\phi \mu 1 + \Sigma(2v_n * cos(n(\phi-\Psi_n)))
```

$$- v_n = \langle \exp(in(\phi - \Psi_n)) \rangle$$

Measuring the flow coefficient with two particle angular correlations

```
- <exp(in (\phi_1 - \phi_2))>

= <exp(in (\phi_1 - \Psi_n + \Psi_{n-} \phi_2))>

= <exp(in (\phi_1 - \Psi_n)><exp(-in (\phi_2 - \Psi_n))>

= V_n^{1} * V_n^{2}

= C_n
```


- •Ridge (nearside long range correlation) appears in central Au+Au collisions, and extend to $|\Delta\eta| \sim 4$
- •This structure is believed due to collective flow CYCU, 2016/05/02 陳勁豪

Ridge at LHC

pp@7 TeV

- Ridge appears at high multiplicity pp/pPb collisions
- Collective motion in pp/pPb?
- Something in common between pp/pPb/PbPb?

High multiplicity events in pp are rare!

Tiny Bang in p+Pb?

 In p+Pb collisions in LHC, some collective flow like structure are shown, how about RHIC?

d+Au: bridge between p+p and Au+Au

- p+p: baseline reference
- d+Au: baseline reference, cold nuclear effect
- Au+Au: hot nuclear effect
- Is d+Au really just a reference?
- Do we create something hot in this tiny system?

Central-forward (backward) correlation

 Measure the two-particle correlations of one particle

The multiplicity distributions

in d+Au collisions are

asymmetric

 $3.1 < |\eta| < 3.9$

at mid-rapidity (with central arm spectrometer, $|\eta|$ <0.35) and another particle at forward calorimeter (with

Muon Piston Calorimeter,

PRC 72 031901

Charged hadron v₂ in d+Au

PRL 114 192301 Editor's Suggestion

- Substantial amount of flow in dAu
- Similar behavior between RHIC and LHC

As easy as 1, 2, 3

TABLE I. Monte Carlo Glauber characterization results.

System	$N_{ m part}$	$N_{ m coll}$	ε_2	ε_3
0% – 5% 3 He+Au	$25.0 \!\pm\! 1.6$	$26.1 {\pm} 2.0$	$0.50 {\pm} 0.02$	$0.28 {\pm} 0.02$
0%–5% $d{+}\mathrm{Au}$	17.3 ± 1.2	$18.1 {\pm} 1.2$	$0.54{\pm}0.04$	$0.19 {\pm} 0.01$

- p+Au, d+Au, ³He+Au
- Use central collisions to probe the initial state geometry
- From initial state geometry to final state anisotropy

Phys. Rev. Lett. 115, 142301 (2015)

Hydrodynamics still works in small system

in various small systems V₂

Summary

- Collective flow in QGP
- Quark flows
- Even small system flows, and still follows hydrodynamics

Connection with other area of physics

QGP is highly active!!

Backup slides

V_2/ϵ_2

- Data well described by SONIC
- SONIC: Glauber initial state + viscous hydro

- All v_n increases with p_T
- \mathbf{v}_3 is independent from centrality

Ridge in d+Au at $|\Delta \eta| > 6$

By correlating clusters in both muon piston calorimeter (MPC), 3.1< $|\eta|$ <3.9, the long range correlation at $\Delta \phi \sim 0$ is still preserved

CF in central d+Au collisions

PRL 111 212301 (2013)

- $0.48 < |\Delta \eta| < 0.7$
- Use ZYAM to subtract the underlying background
- The per trigger yield correlation in 0-5% d+Au collisions is larger than d+Au 50-88%
- After subtracting 50-88%, the remaining correlation function has a v_2 -like ($\cos 2\Delta \phi$) shape

c_2 (c_3) vs p_T

PRL 111 212301 (2013)

- $c_n = v_n^A * v_n^B$
- Significant c₂, and c₂ increases with p_T
- c_3 is consistent with 0, basically no c_3 (or v_3) contribution in

CYCU, 2016, 65, 24.

The Idea of Quark-Gluon Plasma

- Typical nucleon energy density (energy inside the nucleon) is about 0.13 GeV/fm³.
- Higher temperature → higher energy density → create more new particles (by E = mc²)
- When the energy density exceeds 1GeV/fm³, many new particles are made → packed close together
- Matter will exist not as hadrons (protons, neutrons...), but as independent quarks and gluons.
- In this medium, the quarks and gluons are deconfined.
- It is called "Quark–Gluon Plasma"

η separated long range correlations

- p+p: dominate by c₁ or cosΔφ correlations (conservation of momentum)
- d+Au: enhancement at $\Delta \phi \sim 0$, which is the "ridge"

Searching for the critical point

- From QGP to hadron Gas
- Can we find the critical point?
- Changing the colliding energy!

T_{ch}: inelastic interactions between particles stops

 T_{kin} : elastic interactions stops

Saturation at ~ 10 GeV?

Measuring the flow harmonics in HIC

Phys. Rev. C 86, 014907 (2012) (ATLAS)

- Measuring the particle pair azimuthal correlation, $C(\Delta\phi)$
- EYCU, 2516Qurier decompose the correlation function

N_{part} and N_{coll}

 N_{part}: number of nucleons participating in collisions

Both cases has $N_{part} = 10$, but (a) has $N_{coll} = 5$, (b) has $N_{coll} = 25$

N_{coll}: number of total binary collisions

51

Some useful terminology

p_⊤: transverse momentum

Centrality: a percentage of the total nuclear interaction cross-section

Central collision: the two nuclei collide "head on". Most energetic collisions, with highest multiplicity (0-10%)

Peripheral collision: the two nuclei touch by edge (60-92%)

How do we measure the temperature of QGP?

- Measure the spectrum of direct photon in p+p as baseline
- Measure the spectrum of direct photon in Au+Au
- The "extra photons" in Au+Au must come from thermal radiation from QGP

Can η /s help us find the critical point?

 Universal lower bound:

$$\eta/s = 1/4\pi \sim 0.08$$

- QGP has the lowest η/s among most atomic and molecular substances
- Lowest η/s ~T_.?

陳勁豪

Valence quark scaling?

 No obvious deviation from valence quark scaling → free quark even at 7.7 GeV?

Other perfect fluid?

- Cold atomic gas
- T ~ 10⁻⁹ K

- Electrons in graphene (2010 Nobel Physics)
- T ~ room temperature

System size dependence

Peripheral Au+Au and central d+Au

System	<ncoll></ncoll>	<npart></npart>
Au+Au 60-92%	14.8 ± 3.0	14.7 ± 2.9
d+Au 0-20%	15.1 ± 1.0	15.3 ± 0.8

- Similar number of collisions, and number of participants
- Any difference between the two?

The size of the fireball

 To measure the size of the fireball, we use the HBT (Hanbury-Brown and Twiss) correlation to measure the size of the fireball at freeze-out

- 3D Gaussian distribution
- out: direction of mean transverse momentum of the pair
- Side: orthogonal to out
- long: beam direction

m_T dependence

arxiv 1404.5291

 Similar m_T dependence between dAu and AuAu

- V(dAu) < V(AuAu)
- m_T dependence of volume is similar

Dependence in R

arxiv 1404.5291

- $1/R = sqrt(1/\sigma_x^2 + 1/1/\sigma_v^2)$
- Linear dependence and nice scaling between Au+Au and d+Au
- Different slope between Pb+Pb (2.76 TeV) and Au+Au (0.2 TeV)

K/π and p/π ratio in d+Au and Au+Au

- The K/π and p/π ratios in peripheral Au+Au and central d+Au are the same
- Similar chemical compositions in both systems

REPARTICLE 200 Sewing the fabric of spacetime

Particle physics in 1 minute

- 6 quarks, 6 leptons
- Quarks combined into hadrons
 - Meson-> 2 quarks
 - Baryons -> 3 quarks
- Photons, Z, W and gluons are particles that carry forces
- Quarks have "colors". The law describing their behavior is Quantum ChromoDynamics (QCD)

d+Au at RHIC vs p+Pb at LHC

- Smaller energy (0.2 TeV vs 5.02 TeV)
- Slightly different initial state geometry (d vs p)

Can we see v, in central d+Au collisions?

Long range correlation

- For p+p, it is dominated by c₁ (conservation of momentum)
- When mid-rapidity particles are correlated with Au-going side, there is significant correlations at $\Delta \phi \sim 0$
- c₁ and c₂ are comparable in central d+Au collisions

Y (1S,2S,3S) and event activity

- Less suppression of excited states in pPb compared to PbPb
- Interesting behavior vs event activity in all collision systems
- What is the correct reference for PbPb collisions?

Open questions

- Is QGP created in small systems (pp, pA)?
- Is multiplicity/energy density the key to link pp/pA/AA?
- Unified explanations?

Detectors at RHIC

STAR specialty: large acceptance measurement of hadrons

PHENIX specialty: rare probes, leptons, and photons

What is viscosity

- Viscosity is the resistivity of the fluid
- Low viscosity: milk
- High viscosity: honey
- Low viscosity means the energy can transfer through the fluid very fast
- no viscosity = "ideal fluid"