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Evidence for massive neutrino and the existence of dark
matter.

Model for neutrino mass and dark matter
Our proposal and how it works

Consequences

Conclusion
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SM neutrino
@ Mass requires Both the RH and LH components

@ Neutrinos are massless in SM
@ If being massive, they could mix with each other.
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Pressing Questions

To generate nonzero neutrino masses, we need to go beyond SM.
@ How many extra degrees of freedom BSM?
@ Are they fermionic or bosonic?

@ Can the mechanism be tested?
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Traditional See-Saw
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@ More than 2 fermionic DOFs.

@ Impossible to be tested directly.
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Flat Universe
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Dark universe
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@ What are the DM and DE?

@ DM must be electrically neutral and long lived.
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One week before the Japan earthquake

From the talk given by Takashi Shimomura at KEKPH2011.
Radiative Seesaw Models

tiny neutrino masses from quantum effeets (UG
T 1 loop : Ma (2006), »  Ma
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arXiv:1101.5731, Kanemura, Seto, Shimomura
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Common origin of the TeV Majorana mass and 2,7

@ Where comes the 257
@ It is not respected by the gravity anyway!

@ Then | asked the question: " Can we cook up a model which
has a unified origin for the TeV Majorana mass and the Z; to
stabilize the Dark Matter”?

@ The answer is confirmative. By using the Krauss-Wilczek
Mechanism, PRL62,1221 (1989).
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Krauss-Wilczek Mechanism
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Requirements:
@ Anomaly free charge assignment, residue Zy
@ Ng is Z>-odd, its mass should be around TeV
@ SM @ is Zr-even
@ All vertices go!
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Active neutrino mass

@ Active neutrino masses arise from the 1-loop diagrams
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o dim-7 operator ($L)2STS (dominated by diag-(b) )
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@ For A ~ vs ~TeV, ky ~ 0.1, and up ~ 0.1TeV,
g ~107% ~ 10m./v
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Charge assignment

Q wur dr | L e | Nga np|® nn o S
su2,!2 1 1[2 1]1 1]2 2 1 1
Ul)y | ¢ 2 —-3|-2 -1 0 o]%f %I 0 o0
ui, o o o0 O0|-1 -1]0 -1 -1 2

Zw |+ + 4+ |+ +] - -]+ - = X

@ Charge assignment and the remaining discrete Z,, parity for
the fields, where Qr, ur, dgr, L, er are the standard notation
for SM quark and lepton.

@ As always, there is price to pay to simplify things.
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Masses of new fermionic DOF

@ The U(1), allowed Yukawa and the Dirac mass

N__ n___ .
%NQCSNQ + %”ngsna + giaLiiiNs + mB, Ny + h.c.
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Masses of new fermionic DOF

@ The U(1), allowed Yukawa and the Dirac mass

N__ n___ .
%NQCSNQ + %”ngsna + giaLiiiNs + mB, Ny + h.c.
o What value should mP take? (Traditional see-saw does not

have this term. )
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Masses of new fermionic DOF

@ The U(1), allowed Yukawa and the Dirac mass

Ya'

_ n__ o
2 NSSN, + %’ngSna + giaLiiiNs + mB, Ny + h.c.

o What value should mP take? (Traditional see-saw does not
have this term. )

@ In principle, any will do!
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Masses of new fermionic DOF

@ The U(1), allowed Yukawa and the Dirac mass

N__ n___ .
%NQCSNQ + %’ngSna + giaLiiiNs + mB, Ny + h.c.

o What value should mP take? (Traditional see-saw does not
have this term. )
@ In principle, any will do!
o If the first two terms were absent (‘or yN = y" =0 ), the
U(1)a symmetry
i0

Nr — e’eNR, e — € 'ng

forbids the Dirac mass!
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Masses of new fermionic DOF

@ The U(1), allowed Yukawa and the Dirac mass

Ya'

_ n__ o
2 NSSN, + %’ngSna + giaLiiiNs + mB, Ny + h.c.

o What value should mP take? (Traditional see-saw does not
have this term. )

@ In principle, any will do!
o If the first two terms were absent (‘or yN = y" =0 ), the
U(1)a symmetry
Ng — eieNR, e — e_ienl_
forbids the Dirac mass!

o SSB of U(1), suggests a ‘NATURAL' values of mP ~ y(S).
Or, simply because it is phenomenologically interesting.
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Singlet fermion masses

@ Let's consider only one pair of vector fermion Ng and n;.
o After SSB, the fermionic DOF take the following mass matrix:

1, — [ g'vs mP ne
- C
EDz(nL,NR)< D gNV5>(N,% + h.c.
Two eigenvalues:
3 [vs(g" + ") & /vB(g" — )2 + (mP)? ]

@ Two mass eigenstate Majorana fermions:

X1 = cosf(n. + nf) —sinO(Ng + Ng) = x§
X2 = siné(n. + nf) + cosO(Ng + Ng) = x5

mP

tan20 = ————
vs(g" —gN)
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Is one pair of vector fermion enough?

o If there is only one pair of N — n, the resulting active neutrino
mass matrix is proportional to

g g 8183
Miox | ge1 8  g83
8381 8382 g32

@ The eigenvalues are {0,0, g2 + g= + g32}
@ Need at least two pairs of N — n.

@ 4 massive Majorana fermions, x1_4, large mixing between the
Ng and n; sectors.
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potential

@ We can write down the most general renormalizable U(1),
inv. potential

V = BI0P + Eolnl* + 2ol + 73|SP

+ M@ + Aa|n|* + As|o]? + A 9]

+ s @F [l + A @l + Ar| @[ o] + As|D[2|S)?
+ Xolnl*lo|* + Aiolnl|S)? + Ailal?lS)?
o

k(@' S) + pi(00S) + pa(n'®a) + h.c.
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Effective potential

o After the S get a VEV, we integrate out the heavy degree of
freedom.

@ The potential becomes

Vers = pg|®F + plnl* + pglol” + M@ + Aeln* + Aslo|*
+ As|@ L[l + As| @1l + Arl B0 + Aolnl*|o [
+ kug(®Tno) + pus(oo) + pa(ni®o) + h.c.

where

po = (s + Asv3), = (i + Movd), 1o = (5 + A1vi)

@ It's easy to have the solution that (®) = 246GeV,
(n) = (o) = 0.
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Physical Higgs

@ Due to the Z;, SM Higgs does NOT mix with the n and ¢
@ 3 out of 4 D.O.F. are the would be Goldstone bosons.
@ One SM Higgs. 2 Charged, 2 Scalars, 2 Pseudoscalars.
] Mi = ,u,27 + )‘5‘/(12)
s _ /V/i + /\ﬁv(% U2Ve + KVsVe
odd [i2ve + KVsVe  p2 + A7v3 + 2pu1vs
P - I\/Ii + )\6v(% U2V — KVS Ve
odd _ 2 by 2 2 :
H2Ve — KVSVe g + A7Ve — 2[1VS

in the basis of {Ren? Rec®} and {Im7° Im a°} respectively.

@ Denote H; = cos« Re770 +sinaReo? and
A1 = cosd Im 770 +sindIm 0. Masses around vg to vs.
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Lepton Flavor violation

@ When neutrino are massive, lepton flavor is no longer
conserved.

o For example, u — ev, u — 3e could happen.
e However, Br(u — ey) < 10712

@ [ — e arises from the dim-6 operator, active neutrinos play
no role(GIM).
Ldot egF,,

@ The branching ratio can be estimated

Br(lu’ - e7) e|g;4kgke’ 2 _g 9 1TeV 4
~ ~ 10 .
Br(p — evevy,) (1672) GEN? X |8k kel A

No problem with g ~ 1074,
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""at the LHC

@ A new term can be added
€ 4
—EB“ Xuw

@ “A Very Narrow Shadow Extra Z-boson at Colliders”,
PRD74:095005,2006.

@ Drell-Yan Production at LHC, g(p) + g(p) — Z2* — X

(DYl SM)=2 %

1073

(Agah 3™ y=1 x 1072

ot E ‘ ;

10 g

~ 7!
10 E

Maximal event number

0.01 Lostevrinuns

1.6
sz(TeV)

1.2
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o Definite relative decay BRs into SM fermions (determined
completely by the hypercharge of fermion and the mixing
parameter € ):

B(ZL — UL_J) : B(ZL — dc_l) : B(ZL — eé) . B(ZL N Vl7)
=563:166:4.99:1

(e =0.07)

@ When x1 and Hi, A; are much lighter than Z),
Z!, — x1x1, H1H1, A1 A1 will become the dominate decay
channels.

We-Fu Chang A Model for Neutrino Mass and Dark Matter with discrete gaug



Majorana Dark Matter

e Which DOF is the DM?

@ Equations

é2_87rG
a) 3 p
dn

pm + 3Hn = —(TannVrel) (N — Neq)

@ Roughly speaking, the relic density Qpuyh? o< 1/(TannVrer)-

@ annihilation for Majorana fermion

X1

I
|
7

X1 l
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Majorana Dark Matter relic density

I, Kubo et al. / Physics Letters B 642 (2006) 18-23
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Fig. 3. M. versus mg/y; for vy = 0.3,0.5,0.7, 1.0 (left to right) for £2,4% = 0.12, where y; is defined in Eq. (9).

The thermally averaged cross section for the annihilation of two N;'s into two leptons is computed by expanding the correspond-
ing relativistic cross section ¢ in powers of their relative velocity and keeping only the first two terms. Using the result of Ref. [11],
and recognizing that leplon masses are very small, we have

)
& +2rg)
247 M

(8)

4.2
ieri(l
lovy=a+b® +---, n=().bk='\*’*(

where
=M/ (md+ME). vE=Y Jhait | ()
o

A Model for Neutrino Mass an k Matter with discrete ga




e Given that g ~ 1074, M,, < M, is required to yield
Q,, h* ~ 0.11

o My, , > M,

@ All the four Majorana decay into 7 and SM leptons ( through
Yukawa and the n; and Ng mixing ).

@ Either Hy or Aq is the viable dark matter candidate.

o All the heavier Z,,-odd scalars decay into SM W*/Z9 plus
H1 or Al.
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Scalar Dark Matter

e diagrams for (co)-annihilation cross section

7’ e% - W=, Z... Ren™ W-
\\*"** \‘%’"\/’\/‘
SR < Zf><
e fWwt g Z.. Imp™”
(a) (b)

B2V Y. T(W— X)) 1
nnVrel = )
TamnVrel = (aMZ — m2,)? + 12, m?, 2Ms

A = cos? a(As + Xg) + sin a\7 + sin 2o + Kvs)/ve for Hy,
A = cos? §(As + Xg) + sin? 67 + sin 26(ua — Kvs)/ve for Ay.
o (K% — X;) is the rate for the virtual Higgs decays into X;.
o Mg > my, the hh, WW, ZZ channels open up.

@ Almost everything about the scalar DM has been studied in
the past 25 years.
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Scalar Dark Matter relic density-1
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Fig. 2. Four samples of the log A—m g relationship between 4 and m g, which gives the correct cosmie
abundance of § sealars. For these plots the Higgs mass is chosen to be 100, 120, 140, and 200 GeV.

The abundance is chosen to be §2,/- =0.3.
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Scalar Dark Matter relic density-2

X.-G Heet al./ Physics Letters B 688 (2010) 332-336 333
v L
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Scalar Dark Matter direct detection

720 C.P. Burgess et al. / Nuclear Physics B 619 (2001) 709-728
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Fig. 4. The predictions for the elastic cross section, oy, as a function of m g, which follows from the
A(ms) dependence dictated by the cosmic abundance. Also shown by a dashed line is the exclusion
limit from the CDMS experiment [6].
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Scalar Dark Matter direct detection-2
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FIG. 1: The predicted DM-nucleon elastic scattering cross section ¢=! in the SSDM-SM (left panel) and

SSDM-2HBDM (right panel) for 1 GeV = mp < 10 GeV. The black region corresponds to a combination

of the DAMA and CoGeNT [24]. The dashed lines indicate the current experimental upper bounds from

the CDMS 1I [25], CDMS [26], CRESST [27], TEXONO [28] and XENON100 [29].
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Scalar Dark Matter direct detection-3

coMs 1l

X T xenowino ]

HENOWIT

P m,=120 GaW’ m =130 GeV/
L L L L L L

L L L
20 40 60 B0 100 120 140 160 18O 200
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FIG. 2: The predicted DM-nucleon elastic scattering cross section oL for 10 GeV < mp < 200 GeV in the
SSDM-SM. The dashed lines indicate the current experimental upper bounds from the CDMS II [25] and
XENON100 [29]. The short dotted lines denote the future experimental upper bounds from the CDMS 100

kg [30] and XENONIT [31].
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Scalar Dark Matter direct detection-4

X.-C. He et ol / Physics Lerters B 688 (2010) 332-336

the Higgs mass my for darkon mass
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Fig. 3. Darkon-nucleon elastic cross-section oy as a function of the darkon mass mp
for Higgs mass values my = 120, 170, 200 CeV, compared to 90%-C.L upper limits
from CDMS 11 (dashed curve) and XENON10 (dotted curve).
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Scalar Dark Matter

@ In short, all the studies agree that there are plenty of
parameter space to make the scalar dark matter viable and
could be directly detected at the underground laboratories in
the near future.

@ However, to have the right dark matter relic density, the mass
Ms and the coupling \ are strongly correlated and such tight
relation does not naturally come out in the general scalar dark
matter models. (Neither in ours)

@ We actually have not much to add to the known properties of
the scalar dark matter. We just want to point out that there
is a new contribution to the depletion of Hy or A; from the
H1 A1 coannihilation if their masses are not too different from
each other.
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Side Remarks

@ The usual leptogenesis mechanism does not work. The
Yukawa coupling too large to be out of equilibrium,

Z ‘g’2 < 8m \/ 47T3g*/45(MX/MP/anck) ~ 10_14

@ To utilize the TeV scale singlet fermions for leptogenesis
requires extra arrangement such as the resonance leptogenesis
(Pilaftsis, 03) or via the 3 body decay mechanism ( Hambye,
01). But fine tuning is then unavoidable.

@ The Z5,-odd scalar sector still helps to get a stronger first
order EW phase transition which is crucial for EWBAU.
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Conclusions

Singlet fermions acquire Majorana masses via U(1), breaking
at TeV scale.

Active neutrino masses arise from 1-loop diagrams, equivalent
to a dim-7 operator, without much fine tuning.

Z> discrete gauge symmetry a la Krauss-Wilczek stabilize the
dark matter candidate

Thermal relic density of the lightest Z>-odd scalar can explain
the observed dark matter abundance.

New degrees of freedom can be probed at TeV scale.
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