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Introduction: Heisenberg-type models

Heisenberg-type models have been studied in great detail both numerically and
analytically during last 2 decades

The reasons why these models have drawn a lot of attention is twofold:

Heisenberg-type models are relevant to real materials:

It is believed that spin-1/2 Heisenberg model on the square lattice is the
correct model to describe the undoped cuprate which might become high Tc

superconductors by doping charge carriers into these materials

Due to their relevance to real materials, even today research of
Heisenberg-type models is still very active
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Introduction: Heisenberg-type models

The availability of efficient Monte Carlo algorithms:

With the increasing computing power as well as the advances in numerical Monte
Carlo algorithms, the properties of Heisenberg-type models on non-frustrated
lattices have been investigated with unprecedented numerical accuracy

Using a loop algorithm, the low-energy constants of spin-1/2 Heisenberg model
on the square lattice are calculated with high precision (Ying and Wiese, 1994) :

Ms = 0.3074(4)/a2, ~c = 1.68(1)Ja, ρs = 0.184(4)J

Experimental results:

Inelastic neutron scattering of spin wave velocity : ~c = 0.85(3)eVÅ

Raman scattering : J = 0.1480(70)K, a = 3.79Å

→ ~c = 1.75(9)Ja, ρs = 0.186(J)

Because efficient Monte Carlo algorithms can be designed for Heisenberg-type
models on non-frustrated lattices, these models are suitable for examining new
ideas or testing theoretical predictions

– p. 4



Crystal structure of undoped Cuprates

The crystal structure of undoped cuprates:

Layers are weakly coupled.

The interactions in the CuO2 planes are strong.

The relevant physics is determined by the 2-dimensonal CuO2 planes.

Spontaneous magnetization : anti-parallel spins.
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The Heisenberg Models

H = J
X

〈xy〉

~Sx ·
~Sy , J > 0 .

Antiferromagnetic alignment of spins is prefered → Heisenberg model on the square
lattice indeed is the correct model to describe the properties of undoped cuprates

Heisenberg-type models are important and interesting because of their relevance to
real materials

Spontaneous Symmetry Breaking (SSB): SU(2)s → U(1)s

Goldstone’s theorem : 2 massless excitations → magnons
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Antiferromagnetism in Real Materials at Low Doping

Keimeret et al. PRB 1992 :

Divergent magnetic correlation length ξ is a clear signal for massless excitation.

Magnons dominate low-energy dynamics of lightly doped cuprates.
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Spatially anisotropic Heisenberg models

Isotropic Heisenberg model: J are the same for any 2 nearest neighboring spins

A more general class of Heisenberg models: spatially anisotropic Heisenberg models

Spatially Anisotropic Heisenberg Models are relevant to real materials as well:

Underdoped cuprate superconductor YBa2Cu3O6.45

Spatially Anisotropic Heisenberg Models are of theoretical interest and importance as
well

Efficient Monte Carlo algorithms can be designed to simulate spatially anisotropic
Heisenberg models. Hence they are useful in examing theoretical predictions: phase
transition induced by dimerization
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Spatially Anisotropic Heisenberg Models

As one increases the anisotropy, say decreasing the value of J2, the original 2-D
model will become decoupled Heisenberg chains eventually.

Relevant to the underdoped cuprate superconductor YBa2Cu3O6.45.

J

J

2

1
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Spatially Anisotropic Heisenberg Models

Pinning effects of the electronic liquid crystal direction in the underdoped cuprate
superconductor YBa2Cu3O6.45.

A tiny in-plane lattice anisotropy lead to a much stronger energy in (1,0)-axis direction
compared to that in (0,1)-axis.

Using the method of series expansion, it is argued that : (Pardini, Singh, Katanin and
Sushkov , PRB, 2008)

The anisotropic spin stiffness ρs1 and ρs2 will lead to a very strong pinning energy,
hence provides a possible mechanism to explain the observed pinning effects.

The J1/J2 dependence of ρs1/ρs2 in the weak anisotropic regime is given by
ρs1/ρs2 = 1 + 1.8(J1/J2 − 1), which deviates from the intuitive expectation
ρs1/ρs2 ∼ J1/J2.

Pinning energy per Cu is 5 × 10−2MeV.

Significally larger than the pining energy per spin ∼ 1.5 × 10−3MeV in La2CuO4.

It is useful and important to have a relevant Monte Carlo study as well.
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ρs1 and ρs2 as Functions ofJ2/J1
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While the black circles and red squares are the Monte Carlo results for ρs1 and ρs2,
respectively, the blue up triangles and green down triangles are the corresponding
series expansion results of ρs1 and ρs2, respectively. (FJJ, Kampfer, Nyfeler, PRB 2009)

The anisotropic spin stiffness ρs1 and ρs2 indeed will lead to a very strong pinning
energy, hence provides a possible mechanism to explain the observed pinning effects
as claim by Pardini, Singh, Katanin and Sushkov.
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Spatially Anisotropic Heisenberg Models

Phase transition induced by dimerization as one increases J ′

An unconventional phase transition other than the theoretically predicted O(3) class!
(S. Wenzel et al., RPL, 2008)

ν = 0.689(5) v.s. ν = 0.7112(5) (Campostrini et al., PRB 2002)

J

J’
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An unconventional Phase Transition?

ν = 0.689(5) instead of the O(3) value ν = 0.7112(5) (S. Wenzel et al., RPL, 2008)

Data collapse OL(a/ac) = (1 + cL−ω)g((a/ac − 1)L1/ν + dL−φ/ν) :

(1/2)ρs L/(1 + cL−ω)

ξy/
[

L(1 + cL−ω)
]

(α/αc − 1)L1/ν
+ d L−φ/ν
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Several efforts have been devoted to understand this issue, but puzzle remains.
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The Heisenberg Models

H = J
X

〈xy〉

~Sx ·
~Sy , J > 0 .

Antiferromagnetic alignment of spins is prefered → Heisenberg model on the square
lattice indeed is the correct model to describe the properties of undoped cuprates

Heisenberg-type models are important and interesting because of their relevance to
real materials

Spontaneous Symmetry Breaking (SSB): SU(2)s → U(1)s

Goldstone’s theorem : 2 massless excitations → magnons
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Antiferromagnetism in Real Materials at Low Doping

Keimeret et al. PRB 1992 :

Divergent magnetic correlation length ξ is a clear signal for massless excitation.

Magnons dominate low-energy dynamics of lightly doped cuprates.
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Effective Field Theory on One Slide

Consider a system with the spontaneous symmetry breaking pattern: G→ H, where H is
the unbroken subgroup of G. Let n = dimG - dimH,

The low-energy physics of the system is governed by n massless Goldstone bosons.

The full effective Lagrangian is systematically expressed in term of small parameters.

In particular, the resulting effective Lagrangian must respect all the symmetries of the
underlying physics system.

The dynamics of the system is determined by the numerical values of the low-energy
constants appearing in the effective Lagrangian.

The effective field theory is universal.

The dynamics is determined by the material-specific low-enrgy constants.
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Chiral Perturbation Theory for QCD : SU(2)R × SU(2)L → SU(2)V .

3 Golstone bosons : 3 pions.

Small parameters: momentum p/Λχ and mπ/Λχ.

Low-energy constants : Fπ , 〈ψ̄ψ〉.....
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Magnon Chiral Perturbation Theory

Spontaneous symmetry breaking : SU(2)s → U(1)s.

Two Goldstone bosons (magnons) described by

~e(x) =
`

e1(x), e2(x), e3(x)
´

∈ S2 = SU(2)s/U(1)s

with x = (x1, x2, t).

Low-energy effective Lagrangian a :

L =
ρs

2
(∂i~e · ∂i~e+

1

c2
∂t~e · ∂t~e) + · · ·

ρs: spin stiffness, c: spin wave velocity.

Since the low-energy dynamics is completely determined by the numerical values of
the corresponding low-energy parameters, it will be of great interest and importance to
calculate these low-energy parameters accurately.

a
Chakravarty, Halperin, and Nelson, PRB (1989), Hasenfratz and Niedermayer, Phys. Lett. B (1991).
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Monte Carlo method

Methods of studying the properties of antiferromagnets: spin wave theory, series
expansion, DMRG, quantum Monte Carlo...

Monte Carlo is one non-perturbative and exact method

Given a Hamiltonian H,

< A >=
1

Z
Tr

“

Ae−βH
”

, Z = Tr
“

e−βH
”

Z =
X

a

∞
X

n=0

βn

n!
< a|(−H)n|a >

Each term in the summation of Z is called the Boltzmann weight of the
configuration |a >.

Generating (sampling) the configurations according to their Boltzmann weight.
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Monte Carlo method

Generating (sampling) the configurations according to their Boltzmann weight:

Detailed Balance

Egordicity

Local update: Heat bath, Metropolis... → critical slowing down, say, a very long
autocorrelation time

Global update: Cluster algorithms... → no critical slowing down

Existng Monte Calro algorithms for simulating quantum spin sysetms: Loop, SSE,
Worm...
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Cluster algorithms

β

β

L

β

For each cluster, 0.5 probability to flip the spins along this cluster
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Monte Carlo method

Monte Carlo is a very powerful first principles non-perturbative method for study
strongly correlated systems

Sign problem on geometrically frustrated lattice!

?
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Simulations and Observables

We use a loop algorithm to simulate the quantum Heisenberg model.

Staggered susceptibility χs and uniform susceptibility χu:

χs =
1

L1L2

Z β

0

dt
1

Z
Tr[M3

s (0)M3

s (t) exp(−βH)],

χu =
1

L1L2

Z β

0

dt
1

Z
Tr[M3(0)M3(t) exp(−βH)].

β : inverse temperature, Li : spatial box size in the xi-direction,

Z = Tr exp(−βH) : partition function,

~Ms =
P

x(−1)x~Sx : staggered magnetization (order parameter).
~M =

P

x
~Sx : uniform magnetization.

Both χs and χu can be measured very efficiently with loop algorithm.
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Simulations and Observables

The cubical regime : βc ≈ La

χs =
M2

sL
2β

3

(

1 + 2
c

ρsLl
β1(l) +

„

c

ρsLl

«

2
ˆ

β1(l)2 + 3β2(l)
˜

+ ...

)

,

χu =
2ρs

3c2

(

1 +
1

3

c

ρsLl
eβ1(l) +

1

3

„

c

ρsLl

«

2
»

eβ2(l) −
1

3
eβ1(l)2 − 6ψ(l)

–

+ ...

)

.

Ms : staggered magnetization density per unit area.
βi(l), eβi(l), ψ(l) : shape coefficients of the space-time box depending on l = (βc

L
)1/3.

a
Hasenfratz and Niedermayer, Z. Phys. B (1993).
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Extraction of the Low-Energy Parameters

ρs and c are strongly correlated. Hence they cannot be determined very precisely by
fitting the data to their theoretical predictions: ρs = 1.84(4)J , c = 1.68(1)Ja.

It will be desirable to measure one of these low-energy parameters by another method.

We will focus on the low-energy parameter c.

Conventionally, c can be determined by χ = ρ/c2. Here χ and ρ are the bulk values of
susceptibility and spin stiffness, respectively.

Extrapolations of finite volume data of χ and ρ to their bulk values will introduce
systematic errors as well.

Therefore it will be important to determine c using a more direct method.

Motivated by the cubical regime, we propose that c can be calculated by L/β, here L
and β are the box size and inverse temperature so that the spatial and temporal
winding number squareds take the same values in the Monte Carlo simulations. (FJJ,

PRB 2011)

– p. 25



Determining c using the squares of winding numbers

The c for quantum XY model calculated from the squares of spatial and temporal
winding numbers is given by c = 1.1348(5)Ja
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< W
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 >
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Determining c from chiral fits of χ11 and χ

A simultaneous fit of χ11, χ (and ρ) obtained in the cubical regime to their finite-lattice
and -temperature predictions (a constant) from magnon chiral perturbation theory
leads to M = 0.43561(1)/a2, ρ = 0.26974(5)J and c = 1.1347(2)Ja

The c = 1.1347(2)Ja calculated from chiral fits agree excellently with the
c = 1.1348(5)Ja obtained using the squares of winding numbers
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Low-Energy Parameters for Quantum Antiferromagnets

After verifying the validity of the method of calculating c using the squares of (temporal
and spatial) winding numbers, we turn to calculating the low-energy parameters for
quantum antiferromagnets.

The numerical value for c of quantum antiferromagnets are determined with very high
precision: c = 1.6586(3)Ja
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< W
2
 >

< Wt
2
 >

L = 48a
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Low-Energy Parameters for Quantum Antiferromagnets

Using c = 1.6586(3)Ja the numerical values for Ms and ρs are calculated to
unprecedented numerical accuracy (FJJ and Wiese, PRB 2011):

Ms = 0.37043(1)/a2, ρs = 0.18081(11)J
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Quantum Antiferromagnets on the Honeycomb Lattice

Quantum antiferromagnets on the honeycomb lattice

InCu2/3V1/3O3 (spin-1/2), Bi4Mn4O12(NO3 ) (spin-3/2), Na1/3CoO2·yH2O
(spin-1/2),....
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Quantum Antiferromagnets on the Honeycomb Lattice

Ms = 0.2688(3), ρs = 0.102(2)J, c = 1.297(16)Ja (FJJ, Kampfer, Nyfeler, Wiese,

PRB 2008)
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Ms = 0.26882(3), ρs = 0.1012(2)J, c = 1.2906(8)Ja
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Calculations on the Cylindrical Regime

The results presented so far are done on the cubical regime: βc ∼ L.

Finite lattice expression from magnon choral perturbation theory for χs at very low
temperature (cylindrical regime, βc≫ L) is available as well:

χs =
2

3

M2
sρsL4

c2

„

1 + 3a
c

ρsL
+ ...

«

Ms and ρs can also be calculated in the cylindrical regime.

An analysis on the cylindrical regime provides a great opportunity to examine the
robustness and predictive power of magnon chiral perturbation theory.
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Calculations on the Cylindrical Regime

A fit of χs data at very low temperature to their theoretical prediction leads to (FJJ and

Wiese, PRB 2011)

Ms = 0.30746(4)/a2, ρs = 0.18081(11)J ,

which agrees quantitatively with our earlier results obtained in the cubical regime.
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Conclusions

(Quantum) Heisenberg-type models are interesting and important:

Relevance to real materials.

Suitable for exploring new ideas.

Even today, new discoveries in experiments might be explained by these (simple)
models.

Low-energy dynamics of quantum antiferromagnets are completely determined by the
numerical values of the corresponding low-energy parameters.

We propose that c can be calculated from the squares of winding numbers.

Verify our proposal by simulating the Quantum XY models.

The numerical values for the low-energy parameters of the quantum antiferromagnets
are determined with unprecedented numerical accuracy:

Ms = 0.37043(1)/a2, ρs = 0.18081(11)J, c = 1.6585(3)Ja.
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Conclusions

The consistence between the values of Ms obtained in the cubical and cylindrical
regimes demonstrates the robustness of magnon chiral perturbation theory in
understanding the low-energy dynamics of quantum antiferromagnets.
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