Very high precision determination of the low-energy parameters for the 2d quantum antiferromagnets

Fu-Jiun Jiang

Department of Physics, National Taiwan Normal University, 88, Sec.4, Ting-Chou Rd., Taipei 116, Taiwan

Outline

- Introduction: Heisenberg-type models:
 - Heisenberg-type models are important and interesting from both experimental and theoretical perspectives
- Magnon chiral perturbation theory: the exact low-energy effective field theory for antiferromagnets
- lacksquare A proposal of calculating the spinwave velocity c using the squares of winding numbers
- Monte Carlo results
- Conclusions

Introduction: Heisenberg-type models

- Heisenberg-type models have been studied in great detail both numerically and analytically during last 2 decades
- The reasons why these models have drawn a lot of attention is twofold:
 - Heisenberg-type models are relevant to real materials:
 - It is believed that spin-1/2 Heisenberg model on the square lattice is the correct model to describe the undoped cuprate which might become high T_c superconductors by doping charge carriers into these materials
 - Due to their relevance to real materials, even today research of Heisenberg-type models is still very active

Introduction: Heisenberg-type models

- The availability of efficient Monte Carlo algorithms:
 - With the increasing computing power as well as the advances in numerical Monte Carlo algorithms, the properties of Heisenberg-type models on non-frustrated lattices have been investigated with unprecedented numerical accuracy
 - Using a loop algorithm, the low-energy constants of spin-1/2 Heisenberg model on the square lattice are calculated with high precision (Ying and Wiese, 1994):

$$\mathcal{M}_s = 0.3074(4)/a^2$$
, $\hbar c = 1.68(1)Ja$, $\rho_s = 0.184(4)J$

- Experimental results:
 - Inelastic neutron scattering of spin wave velocity : $\hbar c = 0.85(3) \, \text{eVÅ}$
 - Raman scattering : $J = 0.1480(70) \text{K}, \ a = 3.79 \text{Å}$
- Because efficient Monte Carlo algorithms can be designed for Heisenberg-type models on non-frustrated lattices, these models are suitable for examining new ideas or testing theoretical predictions

Crystal structure of undoped Cuprates

The crystal structure of undoped cuprates:

- Layers are weakly coupled.
- \blacksquare The interactions in the CuO₂ planes are strong.
- \blacksquare The relevant physics is determined by the 2-dimensonal CuO₂ planes.
- Spontaneous magnetization : anti-parallel spins.

The Heisenberg Models

$$H = J \sum_{\langle xy \rangle} \vec{S}_x \cdot \vec{S}_y , J > 0.$$

- Antiferromagnetic alignment of spins is prefered → Heisenberg model on the square lattice indeed is the correct model to describe the properties of undoped cuprates
- Heisenberg-type models are important and interesting because of their relevance to real materials
- **●** Spontaneous Symmetry Breaking (SSB): $SU(2)_s \rightarrow U(1)_s$
- Goldstone's theorem : 2 massless excitations → magnons

Antiferromagnetism in Real Materials at Low Doping

Keimeret et al. PRB 1992 :

- Divergent magnetic correlation length ξ is a clear signal for massless excitation.
- Magnons dominate low-energy dynamics of lightly doped cuprates.

Spatially anisotropic Heisenberg models

- Isotropic Heisenberg model: J are the same for any 2 nearest neighboring spins
- A more general class of Heisenberg models: spatially anisotropic Heisenberg models
- Spatially Anisotropic Heisenberg Models are relevant to real materials as well:
 - Underdoped cuprate superconductor YBa₂Cu₃O_{6.45}
- Spatially Anisotropic Heisenberg Models are of theoretical interest and importance as well
- Efficient Monte Carlo algorithms can be designed to simulate spatially anisotropic Heisenberg models. Hence they are useful in examing theoretical predictions: phase transition induced by dimerization

Spatially Anisotropic Heisenberg Models

- As one increases the anisotropy, say decreasing the value of J_2 , the original 2-D model will become decoupled Heisenberg chains eventually.
- \blacksquare Relevant to the underdoped cuprate superconductor YBa₂Cu₃O_{6.45}.

Spatially Anisotropic Heisenberg Models

- Pinning effects of the electronic liquid crystal direction in the underdoped cuprate superconductor YBa₂Cu₃O_{6.45}.
- A tiny in-plane lattice anisotropy lead to a much stronger energy in (1,0)-axis direction compared to that in (0,1)-axis.
- Using the method of series expansion, it is argued that: (Pardini, Singh, Katanin and Sushkov, PRB, 2008)
 - The anisotropic spin stiffness ρ_{s1} and ρ_{s2} will lead to a very strong pinning energy, hence provides a possible mechanism to explain the observed pinning effects.
 - The J_1/J_2 dependence of ρ_{s1}/ρ_{s2} in the weak anisotropic regime is given by $\rho_{s1}/\rho_{s2}=1+1.8(J_1/J_2-1)$, which deviates from the intuitive expectation $\rho_{s1}/\rho_{s2}\sim J_1/J_2$.
 - ▶ Pinning energy per Cu is 5×10^{-2} MeV.
 - Significally larger than the pining energy per spin $\sim 1.5 \times 10^{-3} \text{MeV}$ in La₂CuO₄.
- It is useful and important to have a relevant Monte Carlo study as well.

ho_{s1} and ho_{s2} as Functions of J_2/J_1

- While the black circles and red squares are the Monte Carlo results for ρ_{s1} and ρ_{s2} , respectively, the blue up triangles and green down triangles are the corresponding series expansion results of ρ_{s1} and ρ_{s2} , respectively. (FJJ, Kampfer, Nyfeler, PRB 2009)
- The anisotropic spin stiffness ρ_{s1} and ρ_{s2} indeed will lead to a very strong pinning energy, hence provides a possible mechanism to explain the observed pinning effects as claim by Pardini, Singh, Katanin and Sushkov.

Spatially Anisotropic Heisenberg Models

- lacksquare Phase transition induced by dimerization as one increases J'
- An unconventional phase transition other than the theoretically predicted O(3) class! (S. Wenzel et al., RPL, 2008)
- $\nu = 0.689(5)$ v.s. $\nu = 0.7112(5)$ (Campostrini et al., PRB 2002)

An unconventional Phase Transition?

- $\nu = 0.689(5)$ instead of the O(3) value $\nu = 0.7112(5)$ (S. Wenzel et al., RPL, 2008)
- **D**ata collapse $\mathcal{O}_L(a/a_c) = (1 + cL^{-\omega})g((a/a_c 1)L^{1/\nu} + dL^{-\phi/\nu})$:

Several efforts have been devoted to understand this issue, but puzzle remains.

The Heisenberg Models

$$H = J \sum_{\langle xy \rangle} \vec{S}_x \cdot \vec{S}_y , J > 0.$$

- Antiferromagnetic alignment of spins is prefered → Heisenberg model on the square lattice indeed is the correct model to describe the properties of undoped cuprates
- Heisenberg-type models are important and interesting because of their relevance to real materials
- Spontaneous Symmetry Breaking (SSB): $SU(2)_s \rightarrow U(1)_s$
- Goldstone's theorem : 2 massless excitations → magnons

Antiferromagnetism in Real Materials at Low Doping

Keimeret et al. PRB 1992 :

- Divergent magnetic correlation length ξ is a clear signal for massless excitation.
- Magnons dominate low-energy dynamics of lightly doped cuprates.

Effective Field Theory on One Slide

Consider a system with the spontaneous symmetry breaking pattern: $G \to H$, where H is the unbroken subgroup of G. Let $n = \dim G$ - $\dim H$,

- \blacksquare The low-energy physics of the system is governed by n massless Goldstone bosons.
- The full effective Lagrangian is systematically expressed in term of small parameters.
- In particular, the resulting effective Lagrangian must respect all the symmetries of the underlying physics system.
- The dynamics of the system is determined by the numerical values of the low-energy constants appearing in the effective Lagrangian.
 - The effective field theory is universal.
 - The dynamics is determined by the material-specific low-enrgy constants.

- **●** Chiral Perturbation Theory for QCD : $SU(2)_R \times SU(2)_L \rightarrow SU(2)_V$.
 - 3 Golstone bosons : 3 pions.
 - Small parameters: momentum p/Λ_χ and m_π/Λ_χ .
 - Low-energy constants : F_{π} , $\langle \bar{\psi}\psi \rangle$

Magnon Chiral Perturbation Theory

Spontaneous symmetry breaking : $SU(2)_s \rightarrow U(1)_s$.

Two Goldstone bosons (magnons) described by

$$\vec{e}(x) = (e_1(x), e_2(x), e_3(x)) \in S^2 = SU(2)_s/U(1)_s$$

with $x = (x_1, x_2, t)$.

Low-energy effective Lagrangian ^a:

$$\mathcal{L} = \frac{\rho_s}{2} (\partial_i \vec{e} \cdot \partial_i \vec{e} + \frac{1}{c^2} \partial_t \vec{e} \cdot \partial_t \vec{e}) + \cdots$$

 ρ_s : spin stiffness, c: spin wave velocity.

Since the low-energy dynamics is completely determined by the numerical values of the corresponding low-energy parameters, it will be of great interest and importance to calculate these low-energy parameters accurately.

^aChakravarty, Halperin, and Nelson, PRB (1989), Hasenfratz and Niedermayer, Phys. Lett. B (1991).

Monte Carlo method

- Methods of studying the properties of antiferromagnets: spin wave theory, series expansion, DMRG, quantum Monte Carlo...
- Monte Carlo is one non-perturbative and exact method
- Given a Hamiltonian H,

$$< A > = \frac{1}{Z} \mathrm{Tr} \left(A e^{-\beta H} \right), \quad Z = \mathrm{Tr} \left(e^{-\beta H} \right)$$

$$Z = \sum_{a} \sum_{n=0}^{\infty} \frac{\beta^n}{n!} < a | (-H)^n | a >$$

- Each term in the summation of Z is called the Boltzmann weight of the configuration |a>.
- Generating (sampling) the configurations according to their Boltzmann weight.

Monte Carlo method

- Generating (sampling) the configurations according to their Boltzmann weight:
 - Detailed Balance
 - Egordicity
- Local update: Heat bath, Metropolis... → critical slowing down, say, a very long autocorrelation time
- Global update: Cluster algorithms... → no critical slowing down
- Existing Monte Calro algorithms for simulating quantum spin sysetms: Loop, SSE, Worm...

Cluster algorithms

For each cluster, 0.5 probability to flip the spins along this cluster

Monte Carlo method

- Monte Carlo is a very powerful first principles non-perturbative method for study strongly correlated systems
- Sign problem on geometrically frustrated lattice!

Simulations and Observables

- We use a loop algorithm to simulate the quantum Heisenberg model.
- Staggered susceptibility χ_s and uniform susceptibility χ_u :

$$\chi_s = \frac{1}{L_1 L_2} \int_0^{\beta} dt \, \frac{1}{Z} \text{Tr}[M_s^3(0) M_s^3(t) \exp(-\beta H)],$$

$$\chi_u = \frac{1}{L_1 L_2} \int_0^{\beta} dt \, \frac{1}{Z} \text{Tr}[M^3(0) M^3(t) \exp(-\beta H)].$$

 β : inverse temperature, L_i : spatial box size in the x_i -direction,

 $Z = \text{Tr} \exp(-\beta H)$: partition function,

 $\vec{M}_s = \sum_x (-1)^x \vec{S}_x$: staggered magnetization (order parameter).

 $\vec{M} = \sum_x \vec{S}_x$: uniform magnetization.

Both χ_s and χ_u can be measured very efficiently with loop algorithm.

Simulations and Observables

The cubical regime : $\beta c \approx L^{a}$

$$\chi_s = \frac{\mathcal{M}_s^2 L^2 \beta}{3} \left\{ 1 + 2 \frac{c}{\rho_s L l} \beta_1(l) + \left(\frac{c}{\rho_s L l} \right)^2 \left[\beta_1(l)^2 + 3\beta_2(l) \right] + \dots \right\},$$

$$\chi_u = \frac{2\rho_s}{3c^2} \left\{ 1 + \frac{1}{3} \frac{c}{\rho_s L l} \widetilde{\beta}_1(l) + \frac{1}{3} \left(\frac{c}{\rho_s L l} \right)^2 \left[\widetilde{\beta}_2(l) - \frac{1}{3} \widetilde{\beta}_1(l)^2 - 6\psi(l) \right] + \dots \right\}.$$

 \mathcal{M}_s : staggered magnetization density per unit area.

 $\beta_i(l)$, $\widetilde{\beta}_i(l)$, $\psi(l)$: shape coefficients of the space-time box depending on $l=(\frac{\beta c}{L})^{1/3}$.

^aHasenfratz and Niedermayer, Z. Phys. B (1993).

Extraction of the Low-Energy Parameters

- ρ_s and c are strongly correlated. Hence they cannot be determined very precisely by fitting the data to their theoretical predictions: $\rho_s = 1.84(4)J$, c = 1.68(1)Ja.
- It will be desirable to measure one of these low-energy parameters by another method.
- \blacksquare We will focus on the low-energy parameter c.
- Conventionally, c can be determined by $\chi = \rho/c^2$. Here χ and ρ are the bulk values of susceptibility and spin stiffness, respectively.
- **Proof of Section 2.2** Extrapolations of finite volume data of χ and ρ to their bulk values will introduce systematic errors as well.
- \blacksquare Therefore it will be important to determine c using a more direct method.
- Motivated by the cubical regime, we propose that c can be calculated by L/β , here L and β are the box size and inverse temperature so that the spatial and temporal winding number squareds take the same values in the Monte Carlo simulations. (FJJ, PRB 2011)

Determining c using the squares of winding numbers

■ The c for quantum XY model calculated from the squares of spatial and temporal winding numbers is given by c=1.1348(5)Ja

Determining c from chiral fits of χ_{11} and χ

- A simultaneous fit of χ_{11} , χ (and ρ) obtained in the cubical regime to their finite-lattice and -temperature predictions (a constant) from magnon chiral perturbation theory leads to $\mathcal{M}=0.43561(1)/a^2$, $\rho=0.26974(5)J$ and c=1.1347(2)Ja
- The c=1.1347(2)Ja calculated from chiral fits agree excellently with the c=1.1348(5)Ja obtained using the squares of winding numbers

Low-Energy Parameters for Quantum Antiferromagnets

- After verifying the validity of the method of calculating c using the squares of (temporal and spatial) winding numbers, we turn to calculating the low-energy parameters for quantum antiferromagnets.
- The numerical value for c of quantum antiferromagnets are determined with very high precision: c=1.6586(3)Ja

Low-Energy Parameters for Quantum Antiferromagnets

Using c = 1.6586(3)Ja the numerical values for \mathcal{M}_s and ρ_s are calculated to unprecedented numerical accuracy (FJJ and Wiese, PRB 2011):

$$\mathcal{M}_s = 0.37043(1)/a^2, \quad \rho_s = 0.18081(11)J$$

Quantum Antiferromagnets on the Honeycomb Lattice

- Quantum antiferromagnets on the honeycomb lattice
 - InCu $_{2/3}$ V $_{1/3}$ O $_3$ (spin-1/2), Bi $_4$ Mn $_4$ O $_{12}$ (NO $_3$) (spin-3/2), Na $_{1/3}$ CoO $_2$ ·yH $_2$ O (spin-1/2),....

Quantum Antiferromagnets on the Honeycomb Lattice

 $\mathcal{M}_s = 0.26882(3), \quad \rho_s = 0.1012(2)J, \quad c = 1.2906(8)Ja$

Calculations on the Cylindrical Regime

- ullet The results presented so far are done on the cubical regime: $eta c \sim L$.
- Finite lattice expression from magnon choral perturbation theory for χ_s at very low temperature (cylindrical regime, $\beta c \gg L$) is available as well:

$$\chi_s = \frac{2}{3} \frac{\mathcal{M}_s^2 \rho_s L^4}{c^2} \left(1 + 3a \frac{c}{\rho_s L} + \dots \right)$$

- $m{P}$ \mathcal{M}_s and ho_s can also be calculated in the cylindrical regime.
- An analysis on the cylindrical regime provides a great opportunity to examine the robustness and predictive power of magnon chiral perturbation theory.

Calculations on the Cylindrical Regime

A fit of χ_s data at very low temperature to their theoretical prediction leads to (FJJ and Wiese, PRB 2011)

$$\mathcal{M}_s = 0.30746(4)/a^2, \ \rho_s = 0.18081(11)J,$$

which agrees quantitatively with our earlier results obtained in the cubical regime.

Conclusions

- (Quantum) Heisenberg-type models are interesting and important:
 - Relevance to real materials.
 - Suitable for exploring new ideas.
 - Even today, new discoveries in experiments might be explained by these (simple) models.
- Low-energy dynamics of quantum antiferromagnets are completely determined by the numerical values of the corresponding low-energy parameters.
- ullet We propose that c can be calculated from the squares of winding numbers.
- Verify our proposal by simulating the Quantum XY models.
- The numerical values for the low-energy parameters of the quantum antiferromagnets are determined with unprecedented numerical accuracy:

$$\mathcal{M}_s = 0.37043(1)/a^2$$
, $\rho_s = 0.18081(11)J$, $c = 1.6585(3)Ja$.

Conclusions

The consistence between the values of \mathcal{M}_s obtained in the cubical and cylindrical regimes demonstrates the robustness of magnon chiral perturbation theory in understanding the low-energy dynamics of quantum antiferromagnets.