SEARCHING FOR THE ORIGIN OF ACCELERATING UNIVERSE

Chung-Yuan Christian University (中原大學) March.03.2009

Seokcheon (sky) Lee (李碩天)

Institute of Physics, Academia Sinica LeCosPA, NTU

OUTLINE

- ABC of Cosmology
- © Evidences of an Accelerating Universe
- Standard Cosmology (Background Evolution)
- Dark Energy vs. Modified Gravity
- Ouality and Discrepancies between DE and MG
- Perturbations (Observables)
- Summary

3

ABC OF COSMOLOGY

1.Hot Big Bang
Model (NASA)

2.ModernCosmology (byS.Dodelson)

ABC OF COSMOLOGY

Friedman equations | Modification?

acceleration __

$$H^2 \equiv \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3} \sum_i \rho_i - \frac{k}{a^2} + \frac{\Lambda}{3}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi \bar{G}}{3} \sum_{i} (\rho_i + 3p_i) + \frac{\Lambda}{3}$$

Critical density and density contrasts

$$\rho_c = \frac{3H^2}{8\pi G}, \quad \rho_{\Lambda} = \frac{\Lambda}{8\pi G}$$

$$\Omega_i = \frac{\rho_i}{\rho_c}, \quad \Omega_{\Lambda} = \frac{\rho_{\Lambda}}{\rho_c}$$

Curvature

$$\frac{k}{a^2} = H^2(\sum_i \Omega_i + \Omega_{\Lambda} - 1) \equiv H^2(\Omega_M + \Omega_{\Lambda} - 1)$$

Very small (negligible)

EOS (equation of state) (sorry for typo! P = w*rho)

$$\rho \equiv \omega P, \quad \omega : \text{ equation of state (eos)}, \quad \omega_m = 0 : \text{matter}, \quad \omega_r = \frac{1}{3} : \text{radiation}$$

$$(\rho + 3P) = (1 + 3\omega)\rho > 0 \text{ for matter and radiation}$$

ACCELERATING UNIVERSE

BACKGROUND EVOLUTION

Luminosity Distance (For students, arXiv:astro-ph/9905116)

$$\begin{split} d_L &= (1+z)|\Omega_k|^{-1/2} \left\{ \begin{array}{ll} \sinh{(|\Omega_k|^{1/2}I)} & \text{if} \quad \Omega_k > 0 \\ |\Omega_k|^{1/2}I & \text{if} \quad \Omega_k = 0 \\ \sin{(|\Omega_k|^{1/2}I)} & \text{if} \quad \Omega_k < 0 \end{array} \right. \\ I(z) &= \int_0^z \frac{dz'}{H(z')} \\ H(z) &= H_0 \sqrt{(1+z)^3 \Omega_m^{(0)} + (1+z)^2 \Omega_k^{(0)} + f(z) \Omega_x^{(0)}} \\ f(z) &= \exp\left(3 \int_0^z dz' \frac{(1+\omega_x(z'))}{(1+z')}\right) \end{split}$$

7

DARK ENERGY VS. MODIFIED GRAVITY

Bad Management
(original background)
or Someone was here
(source of disturbance)?

DARK ENERGY VS. MODIFIED GRAVITY

$$\delta G_{\mu\nu} + R_{\mu\nu} - \frac{1}{2} g_{\mu\nu} R = 8\pi G T_{\mu\nu}^{\text{fluid}} + 8\pi G T_{\mu\nu}^{\text{DE}}$$

Requirements from the observations

DE : $\omega_{\rm DE} \simeq -1$ and $\Omega_{\rm DE} \simeq 0.7$

MG: well-defined infrared limit obeying causality

$$: \zeta_{\rm LW}^{MG} = \zeta_{\rm LW}^{GR}$$

Still require Dark Matter in both theories except TeVeS

DARK ENERGY MODELS I

© Cosmological constant

Quintessence

Quintessence Potential	Reference	ω	
$V_0 \exp(-\lambda \phi)$	Ratra & Peebles (1988), Wetterich (1988),	$\omega = \lambda^2/3 - 1$	
	Ferreira & Joyce (1998)	$\lambda > 5.5 - 4.5, \Omega < 0.1 - 0.13$	
V_0/ϕ^{α} , $\alpha > 0$	Ratra & Peebles (1988)	$\omega > -0.7$	
$m^2 \phi^2, \lambda \phi^4$	Frieman et al (1995)	PNGB $M^4[\cos(\phi/f) + 1]$	
$V_0(\exp M_p/\phi - 1)$	Zlatev, Wang & Steinhardt (1999)	$\Omega_m \geq 0.2, \omega < -0.8$	
$V_0 \exp(\lambda \phi^2)/\phi^{\alpha}$	Brax & Martin (1999,2000)	$\alpha \geq 11, \omega \simeq -0.82$	
$V_0(\cosh\lambda\phi-1)^p$	Sahni & Wang (2000)	$p<1/2,\omega<-1/3$	
$V_0 \sinh^{-\alpha}(\lambda \phi)$	Sahni & Starobinsky (2000),	early time ; inverse power	
	Ureña-López & Matos (2000)	late time : exponential	
$V_0(e^{\alpha\kappa\phi}+e^{\beta\kappa\phi})$	Barreiro, Copeland & Nunes (2000)	$\alpha > 5.5, \beta < 0.8, \omega < -0.8$	
$V_0[(\phi - B)^{\alpha} + A]e^{-\lambda\phi}$	Albrecht & Skordis (2000)	$\omega \sim -1$	
$V_0 \exp[\lambda(\phi/M_p)^2]$	Lee, Olive, & Pospelov (2004)	$\omega \sim -1$	
$V_0 \cosh [\lambda \phi/M_B]$		$\omega \sim -1$	

DE II: QUARTESSENCE

(UNIFICATION OF DM & DE)

Model	ρ	Ref
Modified polytropic Cardassian	$[Aa^{3q(\nu-1)} + Ba^{-3q}]^{\frac{1}{q}}$	[10]
New generalized Chaplygin gas	Same	[11]
$\Lambda \mathrm{CDM}$	$q = 1, \nu = 1$	[12]
Cardassian expansion	q = 1	[13]
Polytropic Cardassian	$\nu = 1$	[11]
generalized Chaplygin gas	$\nu = 2$	[14]
variable Chaplygin gas	q = 2	[15]
Chaplygin gas	$\nu = 2, q = 1$	[16]
Modified Chaplygin gas	$(A + Ba^{-3})^q$	[17]
Exponential Cardassian	$(Aa^{-3} + B)\exp\left[\left(\frac{qB}{Aa^{-3} + B}\right)^{\nu}\right]$	[18]
Extra dimension inspired	$Aa^{-3}[1 + \exp(-Ba^{-3})]^q$	[19]
Phenomenological approach	$A(1 + Ba^{-1})^{q-\nu}[1 + Ca^{-\nu}]$	[20]
Leaking gravity (DGP)	$Aa^{-3} + B - \sqrt{B^2 + ABa^{-3}}$	[21]

MARCH.03RD, 2009

QUARTESSENCE II

- [10] K. Freese, Nucl. Phys. Proc. Suppl. 124, 50. 2003 [hep-ph/0208264].
- [11] X. Zhang, JCAP 0601, 003. 2006 [0411221].
- [12] T. Koivisto, H. Kurki-Suonio, and F. Ravndal, Phys. Rev. D 71, 064027. 2005. [astro-ph/0409163]
- [13] K. Freese and M. Lewis, Phys. Lett. B540, 1. 2002 [astro-ph/0201229].
- [14] M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev. D66, 043507, 2002 [gr-qc/0202064].
- [15] Z.-K. Guo and Y.-Z. Zhang, [astro-ph/0506091].
- [16] A. Y. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. B511, 265 2001 [gr-qc/0103004].
- [17] L. P. Chimento, Phys. Rev. D69, 123517 2004 [astro-ph/0311613].
- [18] D.-J. Liu, C.-B. Sun, and X.-Z. Li, Phys. Lett. B634, 442. 2006 [astro-ph/0512355].
- [19] Y.-G. Gong, X.-M. Chen, and C.-K. Duan, Mod. Phys. Lett. A19, 1933. 2004 [astro-ph/0404202].
- [20] V. F. Cardone, A. Troisi, and S. Capozziello, Phys. Rev. D69, 083517. 2004 [astro-ph/0402228].
- [21] C. Deffayet, G. R. Dvali, and G. Gabadadze, Phys. Rev. D65, 044023. 2002 [astro-ph/0105068].

MARCH.03rd. 2009 Sky Lee. CYCU

12

Modified Gravity I

A broad class of alternative gravity theories

Ψ: matter fields

φ : a scalar field

$$S = \int d^n x \sqrt{-g} \left[\frac{1}{2} f(R, \phi) + \mathcal{L}_{\phi}(g_{\mu\nu}, \phi, \partial \phi) + \mathcal{L}_{m}(g_{\mu\nu}, \Psi) \right]$$

$$\mathcal{L}_{\phi} = -\frac{M^2}{2}\omega(\phi)(\partial\phi)^2 - V(\phi)$$

$$(\partial \phi)^2 = \nabla_{\mu} \phi \nabla^{\mu} \phi. \ F(R, \phi) = \partial f(R, \phi) / \partial R.$$

Modified Gravity II

	1		4		^	_
Generalized gravity	$\frac{1}{2}f(R,\phi)$	$\mathcal{L}_{\phi}(\phi,\partial\phi)$	$p(R,\phi)$	φ	$V(\varphi)$	Ref
Nonlinear gravity	$\frac{1}{2}f(R)$	$\omega = 0, V = 0$	p = F(R)	$\sqrt{\frac{3}{2}} \ln F$	$\frac{FR-f}{2F^2}$	[1]
R^2 -gravity	$\frac{1}{2}(R + \alpha R^2)$	$\omega = 0, V = 0$	$p = 1 + 2\alpha R$	$\sqrt{\frac{3}{2}} \ln F$	$\frac{FR-f}{2F^2}$	[2]
1/R-gravity	$\frac{1}{2}(R-\mu^4/R)$	$\omega = 0, \ V = 0$	$p = 1 + \mu^4 / R^2$	$\sqrt{\frac{3}{2}} \ln F$	$\frac{FR-f}{2F^2}$	[3]
Scalar-tensor theory	$\frac{1}{2}F(\phi)R$	$\omega(\phi), V(\phi)$	$p = F(\phi)$	$\int \sqrt{\frac{\omega}{F} + \frac{3}{2} \frac{F'^2}{F^2}} d\phi$	$\frac{V}{F^2}$	[4]
Brans-Dicke theory	ϕR	$\omega(\phi) = 2\frac{\omega}{\phi}, \ V = 0$	$p = \phi$	$\int \sqrt{\frac{\omega}{F} + \frac{3}{2} \frac{F'^2}{F^2}} d\phi$	0	[5]
Dilaton	$\frac{1}{2}e^{-\phi}R$	$\omega(\phi) = e^{-\phi}, \ V = 0$	$p = e^{-\phi}$	$\frac{5}{2}\phi$	0	[6]
NMC scalar	$\frac{1}{2}(1+\xi\phi^2)R$	$\omega = 1, V(\phi)$	$p = 1 + \xi \phi^2$	$\int \frac{\sqrt{1+\xi(6\xi-1)\phi^2}}{1-\xi\phi^2} d\phi$	$\frac{V}{1-\xi\phi^2}$	[7]
$CC (\xi = \frac{1}{6})$	$\frac{1}{2}(1+\frac{1}{6}\phi^2)R$	$\omega = 1, V(\phi)$	$p = 1 + \frac{1}{6}\phi^2$	$\sqrt{6} \tanh^{-1} \frac{\phi}{\sqrt{6}}$	$\frac{V}{1-\frac{1}{6}\phi^2}$	[8]
Induced Gravity	$\frac{1}{2}\epsilon\phi^2R$	$\omega = 1, V(\phi)$	$p = \epsilon \phi^2$	$\sqrt{6 + \frac{1}{\epsilon}} \ln \phi$	$\frac{V}{\epsilon \phi^2}$	[9]
GR with a scalar	$\frac{1}{2}R$	$\omega = 1, V(\phi)$	p = 1	φ	V	

DUALITY OF DE AND MG

Friedman equations

$$H^2 - \delta H = \frac{8\pi G}{3} \rho_m$$
 $H^2 \equiv \frac{8\pi G}{3} \left(\rho_m + \rho_{\rm DE} \right)$
 $\omega_{\rm DE} = -1 - \frac{1}{3} \frac{d \ln \delta H}{d \ln a}$

DISCREPANCIES DE AND MG

Perturbational Evolutions

Table 2. Comparisons of H(z) and evolution of the linear perturbation $\delta_{\mathbf{m}}$ with the effective gravitational constant G_{eff} in each model. In metric and Palatini formalism the perturbation calculations are held for subhorizon scale (i.e. $\frac{k}{a} > H$). Where $Q = -\frac{2F_{,R}}{F} \frac{k^2}{a^2}$ and $F'(T) = \frac{\partial F(T)}{\partial T}$.

	$\frac{H(z)}{H_0}$	$\delta_{\mathbf{m}}$	$G_{ t eff}$
BD	$\sqrt{\frac{\delta H}{H_0^2} + \frac{\phi_0}{\phi} \Omega_{\mathbf{m}}^{(0)} (1+z)^3}$	$\ddot{\delta} + 2H\dot{\delta} - 4\pi G_{\text{eff}} \rho \delta = 0$	$\left(\frac{2\omega_{\mathrm{BD}}+4}{2\omega_{\mathrm{BD}}+3}\right)\frac{1}{\phi_{\mathrm{O}}}$
DGP	$\frac{1}{2} \left(\frac{1}{r_0 H_0} + \sqrt{\left(\frac{1}{r_0 H_0} \right)^2 + 4 \Omega_{\rm m}^{(0)} (1+z)^3} \right)$	$\ddot{\delta} + 2H\dot{\delta} - 4\pi G_{\rm eff} \rho \delta = 0$	$G\left(1 + \frac{1}{3[1 + 2r_0H\omega_{\mathrm{DE}}]}\right)$
Metric $f(R)$	$\sqrt{\frac{\delta H}{H_0^2} + \Omega_{\rm m}^{(0)} (1+z)^3}$	$\ddot{\delta} + 2H\dot{\delta} - 4\pi G_{\text{eff}} \rho \delta = 0$	$\tfrac{2(1-2Q)}{2-3Q}\tfrac{G}{F}$
Palatini $f(R)$	$\sqrt{\frac{\delta H}{H_0^2} + \Omega_{\mathbf{m}}^{(0)} (1+z)^3}$	$\ddot{\delta} + H\dot{\delta} - 4\pi G_{\rm eff} \rho \delta = 0$	$-\tfrac{1}{4\pi} \tfrac{F'}{2F+3F'\rho} \tfrac{k^2}{a^2}$

PERTURBATIONS

To get a well defined infrared limit, time and space dependence of perturbations must be factorized for long wavelengths.

$$ds^{2} = a^{2}(\tau) \left(-(1+2\Phi)d\tau^{2} + (1-2\Psi)d\vec{x}^{2} \right)$$

Due to consistency (to RW metric) condition

$$\frac{1}{a^2} \frac{\partial}{\partial \tau} \left(\frac{a^2 \Psi}{\mathcal{H}} \right) + \Phi - \Psi = \left[\frac{1}{a} \frac{\partial}{\partial \tau} \left(\frac{a}{\mathcal{H}} \right) + \mathcal{O}(k^2) \right] \zeta$$

$$\Phi(\vec{k},t) = F(a)\zeta(\vec{k}) + \mathcal{O}(k^2\zeta)$$

$$\Psi(\vec{k},t) = \gamma(\vec{k},a)\Phi(\vec{k},t) + \mathcal{O}(k^2\zeta)$$

Two categories: $\gamma(\vec{k}, a)$ or $\gamma(a)$

Perturbation Equations

Two categories: $\gamma(a)$ or $\gamma(\vec{k}, a)$

Scale independent MG : $\gamma(a) \equiv 1 + \beta a^s$, $G_{\Psi} = \gamma G_{\Phi}$

Scale dependent MG : $\gamma(\vec{k},a) \equiv \frac{1+\beta_1k^2a^s}{1+\beta_2k^2a^s}$, $\frac{G_{\Phi}}{G} = \frac{1+\alpha_1k^2a^s}{1+\alpha_2k^2a^s}$

density fluctuations	$\dot{\delta} \simeq -(1+\omega)\frac{\theta}{a} - 3H\frac{\delta P}{\delta \rho}\delta \rho + 3H\omega\delta$	$\dot{\delta}_{MG} \simeq -\frac{\theta_{MG}}{a}$
velocity	$\dot{\theta} = -H(1-3\omega)\theta - \frac{\dot{\omega}}{1+\omega}\theta + \left(\frac{\delta P/\delta\rho}{1+\omega}\delta - \sigma + \Phi\right)\frac{k^2}{a}$	$\theta_{MG} = -H\theta_{MG} + \frac{k^2 \Phi}{a}$
Poisson equation	$k^2\Phi \simeq -4\pi Ga^2\rho\delta$	$k^2\Phi \simeq -4\pi G_{eff}a^2\rho\delta$
Anisotropy	$k^2(\Phi - \Psi) \simeq 12\pi Ga^2(1 + \omega)\rho\sigma$	$k^2(\Phi + \Psi) \simeq -8\pi \tilde{G}_{eff} a^2 \rho \delta_{MG}$

PERTURBATION QUANTITIES

PERTURBATION QUANTITIES (CONTINUED)

OBSERVABLES

Observables

Matter Power Spectra	$P_{\delta} = \frac{k^4}{(4\pi G)^2 a^4 \rho^2} P_{\Psi}$	$P_{\delta,MG} = \frac{k^4}{(8\pi G_{eff})^2 a^4 \rho_{MG}^2} P_{\Psi + \Phi}$
Velocity Spectra	$P_v = \frac{f^2 a^2 H^2}{k^2} P_\delta$	$P_{v,MG} = \frac{f^2 a^2 H^2}{k^2} P_{\delta,MG}$
ISW	$C_l^{ISW} = \int P_{\dot{\Phi} + \dot{\Psi}}(k, \chi) a^2 \frac{d\chi}{\chi^2}$	
Weak Lensing	$P_l^{\kappa} = \int P_{\Phi+\Psi}(k,\chi) W^2(\chi) \frac{l^4}{\chi^4} d\chi$	

- © Evidences (?)
- : (1) High peculiar velocity (~ 400km/s) [0809.4041]
 - (2) Bright High z SNe [0811.2802]

- The current Universe is under accelerating expansion.
- Either(/Both) Dark Energy or(/and) Modified Gravity may explain the accelerating universe.
- Oark Enegy models and Modified Gravity theories can be degenerated in the background evolutions.
- Accurate measurements for the background evolutions to constraint the parameters of theories.
- © Compare with perturbational observables.
- Probably we can distinguish the origin of acceleration from both background and perturbation evolutions.