The Search for Primordial Gravitational Waves

Chao-Lin Kuo
Stanford University
Department of Physics and SLAC

State of Cosmology

2000-2008

SN: $\Omega_{\rm M}$ - $\Omega_{\Lambda}/2$

CMB: $\Omega_{\rm M} + \Omega_{\Lambda}$

LSS/Clusters: $\Omega_{\rm M}$

Flat geometry

 $\Omega_{\rm M}$ (dark matter) ~ 22%

 $\Omega_{\rm B}$ (baryon) ~ 4%

 Ω_{Λ} (dark energy) ~ 74%

Cosmological parameters are well determined: what's next?

Model: lcdm+sz+lens+tens

Model: lcdm+sz+lens+tens			
Data: wmap7			
$10^2 \Omega_b h^2$	$2.313^{+0.073}_{-0.072}$	$1-n_s$	$0.018^{+0.019}_{-0.020}$
$1-n_s$	$-0.025 < 1 - n_s < 0.054 \; (95\% \; \mathrm{CL})$	$A_{\rm BAO}(z=0.35)$	0.445 ± 0.024
C_{220}	5766 ± 40	$d_A(z_{ m eq})$	$14329^{+164}_{-162} \mathrm{\ Mpc}$
$d_A(z_*)$	$14166^{+166}_{-164} \mathrm{Mpc}$	$\Delta^2_{\mathcal{R}}$	$(2.28 \pm 0.15) \times 10^{-9}$
h	0.735 ± 0.032	H_0	$73.5 \pm 3.2~\mathrm{km/s/Mpc}$
$k_{ m eq}$	0.00949 ± 0.00044	$\ell_{ m eq}$	$134.3^{+4.8}_{-4.9}$
ℓ_*	$302.08^{+0.84}_{-0.83}$	$n_{ m s}$	$0.982^{+0.020}_{-0.019}$
Ω_b	0.0430 ± 0.0030	$\Omega_b h^2$	$0.02313^{+0.00073}_{-0.00072}$
Ω_c	0.200 ± 0.028	$\Omega_c h^2$	$0.1068^{+0.0062}_{-0.0063}$
Ω_{Λ}	0.757 ± 0.031	Ω_m	0.243 ± 0.031
$\Omega_m h^2$	0.1299 ± 0.0060	r	$<0.36~(95\%~{\rm CL})$
$r_{ m hor}(z_{ m dec})$	$287.5 \pm 3.4 \; \mathrm{Mpc}$	$r_s(z_d)$	$153.8 \pm 1.7 \; \mathrm{Mpc}$
$r_s(z_d)/D_v(z=0.2)$	$0.1988^{+0.0091}_{-0.0089}$	$r_s(z_d)/D_v(z=0.35)$	$0.1188^{+0.0048}_{-0.0047}$
$r_s(z_*)$	$147.3 \pm 1.6 \; \mathrm{Mpc}$	R	1.702 ± 0.023
σ_8	0.787 ± 0.033	$A_{ m SZ}$	$1.01^{+0.65}_{-0.67}$
t_0	$13.63 \pm 0.16 \text{ Gyr}$	au	0.091 ± 0.015
$ heta_*$	0.010400 ± 0.000029	$ heta_*$	0.5959 ± 0.0016 $^{\circ}$
t_{st}	$382941^{+5977}_{-5905} \text{ yr}$	$z_{ m dec}$	1087.3 ± 1.3
z_d	1021.1 ± 1.5	$z_{ m eq}$	3112^{+143}_{-145}
$z_{ m reion}$	10.5 ± 1.2	z_*	1089.8 ± 1.2

Primordial Gravitational Waves: Tool for studying Inflation

- Perhaps the *only* way to see through the opaque wall of the CMB.
- The Inflationary energy scale (~10¹⁶ GeV) is too large to be studied by particle colliders.
- Other predictions by Inflation, such as Gaussianity, ~scale-invariance, and adiabatic perturbations, have been verified very accurately
- The radiation mechanism: quantum field effect near the horizon (similar to the Hawking radiation) a Bona fide quantum gravity effect!

Task Force on CMB research July, 2006

Freq. (Hz)

Generation of Perturbations

- QFT in curved spacetime (during Inflation)
- Same mechanism for scalar and tensor perturbations
- Two interesting regimes: deep inside the horizon (vacuum fluctuations) and superhorizon (frozen)

$$\mathcal{R}_{q} = \frac{\left(-\frac{\boldsymbol{H}}{\boldsymbol{\bar{\phi}}}\right) \cdot \sqrt{-\pi\tau}}{2(2\pi)^{\frac{3}{2}}a(t)} e^{i\pi\left(\frac{\nu}{2} + \frac{1}{4}\right)} H_{\nu}^{(1)}(-q\tau)$$

$$\mathcal{D}_{q} = \frac{\sqrt{16\pi G} \cdot \sqrt{-\pi \tau}}{2(2\pi)^{\frac{3}{2}} a(t)} e^{i\pi \left(\frac{\mu}{2} + \frac{1}{4}\right)} H_{\mu}^{(1)}(-q\tau)$$

Cosmic Microwave Background

The intrinsic significance of the CMB

- *Its origin:* quantum gravity process in the very early universe (one of the very few ways to study QG)
- *Its effects:* seeds for gravitational instability, which create everything you see today (galaxies, stars, planets, animals, ...)

CMB observational milestones

- Accidental discovery: Penzias and Wilson, 1965, recognized to be "cosmic" by R. Dicke
- The detection of dipole anisotropy (1970s)
- COBE/FIRAS measures its spectrum to be a blackbody (1990)
- COBE/DMR discovered anisotropy (1992)
- Boomerang discovered that the universe is flat (2000) (a result later confirmed by MAXIMA and DASI)
- DASI discovered polarization (2002)
- ??? discovers the imprints from gravitational waves (20xx)

Causal seeds versus acausal seeds

FIG. 4. Angular power spectrum of temperature fluctuations generated by cosmic strings (dashed) and arising from a typical model of scale invariant primordial fluctuations (solid) in arbitrary units. The all-sky temperature maps are decomposed

- Acausal perturbations are sometimes known as coherent perturbations
- Although, this does not mean there is any spatial phase relation between different Fourier modes
- Incoherently generated perturbations, such as those by defects (strings etc.) cause a single broad peak in the CMB power spectrum

CMB temperature power spectrum, as of December 2011

Planck (launched in May 2009)

CMB is polarized. Why?

- Induced by radiation anisotropy throughThomson scattering
- Generated only at the ionized/neutral interface (completely ionized: no anisotropy; completely neutral: no electrons to scatter)

(Seljak& Zaldarriaga, 1997; Kamionkowski et al., 1997)

(Seljak& Zaldarriaga, 1997; Kamionkowski et al., 1997)

(Seljak& Zaldarriaga, 1997; Kamionkowski et al., 1997)

for an arbitrary circle on the sky

(Seljak& Zaldarriaga, 1997; Kamionkowski et al., 1997)

(Seljak& Zaldarriaga, 1997; Kamionkowski et al., 1997)

(Seljak& Zaldarriaga, 1997; Kamionkowski et al., 1997)

B-mode theorem

- Polarization fields can be linearly decomposed to E and B mode
- Linear, scalar perturbation cannot generate B-mode polarizations
- No cosmic variance

(Seljak & Zaldarriaga; Kamionkowski et al, 1997)

Just how likely is this signal detectable?

- \blacksquare Determined by the shape of Inflation potential $V(\phi)$
 - $lackbox{ }V(\phi)$ determines how ϕ evolves
 - Slow-roll inflation: ϕ roughly constant during inflation
 - Small quantities $\varepsilon \sim$ decay rate; $\eta \sim$ deceleration
- Tensor to scalar ratio: T/S=16ε
- Scalar spectral index: $n_S=1-4\epsilon+2\eta$
- Tensor spectral index: $n_T = -2\epsilon$
- Already, we know $n_S \neq 1$!!

Dash: WMAP7

Solid: WMAP7+SPT

Global experimental efforts searching for *B*-mode

- BICEP, BICEP2, Keck Array
- POLAR-1, POLAR Array
- ABS
- POLARBEAR
- QUIET-I, QUIET-II
- SPTpol, ACTpol
- Ballooning: SPIDER, EBEX
- Satellite: Planck

South Pole is an excellent site for CMB observation

- •High elevation, low temperature → low water vapor
- •Continuous observation for >9 months
- •Excellent infrastructure/support (NSF-Office of POLAR Program)

BICEP1/BICEP2/Keck Array (Caltech/Stanford/Harvard/UMN)

* All with small refractors (25cm); observing from the South Pole * Will likely reach T/S ~< 0.02 by 2013

90/150GHz 25/24 elements 2005-2008 Best limit on B-mode

150GHz
256 elements
Taking data for 1yr
5x survey speed than
BICEP1

150GHz 256x5 elements Deployed in 2010/11 cryogen free Dewars

New Detectors for the CN

The B-mode polarization

- * The gravity wave signal down to $r\sim0.02$ is likely reachable in the next 5 years (e.g. Keck Array, POLAR1, ...)
- * The prospect for lensing/de-lensing calls for big projects 100× the current speed

BICEP-BICEP2-Keck time line

- All with small refractors (25cm); observing from the South Pole
- •BICEP (2005-2007) currently provides the best limit on B-mode
- •BICEP2 (2009-) observing with x5 BICEP sensitivity
- •Keck Array (2010) observing, x5 **BICEP2** sensitivity
 - *Will likely reach T/S* ~< 0.02 by 2013

Lensing B-mode

B-mode theorem

- Polarization fields can be linearly decomposed to E and B mode
- Linear, scalar perturbation cannot generate B-mode polarizations

(Seljak & Zaldarriaga; Kamionkowski et al, 1997)

(Seljak& Zaldarriaga, 1997; Kamionkowski et al., 1997)

Lensing can generate B-mode

(Zaldarriaga & Seljak, 1999)

Unlensed pure *E*-mode

Lensing field

Lensed B-mode

Lensing *B*-mode measurements as of December 2011

- QUaD/BICEP (50~100 detectors) still miss the *B*-polarization by ~ 2 orders of magnitude.
- •To perform high S/N imaging of lensing B-polarization, one must increase the survey speed by 10^2 .

POLAR1 experiment

Lensing *B*-polarization is a LSS experiment

- Deep polarization measurements can significantly improve Planck+WFIRST/Euclid's constraints on $\{w, \Omega_k, \sum m_v\}$ etc.,
- If one assumes a prior of $w_0 = -1$, $w_a = 0$, $\Omega_k < 10^{-4} \rightarrow \text{lensing } B$ provides a constraint on $\sum m_v < 0.04 \text{ eV}$
- This will either
 - Detect a neutrino mass
 - Rule out inverted hierarchy

Lesgourgues and Pastor *Physics Reports*, 2006 *also* Astro-2010 Panel Reports

Lensing *B*-polarization is a LSS experiment

- Deep polarization measurements can significantly improve Planck+WFIRST/Euclid's constraints on $\{w, \Omega_k, \sum m_v\}$ etc.,
- If one assumes a prior of $w_0 = -1$, $w_a = 0$, $\Omega_k < 10^{-4} \rightarrow \text{lensing } B$ provides a constraint on $\sum m_v < 0.04 \text{ eV}$
- This will either
 - Detect a neutrino mass
 - Rule out inverted hierarchy

Lesgourgues and Pastor *Physics Reports*, 2006 *also* Astro-2010 Panel Reports

Summary

- The search for primordial gravity waves is among the most exciting quests in all of physics it studies the birth of the universe, and quantum gravity
- There is real hope for a detection in the next 3-5 years, through a intense global effort in CMB polarimetry
- In addition, lensing of the CMB provides opportunities in neutrino physics