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SM describes the experimental data so well, but we already 
have some discoveries that are not comparable with it. 

Several deviations between theoretical predictions and 
experimental data appear both in Standard Model of Particle 
Physics and Cosmology due to precision measurement. 

Nentrino masses, anomalous μ magnetic moment,…

Lithium problem, matter-antimatter asymmetry, dark matter 
dark energy, PAMALA/ATIC/FERMI ..…

Many scenarios beyond SM are proposed, including top-down 
and bottom-up approaches. 

Introduction



Neutrino oscillation experiments 
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Solar neutrinos: Experiments

Link to Solar neutrinos: Theory page.

Experimental results

The experimental research on solar neutrinos started on late
sixties with the experiment at Homestake. It employs a
radiochemical method, where a neutrino may induce a nuclear
reaction 

 
and the resulting argon nuclei are counted by their radioactive decay.

The three gallium experiments, SAGE, Gallex and GNO use a similar technique, using
the reaction 

Kamiokande and SuperKamiokande are water Cerenkov detectors looking mainly for
the elastic scattering process. The charged lepton is detected by its Cerenkov radiation.
These detectors can measure the energy and direction of the neutrino at real time.
Because of the angular resolution they can distinguish neutrinos coming from the Sun
from the background. 
SNO is also a Cerenkov detector, filled with heavy water. It can distinguish charged
current and neutral current reactions. Below CC refers to charged current reaction, NC
to neutral current reaction and ES is elastic scattering, as in SK. 

Experiment measured flux ratio exp/BP98
threshold

energy

Years
of

running

Homestake 2.56 ± 0.16 ± 0.16 0.33 ± 0.03 ± 0.05 0.814 MeV
1970-
1995

Kamiokande 2.80 ± 0.19 ± 0.33 0.54 ± 0.08 +0.10
-0.07 7.5 MeV

1986-
1995

SAGE 75 ± 7 ± 3 0.58 ± 0.06 ± 0.03 0.233 MeV
1990-
2006

Gallex 78 ± 6 ± 5 0.60 ± 0.06 ± 0.04 0.233 MeV
1991-
1996

Super-
Kamiokande

2.35 ± 0.02 ± 0.08
0.465 ± 0.005 +0.016

-

0.015 (BP00)

5.5 (6.5)
MeV

1996-

GNO 66 ± 10 ± 3 0.51 ± 0.08 ± 0.03 0.233 MeV 1998-

SNO

1.68 ± 0.06 ± +0.08 -

0.09 (CC) 

2.35 ± 0.22 ± 0.15
(ES) 

4.94 ± 0.21 +0.38
-0.34

(NC)

6.75 MeV 1999-
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• The nuclear chain reactions in the Sun 

• The atmospheric neutrinos from cosmic rays 
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Solar neutrinos: Theory

Link to Solar neutrino: Experiments page

Theoretical predictions

The nuclear reactions in the Sun generate a numerous amount of electron neutrinos. While the
total number of neutrinos can be calculated very accurately, their energy spectrum contains
more uncertainties. The following picture shows the principal energy producing reaction
chains: 

Below is shown the neutrino spectrum calculated by John Bahcall and Pinsonneault. 

The next table shows the predictions for the solar neutrino experiments: 

Experiment BP 00 BP 98 Bahcall 95 Turk-Chiéze Dar-Shaviv 95 Proffitt94

Chlorine 7.6 +1.3
-1.1 7.7 +1.2

-1.0 9.5 ± 1.4 6.4 ± 1.4 4.1 ± 1.2 8.9 ± 1.1

Kamiokande 5.05 (1.00 + +0.20
-0.16) 5.2 +1.0

-0.7 6.6 ± 1.1 4.4 ± 1.1 2.49 6.4 ± 0.9

Gallium 128 +9
-7 129 +8

-6 137 ± 8 122 ± 7 115 ± 6 136 ± 7

The contribution of different reaction chains is beautifully visualised in the picture below, 
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Atmospheric Neutrinos

Cosmic rays interact in the atmosphere to produce mainly pions and kaons. As these decay, a relative

large flux of neutrinos between  and  is produced. Around , where the

product of flux and neutrino charged-current interaction cross-section reaches a maximum, the neutrino

flux is about  [Gai90].

The decay sequence from pions is 

 

  (3.38)

   

This is also the dominant decay sequence from kaons with most of the other kaon decays producing
charged pions anyway. Supposing all the pions and muons decay we then expect to observe about two

muon-like (muon or anti-muon) neutrinos for each electron-like neutrino and the ratio  should be

close to the ratio .

However, the full picture is a bit more complicated (see for example [Gai90]):

above  the muon decay length is longer than the typical production height,

muon energy loss in the atmosphere implies that a  muon had about  at

production. But most 's originate from muon decays high in the atmosphere, which implies an

offset in the spectrum of the  ratio with respect to the  ratio,

the decay kinematics influence the energy spectra of the decay products and have to be taken into
account,
the geomagnetic field tends to prevent low energy cosmic rays from entering the atmosphere (this
is the so-called geomagnetic cutoff), but this effect depends on the location on the Earth and the
direction of the nuclei,
the cosmic ray flux varies with the solar cycle.

We see that the only practical way of taking into account all these effects is to make a detailed Monte-
Carlo simulation.

Still, uncertainties in the pion yield from interactions of cosmic rays with the atmosphere3.3, assumptions
about the primary cosmic ray spectrum and the treatment of the geomagnetic field lead to significant
differences in the absolute rates and the neutrino energy spectra between various simulations [Gai96a].
But luckily, all of these difficulties do not affect the ratio of muon-like to electron-like neutrinos which
is controlled by relatively well-known branching ratios and kinematics. And indeed the neutrino flavor
ratio is the same within 2 % for all the simulations considered in [Gai96b]. A theoretical error of 5 % is
usually assumed for the ratio.

νμ : νe = 2 : 1 



•
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by John Bahcall.

Go to Solar neutrinos: Experiments page.

Back to mainpage
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Experiment
measured

ratio

ratio of

ratios
mu ratio

Contained/

Sub GeV

Uncontained/

Multi GeV

IMB
0.36 ±
0.02 ±
0.02

0.54 ±
0.05 ±
0.07

1.03 ±
0.04

  

Kamiokande  
0.60 ±
0.06

0.94 ±
0.06

0.60 ± 0.06 
± 0.05

0.57 ± 0.08 ±
0.07

Soudan 2  
0.68 ±
0.11 ±
0.06

   

Fréjus
0.53 ±
0.15

0.99 ±
0.13 ±
0.08

 0.87 ± 0.15  

BUST(Baksan)  
0.85 ±
0.03 ±
0.05

1.13   

Nusex
0.52 ±
0.17

1.0 ± 0.3
0.87 ±
0.15

  

SuperKamiokande   (value)
0.658 ±
0.016 ±
0.035

0.702 +0.032
-

0.030 ± 0.101

MACRO   
0.73 ±
0.05 ±
0.12

  

L/E plot of SuperKamiokande:

 

Explanation of the data

The ratio refers to the ratio of electron-like (non-showering) events to muon-like



• Neutrino oscillation : 

Mass eigenstates and flavour eigenstates
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U : PMNS mixing  matrix 
Pontecorvo , Sov. Phys. 
JETP6,429(1958) , 33, 

549(1967)



 

• Current neutrino data





Neutrino angles 

A very good first approximation :

“Tri-bimaximal” ansatz of neutrino mixing matrix 

Harrison,Perkins & Scott, 2002

          A4 symmetry :  E. Ma ; G. Altarelli
T’ symmetry : Frampton ……
μ-τ symmetry, S4 , Δ(54),…... 



Among the ways to measure the neutrino masses, three ways 
are sensitive to the absolute scale : 0νββ decay , tritium β-
decay , and cosmology 
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Majorana Neutrino

If Lepton Number is Violated :  

Many realiztion :
(1)Seesaw mechanism:TypeI,II,III

                        (2)Radiative models : Zee, Babu,LQs,C.S. Chen,..
                (3)SUSY neutrino masses : R-parity violation

…….                                                  



Seesaw mechanism (Type I,III seesaw)

In the basis of (νL,νR) with mass matrix 

Replaced νR by 

Type-I: SM + 3 right-handed Majorana ν’s 
(Minkowski 77; Yanagida 79; Glashow 79; Gell-Mann, Ramond, Slanski 79; 

Mohapatra, Senjanovic 79)
                         Type-III:SM + 3 triplet fermions (Foot,Lew,He,Joshi 89)



Seesaw mechanism (Type II seesaw)

Δ : (1,3,2)



Radiative models

Geng, Ng, Chen 2007
Triplet Higgs + 1 doubly charged 

singlet

And many others …….



Anomalous muon g-2 : the deviation between SM 
calculations and the experimental result is 3.2σ

The existence of dark matter in our universe 

DarkMatterPie



Lithium problem states the discrepancy between SBBN and 
the abundance of Li6,7 we observed. 

This problem has loomed for the past decade, with a 
persistent discrepancy for a factor of 2~3 in Li7/H.

Recently developments have sharpened this problem from 

(1) the reduction of error to 7.4% in nuclear reaction for 

                                  3He(α,γ)7Be

(2) the WMAP 5-year data set now yields a cosmic baryon 
density with an uncertainty reduced to 2.7%

(3) Observations of metal-poor stars have tested for systematic 
effects 



BBN + WMAP shift the central value up to 

The universe appears to be populated exclusively with matter 
rather than antimatter, the amount of asymmetry is around  

Many scenarios are proposed : 
1. GUT thermal baryogenesis, 
2. Leptogenesis, 
3. Affleck-Dine mechanism, 
4. CPT violation 
5. ……

∆m2
12 > 0 (7)

Ki =
Γi

H(Mi)
! 3× 1016g2

ν(
GeV

Mi
)δ2

Nη (8)

κ =
1
K

(9)

7Li/H = (5.24+0.71
−0.67)× 10−10 (10)

2

Discrepancy 2.4 or 4.2 σ  to  4.3 or 5.3 σ 

Too much 7Li and too less 6Li are predicted theoretically 
3 times 7Li larger / 1000 times 6Li smaller than the observation  



The model

The evidence of dark matter            Z2  symmetry 

All the new particles besides SM sectors are Z2  odd 

New Yukawa couplings  
The masses of all new particles are around TeV scale

1 The formula

mβ < 1.8eV(Mainz + Troitsk)
mββ < 0.81eV

Σimi < 24eV (1)

nB − nB̄

nγ
≈ 10−10 (2)

LY = fαil
T
LαC−1LLiS

+ + yαiL̄Liφ̃2lRα + gαi l̄Lαφ̃2E
−
Ri + h.c.

= fαi(ν̄αE−
i + l−α N c

i )S+ + yαi(Niφ
+
2 l−Rα − E+

i φ0∗
2 l−Rα)

+gαi(ν̄φ+
2 E−

Ri − l̄αφ0∗
2 E−

Ri) + h.c. (3)

∆aNP
µ(Nk) = − sin δ cos δ

16π2
(fµkyµk)

mµ

Mk
[F (xP1)− F (xP2)]

≈ − sin δ cos δ(fµkyµk)× 10−5∼−6

1



Potential 

1 The Model

Besides the Zee model with two Higgs doublets, we introduced a set of new
fermionic lepton doublet Li in our model. The new fermions are assume to be
vector-like to make sure that the theory is anomaly free as for self consistency.
A discrete symmetry are imposed such that all the new particles are odd and
the SM sectors are even under this Z2 projection. The content of the model is
following, scalar sectors

φi=1,2 and S+ (1)

and extra fermionic part

Li =

(

N
E−

)

i

, (2)

where φ1 corresponds to the SM Higgs which is even under Z2. So we have
the new Yukawa couplings

LY = fαi l̄cαLiS
+ + yαilRαLiφ2 + h.c.

=
[

fαi(ν̄αE−
i + l−α N̄ c

i )
]

S+ + yαi

[

l−RαE+
i φ0

2 + l−RαNiφ
−
2

]

+ h.c., (3)

where α runs for e, µ, and τ , while i stands number of new fermionic doublet
we introduced, we will show later that at least two of them in order to have a
successful leptogenesis.

The potential is given by,

V (φ1, φ2, S
−) = −µ2

1|φ1|2 + λ1|φ1|4 + m2
2|φ2|2 + λ2|φ2|4 + λ3|φ1|2|φ2|2

+ λ4|φ†
1φ2|2 +

λ5

2

[

(φ†
1φ2)

2 + h.c.
]

+ m2
s|S|2 + λs|S|4

+ µ
[

(φ0∗
1 φ−

2 − φ−
1 φ0

2)S
+ + h.c.

]

. (4)

We note that the Z2 symmetry is exactly conserved, the symmetry breaking
pattern is just like SM. The term involving with µ in the potential is interesting
since it mix the two new charged scalar, it is the important parameter associated
with neutrino mass matrix. The mixing matrix between S± and φ±

2 is

(

φ+
2 S+

)

(

µ2
2 + λ3v2

2
µv√

2
µv√

2
m2

s

)

(

φ−
2

S−

)

(5)
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Muon g-2

μ anomalous magnetic moment  is one of the most precisely measured 
quantities in particle physics. 

A recent experiment at Brookhaven it has been measured with a 
remarkable 14-fold improvement of the previous CERN result.

3.2σ
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Here I use the flavor eigenstates to calculate the neutrino masses,
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1.2 Muon magnetic moment

The current limit of the muon magnetic moment is

∆aµ = (290 ± 90)× 10−11, (11)

4

which is 3.2σ deviation between theory and experiment. The contributions
to muon g − 2 from the new particles are showed in Fig. 3 and Fig. 4. One
can see that the new particles are only appear pairing in loop due to the Z2

symmetry. Here as we assume the masses of all the new particles are around
∼ O(1)TeV but ME >∼ Ms >∼ Mφ2

. We first calculate the contributions from
Fig. 3, there is a mixing between the two charged scalars S− and φ−

2 just like
the neutrino mass generation. And we also see the enhancement by the chirality
flip in the internal fermion line, we have
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k and Pi are the mass eigenstates of the charged scalars.
The function F is
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(1 − x)3
[1 − x2 + 2x lnx]. (13)

From neutrino masses we know that sin δ cos δ × fµk ∼ 10−4, and since
mµ/Mk ∼ 10−4, we find that by setting yµk ∼ O(10−1 − 10−2) will give us
sufficient magnetic moment of order of 10−9. Now let’s turn to the second
contributions, we see the enhanced FCNC type leading contributions in the
parameter regime that mµ $ ME−

k
, Mφ0
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and ME−
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It will not give us sufficient muon anomalous magnetic moment unless the
couplings yµk is of oder of O(10).

1.3 Dark matter and lithium problem

The lithium problem arises from the significant discrepancy between the primor-
dial 7Li abundance as predicted by Standard Big Bang Nucleosynthesis (BBN)
and the WMAP baryon density, and the pre-Galactic lithium abundance in-
ferred from observations of metal-poor stars. It has been generally accepted
this is problem by using the standard solar model of Bahcall, and recent solar
neutrino data one can exclude systematic variations of the magnitude need to
resolve the SBBN 7Li problem at the ≥ 95% confidence level.

One of the solution to this is that so-called Catalytic Big Bang Nucleosynthe-
sis (CBBN) which states if a long-live negatively-charged particle exists, it would
capture a light element previously synthesized in SBBN and form a Coulombic
bound state. The exotic atom will work as a catalyzer since the bound state will
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FIG. 1: 1-loop diagram for neutrino mass.
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one can see there is interesting structure in the neu-
trino masses. If we assume the mass differences between
the charged scalars are of order O(10 ∼ 100)GeV such
that the magnitude of v2

(MP1−MP2 )MEi
∼ O(1). Let’s

take MP1 = 1TeV then to have neutrino masses around
0.1 ∼ 1eV . We have µ is O(1) ∼ O(100)GeV and
f ∼ 10−2∼−5.

Here I use the flavor eigenstates to calculate the neu-
trino masses,
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B. Dark matter

There are many possible dark matter (DM) candidates
in the theory beyond SM, such as supersymmetric, little
Higgs, and extra dimension theories. In those theories,
the DM are assumed to be SM singlet, however, the con-
cept of DM can be formed in the SM multiplets so-called
minimal dark matter is introduced in recent years. In
our model, we will take the neutral component of φ2 as
the dark matter candidate. The study of DM in this kind
have been investigated in literature [1].

FIG. 2: muon g-2 contributions from singly charged scalars
mixing.

FIG. 3: muon g-2 contributions from heavy charged leptons.
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1.3 Dark matter and lithium problem
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is following,

S− → (4HeS−) →6 Li and S− → (4HeS−) → (8BeX−) →9 Be. (17)
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reaction rates in the photonless recoil reactions mediated by S− :

(4HeS−) + D →6 Li + S− and (8BeS−) + n →9 Be + S−. (18)

However, the rates of these catalyzed reactions exceed the SBBN rates for
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sensitivity to the abundance of S− at the relevant times. The observations
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reactions. In our model a long-lived S− can be achieved through the three body
decays into the lepton sectors and dark matter in the final states. The figures
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we obtain

∆aNP
µ(Nk) = −

sin δ cos δ

16π2
(fµkyµk)

mµ

Mk
[F (xP1 ) − F (xP2)]

≈ − sin δ cos δ(fµkyµk) × 10−5∼−6, (11)

where xPi
= m2

Pi
/M2

k and Pi are the mass eigenstates of
the charged scalars. The function F is defined as

F (x) =
1

(1 − x)3
[1 − x2 + 2x lnx], (12)

and the mixing angle satisfies the relation,

sin δ cos δ =
µv√

2(m2
P1

− m2
P2

)
. (13)

A similar discussion can also be seen in[4]. While the
Fig.3(a) would contribute to the magnetic moment as

∆aNP
µ(E−

k
,(a))

=
gµkyµk

12π2

mµ

Mk
G(xφ0

2
)

≈ gµkyµk × 10−5, (14)

where function G is

G(x) = −
3

2(1− x)3
[

3 − 4x + x2 + 2 lnx
]

(15)

and xφ0
2

= M2
k/m2

φ0
2
. Finally the Fig.3(b) gives the size

of muon g − 2,

∆aNP
µ(E−

k
,(b))

≈
y2

µk

48π2

m2
µ

M2
φ0

2

≈ y2
µk × 10−11. (16)

In above derivations the parameter regimes where mµ %
ME−

k
, Mφ0

2
, ME−

k
! Mφ0

2
are used. We notice that there

is an enhancement by the chirality flip in the internal
fermion line in Fig.2 and Fig.3(a) which gives a chance
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While the contribution of eq.(16) is expected too small
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Mφ2 ∼ 500 GeV which is from the constraint of dark
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C. Dark matter

The dark matter (DM) can be realized in the neutral
component of inert doublet (ID) φ2. The masses of φ0

2R
and φ0

2I can be given from the potential, they are

m2
φ2(R,I)

=
m2

2

2
+

1

2
(λ3 + λ4 ± λ5)v

2. (17)

The lightest Z2 odd particle is determined by the sign of
quartic coupling λ5, that is, the mass difference between
scalar or pseudoscalar particles. However, the size of λ5

are bounded by the elastic spin independent scattering
between φ0

2 and the nuclei with exchange a Z boson. The
cross section of this process leads to above current experi-
mental limit[5, 6]. To prevent this process kinematically,
the mass difference between φ0

2R and φ0
2I should be at

least of the order of few 100 keV. We will go to this dis-
cussion in section F.

If the DM arises as a thermal relic in the early universe,
it present relic density can be calculated by solving the
Boltzmann eqs. that describe the evolution of the φ0

2
abundance. The currently most accurate determination
of ΩCDM comes from the global fits of cosmological pa-
rameters to a variety of observations. One finds[2]

ΩCDMh2 = 0.106 ± 0.008, (18)

where h is the Hubble constant in unit of 100 km/(s ·
Mpc). Numerically a WIMP (weakly interacting mas-
sive particle) will freeze out at temperature Tf ∼
mφ0

2
/25 and the relation of the final abundance and the

(co)annihilations rate can be well approximated as[7]

Ωφ0
2
h2 ≈

3 × 10−27cm3s−1

〈σijAvij〉
. (19)

The relative velocity vij can be written as

vij =

√

(pi · pj)2 − m2
i m

2
j

EiEj
(20)

with pi and Ei being the four-momentum and energy
of particle i. In the non-relativistic limit and central-of
mass frame, the vij can be simplified as

vij ≈ 2λ1/2(1, m2
i /s, m2

j/s), (21)

where λ(1, m2
i /s, m2

j/s) = (1 − m2
i /s − m2

j/s)2 −
4(m2

i /s)(m2
j/s). During the freeze-out temperature we

with 

3

FIG. 3: muon g-2 contributions from heavy charged leptons.

which is 3.2σ deviation between theory and experiment.
The contributions to muon g− 2 in our model are shown
in Fig.2 and Fig.3. Firstly, let’s calculate the contribu-
tions to muon anomalous magnetic moment from Fig.2,
we obtain

∆aNP
µ(Nk) = −

sin δ cos δ

16π2
(fµkyµk)

mµ

Mk
[F (xP1 ) − F (xP2)]

≈ − sin δ cos δ(fµkyµk) × 10−5∼−6, (11)

where xPi
= m2

Pi
/M2

k and Pi are the mass eigenstates of
the charged scalars. The function F is defined as

F (x) =
1

(1 − x)3
[1 − x2 + 2x lnx], (12)

and the mixing angle satisfies the relation,

sin δ cos δ =
µv√

2(m2
P1

− m2
P2

)
. (13)

A similar discussion can also be seen in[4]. While the
Fig.3(a) would contribute to the magnetic moment as

∆aNP
µ(E−

k
,(a))

=
gµkyµk

12π2

mµ

Mk
G(xφ0

2
)

≈ gµkyµk × 10−5, (14)

where function G is

G(x) = −
3

2(1− x)3
[

3 − 4x + x2 + 2 lnx
]

(15)

and xφ0
2

= M2
k/m2

φ0
2
. Finally the Fig.3(b) gives the size

of muon g − 2,

∆aNP
µ(E−

k
,(b))

≈
y2

µk

48π2

m2
µ

M2
φ0

2

≈ y2
µk × 10−11. (16)

In above derivations the parameter regimes where mµ %
ME−

k
, Mφ0

2
, ME−

k
! Mφ0

2
are used. We notice that there

is an enhancement by the chirality flip in the internal
fermion line in Fig.2 and Fig.3(a) which gives a chance
to explain the deviation of magnetic moment in muon.
While the contribution of eq.(16) is expected too small
unless the couplings yµk is of order of O(10) if we set
Mφ2 ∼ 500 GeV which is from the constraint of dark
matter relic abundance as we will discuss in next section.

C. Dark matter

The dark matter (DM) can be realized in the neutral
component of inert doublet (ID) φ2. The masses of φ0

2R
and φ0

2I can be given from the potential, they are

m2
φ2(R,I)

=
m2

2

2
+

1

2
(λ3 + λ4 ± λ5)v

2. (17)

The lightest Z2 odd particle is determined by the sign of
quartic coupling λ5, that is, the mass difference between
scalar or pseudoscalar particles. However, the size of λ5

are bounded by the elastic spin independent scattering
between φ0

2 and the nuclei with exchange a Z boson. The
cross section of this process leads to above current experi-
mental limit[5, 6]. To prevent this process kinematically,
the mass difference between φ0

2R and φ0
2I should be at

least of the order of few 100 keV. We will go to this dis-
cussion in section F.

If the DM arises as a thermal relic in the early universe,
it present relic density can be calculated by solving the
Boltzmann eqs. that describe the evolution of the φ0

2
abundance. The currently most accurate determination
of ΩCDM comes from the global fits of cosmological pa-
rameters to a variety of observations. One finds[2]

ΩCDMh2 = 0.106 ± 0.008, (18)

where h is the Hubble constant in unit of 100 km/(s ·
Mpc). Numerically a WIMP (weakly interacting mas-
sive particle) will freeze out at temperature Tf ∼
mφ0

2
/25 and the relation of the final abundance and the

(co)annihilations rate can be well approximated as[7]

Ωφ0
2
h2 ≈

3 × 10−27cm3s−1

〈σijAvij〉
. (19)

The relative velocity vij can be written as

vij =

√

(pi · pj)2 − m2
i m

2
j

EiEj
(20)

with pi and Ei being the four-momentum and energy
of particle i. In the non-relativistic limit and central-of
mass frame, the vij can be simplified as

vij ≈ 2λ1/2(1, m2
i /s, m2

j/s), (21)

where λ(1, m2
i /s, m2

j/s) = (1 − m2
i /s − m2

j/s)2 −
4(m2

i /s)(m2
j/s). During the freeze-out temperature we

During the freeze out temperature vij ~ 0.3



The dominant annihilation channel of DM is into gauge 
bosons 

DM can (c0)annihilate into or through SM Higgs by trilinear 
and quartic couplings of the scalars 

4

can approximate the relative velocity vij ≈ 0.3. The
dominant annihilation channel of DM is into SM gauge
bosons, φ0

2φ
0
2 → AA, it is[8]

〈σAv〉 %
3g4

2 + g4
Y + 6g2

2g
2
Y

256πM2
φ0

2

. (22)

While the trilinear and quartic couplings of the scalars in
Eq.(3) also open the channels that DM can (co)annihilate
into or through SM Higgs, the cross-sections can be writ-
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Here we expect the scale µ is small since it is related to
neutrino masses as showed in Eq.(9). A more detail dis-
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In our scenario we consider the high-mass DM, one can
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D. Lithium problem

The lithium problem arises from the significant dis-
crepancy between the primordial 7Li abundance as pre-
dicted by Standard Big Bang Nucleosynthesis (SBBN)
and the WMAP baryon density, and the pre-Galactic
lithium abundance inferred from observations of metal-
poor stars[2, 12].

One of the solution to this is the so-called Catalytic Big
Bang Nucleosynthesis (CBBN)[13] which states if a long-
lived negatively-charged particle exists, it would form an
exotic atom and work as a catalyzer. The bound state
will induce reactions that can produce suitable primor-
dial abundance of 6Li and 7Li. In our model the scalar
singlet S− will form the bound state with 4He and this
bound state will play the role as the catalyzer. The cat-
alytic path to 6Li and 9Be is

S− → (4HeS−) →6 Li and

S− → (4HeS−) → (8BeS−) →9 Be. (26)

And the key for the nuclear catalysis is an enormous en-
hancement of the reaction rates in the photonless recoil
reactions mediated by S− :

(4HeS−) + D →6 Li + S− and

(8BeS−) + n →9 Be + S−. (27)

FIG. 4: three body decays of S−.

The rates of these catalyzed reactions depend sensi-
tively on the abundance of S− at the relevant times. The
observations impose strong constraints on the lifetime of
the negative charged particle to be ∼ 103s to live long
enough to form the exotic atom and catalyze the reac-
tions. In our model a long-lived S− can be achieved
through the three body decays into the lepton sectors
and dark matter in the final states as showed in Fig. 4.
With the new heavy leptonic doublet in the intermedi-
ate states plus the small Yukawa couplings and the phase
space suppression of the mass differences between S− and
φ2, the long-lived S− can be easily realized. The decay
rate of S− in Fig.4(a) and Fig.4(b) are
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poor stars[2, 12].

One of the solution to this is the so-called Catalytic Big
Bang Nucleosynthesis (CBBN)[13] which states if a long-
lived negatively-charged particle exists, it would form an
exotic atom and work as a catalyzer. The bound state
will induce reactions that can produce suitable primor-
dial abundance of 6Li and 7Li. In our model the scalar
singlet S− will form the bound state with 4He and this
bound state will play the role as the catalyzer. The cat-
alytic path to 6Li and 9Be is

S− → (4HeS−) →6 Li and

S− → (4HeS−) → (8BeS−) →9 Be. (26)

And the key for the nuclear catalysis is an enormous en-
hancement of the reaction rates in the photonless recoil
reactions mediated by S− :

(4HeS−) + D →6 Li + S− and

(8BeS−) + n →9 Be + S−. (27)

FIG. 4: three body decays of S−.

The rates of these catalyzed reactions depend sensi-
tively on the abundance of S− at the relevant times. The
observations impose strong constraints on the lifetime of
the negative charged particle to be ∼ 103s to live long
enough to form the exotic atom and catalyze the reac-
tions. In our model a long-lived S− can be achieved
through the three body decays into the lepton sectors
and dark matter in the final states as showed in Fig. 4.
With the new heavy leptonic doublet in the intermedi-
ate states plus the small Yukawa couplings and the phase
space suppression of the mass differences between S− and
φ2, the long-lived S− can be easily realized. The decay
rate of S− in Fig.4(a) and Fig.4(b) are
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can approximate the relative velocity vij ≈ 0.3. The
dominant annihilation channel of DM is into SM gauge
bosons, φ0

2φ
0
2 → AA, it is[8]
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2 + g4
Y + 6g2

2g
2
Y
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φ0

2

. (22)
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into or through SM Higgs, the cross-sections can be writ-
ten as[9]
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λij
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The scalar potential is given by

V (φ1, φ2, S
−) = −µ2

1|φ1|2 + λ1|φ1|4 + m2
2|φ2|2 + λ2|φ2|4

+ λ3|φ1|2|φ2|2 + λ4|φ†
1φ2|2

+
λ5

2

[

(φ†
1φ2)

2 + h.c.
]

+ m2
s|S|2 + λs|S|4

+ µ
[

(φ0∗
1 φ−

2 − φ−
1 φ0

2)S
+ + h.c.

]

. (2)

We assume that the Z2 symmetry is exactly conserved
such that φ0

2 will not generate the vacuum expectation
value (VEV), that is, the symmetry breaking pattern is
through φ0

1 which can be identified as the SM Higgs h.
We take φ0

1 = v+h√
2

where the pseudoscalar and charged

components of φ1 become the longitudinal modes of Z
and W bosons. In the unitary gauge, these fields are
gauged away, we read the triple- and quartic couplings of
the potential,

V3,4 = λ1vh3 +
λ1

4
h4 + λ2|φ2|4 + λ3vh|φ2|2 +

λ3

2
h2|φ2|2

+λ4vh|φ0
2|2 +

λ4

2
h2|φ0

2|2 + λ5vh(φ02
2R − φ02

2I)

+
λ5

2
h2(φ02

2R − φ02
2I) + λs|S|4 +

[µ

2
hφ−

2 S+ + h.c.
]

,

(3)

where φ2 = (φ0
2, φ

−
2 )T and φ0

2 = φ0
2R + iφ0

2I are used.
The term involving µ in the potential plus the Yukawa
couplings eq.(1) are interesting since the lepton number
are explicitly violated and the corresponding breaking
scale is µ which is also responsible for neutrino masses as
we will discuss in section A. The mixing matrix between
S± and φ±

2 is

(

φ+
2 S+

)

(

m2
2 + λ3v2

2
µv√

2
µv√

2
m2

s

)(

φ−
2

S−

)

. (4)

If the mass eigenstates are denoted by (P−
1 , P−

2 ) such
that

(

P−
1

P−
2

)

=

(

cos δ sin δ

− sin δ cos δ

) (

φ−
2

S−

)

, (5)

and

tan 2δ =

√
2µv

m2
2 + λ3v2/2 − m2

s

. (6)

A. Neutrino mass generation

The neutrino masses can be generated at one-loop level
as shown in Fig. 1. As noticed above that the mixing be-
tween two charged scalars S± and φ±

2 in the loop violates
lepton number and are associated with a GIM cancella-
tion that make the corrections finite.

FIG. 1: 1-loop diagram for neutrino mass.

The generated neutrino mass matrix is

(mν)αβ = −igαifβiMEi
µ〈φ0

1〉

×
∫

d4q

(2π)4
1

(q2 − M2
s )

1

(q2 − M2
φ2

)

1

(q2 − M2
Ei

)

=
gαifβiµvMEi

16
√

2π2(M2
Ei

− M2
φ2

)

[

F (M2
Ei

) − F (M2
φ2

)
]

,

(7)

where the function F is

F (M2) =
M2

(M2 − M2
s )

ln
M2

M2
s

. (8)

This mass matrix contains both a loop suppression fac-
tor and a mass suppression factor hence it has similar
structure as the radiative seesaw models [3]. Under the
assumption that the masses of the new particles are as
MEi

>∼ Ms >∼ Mφ−

2
, the neutrino masses can be approxi-

mated as

(mν)αβ ≈
gαifβi

16
√

2π2

µv

MEi

≈ 10−3gαifβiµ ∼ 10−2eV, (9)

here we take MEi
∼ O(1) TeV. We will come back to de-

termine the size of the couplings and µ when we address
other issues in this paper.

B. Muon magnetic moment

FIG. 2: muon g-2 contributions from singly charged scalars
mixing.

The current limit of the muon magnetic moment is [2]

∆aµ = (290± 90) × 10−11, (10)
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In pure gauge interaction limit, the lower bound of 
DM mass is 530 GeV   



Lithium problem	
Big-bang nucleosynthesis (BBN) offers the deepest reliable probe of the 
early universe, being based on Standard Model physics. 

Predictions of the abundances of the light elements, D, 3He, 4He, and 7Li, 
synthesized at the end of the “first 3 minutes.”

A good overall agreement with the primordial abundances with the 
observational data          span 9 orders of magnitude from 

                                down to  

BBN was generally taken to be a three-parameter theory 

Baryon density Neutron mean-life Number of neutrino flavors
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SBBN predict the ratio of Lithium and Helium is about 

  

and   6Li to 7Li component is small

on the lifetime of S−. Since we assume MEi
∼ O(1)TeV ,the decay rate of S±

is roughly,

Γs|αβ(Ni) ≈
(fαiyiβ)2

30π3M4
Ni

× (δm)5(1 −
5m2

l

δm2
)

≈ f2
αiy

2
iβ × 10−15(

δm

1GeV
)5GeV, (23)

where δm = Ms − Mφ2
. We can see the lifetime will be around

ταβ ≈ 6.6 × f−2
αi y−2

iβ × (
δm

1GeV
)−5 × 10−10 (24)

As we can see from the neutrino masses generation that the couplings f ∼
O(10−4∼−5) if µ ∼ O(100)GeV , and the muon anomalous magnetic moment
gives the y ∼ 10−1 − 10−2. In order to satisfy the constraint from CBBN,
we need the masses of S− and dark matter φ2 have to be almost degenerate
to give us proper lifetime constrained by data. Let’s take δm ∼ O(1)GeV ,
that will bring us the final states of τ is not allowed. We have to remember
there is roughly factor of O(10) by including all the decay modes. And the
final states with electrons are much less suppressed, we will take the associated
Yukawa couplings smaller. Combine all of these we can have the prediction to
the pattern of neutrino mass structure is normal hierarchy.

Li/H = (1 ∼ 2) × 10−10 , Li/H = (1.23 ± 0.06) × 10−10,
Li/H = (2.19 ± 0.28)× 10−10

7Li/H = (5.24+0.71
−0.62) × 10−10

1.5 Leptogenesis

There are two sources of CP asymmetry and lepton number violation processes
from each of the new Yukawa interactions as drawn in Fig. 5 and 6. The decay
rates of N1 are

ΓN1
=

∑

α(y1α)2

16π
MN1

or ΓN1
=

(f †f)11
8π

MN1
(25)

corresponding to Fig. 5 and Fig. 6 respectively. The latter one is similar
to the one in canonical leptogenesis where its couplings are related to neutrino
masses. Let’s consider the possibility that the scalar singlet φ−

2 as the final
states and yαi are the couplings not related to neutrino masses. We have the
CP asymmetry
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2 )
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∑
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α(y†y)1α
{fv(
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m
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1
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M2
1
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16π
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Mm
, (26)

8

on the lifetime of S−. Since we assume MEi
∼ O(1)TeV ,the decay rate of S±

is roughly,

Γs|αβ(Ni) ≈
(fαiyiβ)2

30π3M4
Ni

× (δm)5(1 −
5m2

l

δm2
)

≈ f2
αiy

2
iβ × 10−15(

δm

1GeV
)5GeV, (23)

where δm = Ms − Mφ2
. We can see the lifetime will be around

ταβ ≈ 6.6 × f−2
αi y−2

iβ × (
δm

1GeV
)−5 × 10−10 (24)

As we can see from the neutrino masses generation that the couplings f ∼
O(10−4∼−5) if µ ∼ O(100)GeV , and the muon anomalous magnetic moment
gives the y ∼ 10−1 − 10−2. In order to satisfy the constraint from CBBN,
we need the masses of S− and dark matter φ2 have to be almost degenerate
to give us proper lifetime constrained by data. Let’s take δm ∼ O(1)GeV ,
that will bring us the final states of τ is not allowed. We have to remember
there is roughly factor of O(10) by including all the decay modes. And the
final states with electrons are much less suppressed, we will take the associated
Yukawa couplings smaller. Combine all of these we can have the prediction to
the pattern of neutrino mass structure is normal hierarchy.

Li/H = (1 ∼ 2) × 10−10 , Li/H = (1.23 ± 0.06) × 10−10,
Li/H = (2.19 ± 0.28)× 10−10

7Li/H = (5.24+0.71
−0.62) × 10−10 , 6Li/7Li ≤ 0.15

6Li/7Li ∼ 3.3 × 10−5

1.5 Leptogenesis

There are two sources of CP asymmetry and lepton number violation processes
from each of the new Yukawa interactions as drawn in Fig. 5 and 6. The decay
rates of N1 are

ΓN1
=

∑

α(y1α)2

16π
MN1

or ΓN1
=

(f †f)11
8π

MN1
(25)

corresponding to Fig. 5 and Fig. 6 respectively. The latter one is similar
to the one in canonical leptogenesis where its couplings are related to neutrino
masses. Let’s consider the possibility that the scalar singlet φ−

2 as the final
states and yαi are the couplings not related to neutrino masses. We have the
CP asymmetry

ε1 =
Γ(N1 → lφ+

2 ) − Γ(N1 → l̄φ−
2 )

Γ(N1 → lφ+
2 ) + Γ(N1 → l̄φ−

2 )
=

1

8π

∑

m #=1

Im[(y†y)21m]
∑

α(y†y)1α
{fv(

M2
m

M2
1

) + fs(
M2

m

M2
1

)}

8



Lithium problem : The SBBN predicts primordial 6Li abundance about 
1000 times smaller than the observed abundance level and 7Li abundance 
a factor of 2~3 larger than when one adopts a value of η inferred from the 
WMAP data. 

Recent high-precision measurements are sensitive to the tiny isotopic 
shift in Li absorption and indicate 
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Metal-poor halo stars ---

Galactic cosmic rays --- primordial value 

Measurement from clusters (NGC 6397) --- 
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. We can see the lifetime will be around
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iβ × (
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1GeV
)−5 × 10−10 (24)

As we can see from the neutrino masses generation that the couplings f ∼
O(10−4∼−5) if µ ∼ O(100)GeV , and the muon anomalous magnetic moment
gives the y ∼ 10−1 − 10−2. In order to satisfy the constraint from CBBN,
we need the masses of S− and dark matter φ2 have to be almost degenerate
to give us proper lifetime constrained by data. Let’s take δm ∼ O(1)GeV ,
that will bring us the final states of τ is not allowed. We have to remember
there is roughly factor of O(10) by including all the decay modes. And the
final states with electrons are much less suppressed, we will take the associated
Yukawa couplings smaller. Combine all of these we can have the prediction to
the pattern of neutrino mass structure is normal hierarchy.

Li/H = (1 ∼ 2) × 10−10 , Li/H = (1.23 ± 0.06) × 10−10,
Li/H = (2.19 ± 0.28)× 10−10

1.5 Leptogenesis

There are two sources of CP asymmetry and lepton number violation processes
from each of the new Yukawa interactions as drawn in Fig. 5 and 6. The decay
rates of N1 are

ΓN1
=

∑

α(y1α)2
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or ΓN1
=

(f †f)11
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corresponding to Fig. 5 and Fig. 6 respectively. The latter one is similar
to the one in canonical leptogenesis where its couplings are related to neutrino
masses. Let’s consider the possibility that the scalar singlet φ−

2 as the final
states and yαi are the couplings not related to neutrino masses. We have the
CP asymmetry
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and the WMAP baryon density, and the pre-Galactic lithium abundance in-
ferred from observations of metal-poor stars. It has been generally accepted
this is problem by using the standard solar model of Bahcall, and recent solar
neutrino data one can exclude systematic variations of the magnitude need to
resolve the SBBN 7Li problem at the ≥ 95% confidence level.

One of the solution to this is that so-called Catalytic Big Bang Nucleosynthe-
sis (CBBN) which states if a long-live negatively-charged particle exists, it would
capture a light element previously synthesized in SBBN and form a Coulombic
bound state. The exotic atom will work as a catalyzer since the bound state will
induce the reactions which will produce a suitable abundance of 6Li and 7Li
primordially. The catalytic enhancement is that in the 6Li and 9Be production
triggered by the formation of bound states of 4He with the negatively charged
relic, in our model we take S− play the role. The catalytic path to 6Li and 9Be
is following,

S− → (4HeS−) →6 Li and S− → (4HeS−) → (8BeX−) →9 Be. (21)

And the key for the nuclear catalysis is an enormous enhancement of the
reaction rates in the photonless recoil reactions mediated by S− :

(4HeS−) + D →6 Li + S− and (8BeS−) + n →9 Be + S−. (22)

However, the rates of these catalyzed reactions exceed the SBBN rates for
the production of 6Li and 9Be by many orders of magnitude, one finds a strong
sensitivity to the abundance of S− at the relevant times. The observations
impose the significant constraints on the lifetime of the negative charged particle
should be ∼ 103sec to live long enough to form the exotic atom and catalyze the
reactions. In our model a long-lived S− can be achieved through the three body
decays into the lepton sectors and dark matter in the final states. The figures
are showed in Fig. 4, one can expect that with the new heavy leptonic doublet
in the intermediate states plus the small Yukawa couplings and the phase space
suppression of the mass differences between S− and φ2, we can fit the constraint
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1 The formula

mβ < 1.8eV(Mainz + Troitsk)
mββ < 0.81eV

Σimi < 24eV (1)

nB − nB̄

nγ
≈ 10−10 (2)

LY = fαil
T
LαC−1LLiS

+ + yαiL̄Liφ̃2lRα + gαi l̄Lαφ̃2E
−
Ri + h.c.

= fαi(ν̄αE−
i + l−α N c

i )S+ + yαi(Niφ
+
2 l−Rα − E+

i φ0∗
2 l−Rα)

+gαi(ν̄φ+
2 E−

Ri − l̄αφ0∗
2 E−

Ri) + h.c. (3)

∆aNP
µ(Nk) = − sin δ cos δ

16π2
(fµkyµk)

mµ

Mk
[F (xP1)− F (xP2)]

≈ − sin δ cos δ(fµkyµk)× 10−5∼−6

σ(DMN → DMN) =
G2

F M2
N

2π
(N − (1− 4 sin2 θW )Z)2

i, j = {0, 1, 2, 3, 4} =, 4He/H ∼ 0.08, 7Li/H ∼ 10−10

SBBN : 4He + D →6 Li + γ; Q = 1.47MeV
CBBN : (4HeS−) + D →6 Li + S−; Q & 1.13MeV (4)

1

The most significant difference is seen in 
the 6Li production

The existence of a long-lived singly 
charged particle ~ 1000s to catalyze 

the chain reactions 

M.Pospelov(07,08),
K.Kohri,el(07),

J.Ellis,K.A.Olive(03),
M.Kaplinghat,el(06),
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A long-lived          is needed  ~ 1000 sec

(a),(b) : 

1 The Model

Besides the Zee model with two Higgs doublets, we introduced a set of new
fermionic lepton doublet Li in our model. The new fermions are assume to be
vector-like to make sure that the theory is anomaly free as for self consistency.
A discrete symmetry are imposed such that all the new particles are odd and
the SM sectors are even under this Z2 projection. The content of the model is
following, scalar sectors

φi=1,2 and S+ (1)

and extra fermionic part

Li =

(

N
E−

)

i

, (2)

where φ1 corresponds to the SM Higgs which is even under Z2. So we have
the new Yukawa couplings

LY = fαi l̄cαLiS
+ + yαilRαLiφ2 + h.c.

=
[

fαi(ν̄αE−
i + l−α N̄ c

i )
]

S+ + yαi

[

l−RαE+
i φ0

2 + l−RαNiφ
−
2

]

+ h.c., (3)

where α runs for e, µ, and τ , while i stands number of new fermionic doublet
we introduced, we will show later that at least two of them in order to have a
successful leptogenesis.

The potential is given by,

V (φ1, φ2, S
−) = −µ2

1|φ1|2 + λ1|φ1|4 + m2
2|φ2|2 + λ2|φ2|4 + λ3|φ1|2|φ2|2

+ λ4|φ†
1φ2|2 +

λ5

2

[

(φ†
1φ2)

2 + h.c.
]

+ m2
s|S|2 + λs|S|4

+ µ
[

(φ0∗
1 φ−

2 − φ−
1 φ0

2)S
+ + h.c.

]

. (4)

We note that the Z2 symmetry is exactly conserved, the symmetry breaking
pattern is just like SM. The term involving with µ in the potential is interesting
since it mix the two new charged scalar, it is the important parameter associated
with neutrino mass matrix. The mixing matrix between S± and φ±

2 is

(

φ+
2 S+

)

(

µ2
2 + λ3v2

2
µv√

2
µv√

2
m2

s

)

(

φ−
2

S−

)

(5)

2

4

can approximate the relative velocity vij ≈ 0.3. The
dominant annihilation channel of DM is into SM gauge
bosons, φ0

2φ
0
2 → AA, it is[8]

〈σAv〉 %
3g4

2 + g4
Y + 6g2

2g
2
Y

256πM2
φ0

2

. (22)

While the trilinear and quartic couplings of the scalars in
Eq.(3) also open the channels that DM can (co)annihilate
into or through SM Higgs, the cross-sections can be writ-
ten as[9]

σij
λ =

λij

32πm2
φ0

2

, (23)

where {i, j = 0, 1, 2, 3, 4} stands for
{φ0

2R, φ0
2I , φ

+
2 , φ−

2 , S±}, and the coefficients λij are
the combinations of quartic couplings given by

λ00 = λ11 =
5

2
λ2

3 + 2λ2
4 + 4λ3λ4 + 2λ2

5

λ22 = λ33 = 2λ01 = 8λ2
5

λ02 = λ03 = λ12 = λ13 = 2(λ3/2 + λ4)
2 + 2λ2

5

λ23 = 4(λ3 + λ4)
2 + λ2

3

λ24 = λ34 = 4(λ3 + λ4)
2 + (µ/v)2. (24)

Here we expect the scale µ is small since it is related to
neutrino masses as showed in Eq.(9). A more detail dis-
cussions for the inert doublet DM in different regimes
can be found in, low-mass(mφ0

2
& mW )[10], middle-

mass(mφ0
2

! mW )[11], and high-mass(mφ0
2
' mW )[9].

In our scenario we consider the high-mass DM, one can
obtain the lower bound of mφ0

2
for the relic abundance is

mφ0
2
≈ 530GeV. (25)

D. Lithium problem

The lithium problem arises from the significant dis-
crepancy between the primordial 7Li abundance as pre-
dicted by Standard Big Bang Nucleosynthesis (SBBN)
and the WMAP baryon density, and the pre-Galactic
lithium abundance inferred from observations of metal-
poor stars[2, 12].

One of the solution to this is the so-called Catalytic Big
Bang Nucleosynthesis (CBBN)[13] which states if a long-
lived negatively-charged particle exists, it would form an
exotic atom and work as a catalyzer. The bound state
will induce reactions that can produce suitable primor-
dial abundance of 6Li and 7Li. In our model the scalar
singlet S− will form the bound state with 4He and this
bound state will play the role as the catalyzer. The cat-
alytic path to 6Li and 9Be is

S− → (4HeS−) →6 Li and

S− → (4HeS−) → (8BeS−) →9 Be. (26)

And the key for the nuclear catalysis is an enormous en-
hancement of the reaction rates in the photonless recoil
reactions mediated by S− :

(4HeS−) + D →6 Li + S− and

(8BeS−) + n →9 Be + S−. (27)

FIG. 4: three body decays of S−.

The rates of these catalyzed reactions depend sensi-
tively on the abundance of S− at the relevant times. The
observations impose strong constraints on the lifetime of
the negative charged particle to be ∼ 103s to live long
enough to form the exotic atom and catalyze the reac-
tions. In our model a long-lived S− can be achieved
through the three body decays into the lepton sectors
and dark matter in the final states as showed in Fig. 4.
With the new heavy leptonic doublet in the intermedi-
ate states plus the small Yukawa couplings and the phase
space suppression of the mass differences between S− and
φ2, the long-lived S− can be easily realized. The decay
rate of S− in Fig.4(a) and Fig.4(b) are

Γs|αβ(Ni) ≈
(fαiyiβ)2

30π3M4
Ni

× (δm)5(1 −
5m2

l

δm2
)

≈ f2
αiy

2
iβ × 10−15(

δm

GeV
)5GeV, (28)

where δm = Ms − Mφ2 . The lifetime will be around

ταβ ≈ 6.6 × f−2
αi y−2

iβ × (
δm

GeV
)−5 × 10−10sec, (29)

thus we have the constraint

f2
αiy

2
βi ≈ 10−12 × (

δm

GeV
)−5. (30)

Fig.4(c) gives

Γs(h) =
10−6µ2

4 × 96(2π)3
ms

m4
h

(δm)2

≈ 10−16 × (
µ

GeV
)2(

δm

GeV
)2GeV, (31)
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While the trilinear and quartic couplings of the scalars in
Eq.(3) also open the channels that DM can (co)annihilate
into or through SM Higgs, the cross-sections can be writ-
ten as[9]

σij
λ =

λij

32πm2
φ0

2

, (23)
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2 , S±}, and the coefficients λij are
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Here we expect the scale µ is small since it is related to
neutrino masses as showed in Eq.(9). A more detail dis-
cussions for the inert doublet DM in different regimes
can be found in, low-mass(mφ0

2
& mW )[10], middle-

mass(mφ0
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! mW )[11], and high-mass(mφ0
2
' mW )[9].

In our scenario we consider the high-mass DM, one can
obtain the lower bound of mφ0

2
for the relic abundance is
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D. Lithium problem

The lithium problem arises from the significant dis-
crepancy between the primordial 7Li abundance as pre-
dicted by Standard Big Bang Nucleosynthesis (SBBN)
and the WMAP baryon density, and the pre-Galactic
lithium abundance inferred from observations of metal-
poor stars[2, 12].

One of the solution to this is the so-called Catalytic Big
Bang Nucleosynthesis (CBBN)[13] which states if a long-
lived negatively-charged particle exists, it would form an
exotic atom and work as a catalyzer. The bound state
will induce reactions that can produce suitable primor-
dial abundance of 6Li and 7Li. In our model the scalar
singlet S− will form the bound state with 4He and this
bound state will play the role as the catalyzer. The cat-
alytic path to 6Li and 9Be is

S− → (4HeS−) →6 Li and

S− → (4HeS−) → (8BeS−) →9 Be. (26)

And the key for the nuclear catalysis is an enormous en-
hancement of the reaction rates in the photonless recoil
reactions mediated by S− :

(4HeS−) + D →6 Li + S− and

(8BeS−) + n →9 Be + S−. (27)

FIG. 4: three body decays of S−.

The rates of these catalyzed reactions depend sensi-
tively on the abundance of S− at the relevant times. The
observations impose strong constraints on the lifetime of
the negative charged particle to be ∼ 103s to live long
enough to form the exotic atom and catalyze the reac-
tions. In our model a long-lived S− can be achieved
through the three body decays into the lepton sectors
and dark matter in the final states as showed in Fig. 4.
With the new heavy leptonic doublet in the intermedi-
ate states plus the small Yukawa couplings and the phase
space suppression of the mass differences between S− and
φ2, the long-lived S− can be easily realized. The decay
rate of S− in Fig.4(a) and Fig.4(b) are
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Here we expect the scale µ is small since it is related to
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lithium abundance inferred from observations of metal-
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Bang Nucleosynthesis (CBBN)[13] which states if a long-
lived negatively-charged particle exists, it would form an
exotic atom and work as a catalyzer. The bound state
will induce reactions that can produce suitable primor-
dial abundance of 6Li and 7Li. In our model the scalar
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bound state will play the role as the catalyzer. The cat-
alytic path to 6Li and 9Be is

S− → (4HeS−) →6 Li and
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And the key for the nuclear catalysis is an enormous en-
hancement of the reaction rates in the photonless recoil
reactions mediated by S− :

(4HeS−) + D →6 Li + S− and

(8BeS−) + n →9 Be + S−. (27)

FIG. 4: three body decays of S−.

The rates of these catalyzed reactions depend sensi-
tively on the abundance of S− at the relevant times. The
observations impose strong constraints on the lifetime of
the negative charged particle to be ∼ 103s to live long
enough to form the exotic atom and catalyze the reac-
tions. In our model a long-lived S− can be achieved
through the three body decays into the lepton sectors
and dark matter in the final states as showed in Fig. 4.
With the new heavy leptonic doublet in the intermedi-
ate states plus the small Yukawa couplings and the phase
space suppression of the mass differences between S− and
φ2, the long-lived S− can be easily realized. The decay
rate of S− in Fig.4(a) and Fig.4(b) are
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ten as[9]

σij
λ =

λij

32πm2
φ0

2

, (23)

where {i, j = 0, 1, 2, 3, 4} stands for
{φ0

2R, φ0
2I , φ

+
2 , φ−

2 , S±}, and the coefficients λij are
the combinations of quartic couplings given by

λ00 = λ11 =
5

2
λ2

3 + 2λ2
4 + 4λ3λ4 + 2λ2

5

λ22 = λ33 = 2λ01 = 8λ2
5

λ02 = λ03 = λ12 = λ13 = 2(λ3/2 + λ4)
2 + 2λ2

5

λ23 = 4(λ3 + λ4)
2 + λ2

3

λ24 = λ34 = 4(λ3 + λ4)
2 + (µ/v)2. (24)

Here we expect the scale µ is small since it is related to
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obtain the lower bound of mφ0

2
for the relic abundance is
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The lithium problem arises from the significant dis-
crepancy between the primordial 7Li abundance as pre-
dicted by Standard Big Bang Nucleosynthesis (SBBN)
and the WMAP baryon density, and the pre-Galactic
lithium abundance inferred from observations of metal-
poor stars[2, 12].

One of the solution to this is the so-called Catalytic Big
Bang Nucleosynthesis (CBBN)[13] which states if a long-
lived negatively-charged particle exists, it would form an
exotic atom and work as a catalyzer. The bound state
will induce reactions that can produce suitable primor-
dial abundance of 6Li and 7Li. In our model the scalar
singlet S− will form the bound state with 4He and this
bound state will play the role as the catalyzer. The cat-
alytic path to 6Li and 9Be is

S− → (4HeS−) →6 Li and

S− → (4HeS−) → (8BeS−) →9 Be. (26)

And the key for the nuclear catalysis is an enormous en-
hancement of the reaction rates in the photonless recoil
reactions mediated by S− :

(4HeS−) + D →6 Li + S− and

(8BeS−) + n →9 Be + S−. (27)

FIG. 4: three body decays of S−.

The rates of these catalyzed reactions depend sensi-
tively on the abundance of S− at the relevant times. The
observations impose strong constraints on the lifetime of
the negative charged particle to be ∼ 103s to live long
enough to form the exotic atom and catalyze the reac-
tions. In our model a long-lived S− can be achieved
through the three body decays into the lepton sectors
and dark matter in the final states as showed in Fig. 4.
With the new heavy leptonic doublet in the intermedi-
ate states plus the small Yukawa couplings and the phase
space suppression of the mass differences between S− and
φ2, the long-lived S− can be easily realized. The decay
rate of S− in Fig.4(a) and Fig.4(b) are
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We have the constraint Eq. (4)
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can approximate the relative velocity vij ≈ 0.3. The
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While the trilinear and quartic couplings of the scalars in
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Here we expect the scale µ is small since it is related to
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The lithium problem arises from the significant dis-
crepancy between the primordial 7Li abundance as pre-
dicted by Standard Big Bang Nucleosynthesis (SBBN)
and the WMAP baryon density, and the pre-Galactic
lithium abundance inferred from observations of metal-
poor stars[2, 12].

One of the solution to this is the so-called Catalytic Big
Bang Nucleosynthesis (CBBN)[13] which states if a long-
lived negatively-charged particle exists, it would form an
exotic atom and work as a catalyzer. The bound state
will induce reactions that can produce suitable primor-
dial abundance of 6Li and 7Li. In our model the scalar
singlet S− will form the bound state with 4He and this
bound state will play the role as the catalyzer. The cat-
alytic path to 6Li and 9Be is

S− → (4HeS−) →6 Li and

S− → (4HeS−) → (8BeS−) →9 Be. (26)

And the key for the nuclear catalysis is an enormous en-
hancement of the reaction rates in the photonless recoil
reactions mediated by S− :

(4HeS−) + D →6 Li + S− and

(8BeS−) + n →9 Be + S−. (27)

FIG. 4: three body decays of S−.

The rates of these catalyzed reactions depend sensi-
tively on the abundance of S− at the relevant times. The
observations impose strong constraints on the lifetime of
the negative charged particle to be ∼ 103s to live long
enough to form the exotic atom and catalyze the reac-
tions. In our model a long-lived S− can be achieved
through the three body decays into the lepton sectors
and dark matter in the final states as showed in Fig. 4.
With the new heavy leptonic doublet in the intermedi-
ate states plus the small Yukawa couplings and the phase
space suppression of the mass differences between S− and
φ2, the long-lived S− can be easily realized. The decay
rate of S− in Fig.4(a) and Fig.4(b) are
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The lithium problem arises from the significant dis-
crepancy between the primordial 7Li abundance as pre-
dicted by Standard Big Bang Nucleosynthesis (SBBN)
and the WMAP baryon density, and the pre-Galactic
lithium abundance inferred from observations of metal-
poor stars[2, 12].

One of the solution to this is the so-called Catalytic Big
Bang Nucleosynthesis (CBBN)[13] which states if a long-
lived negatively-charged particle exists, it would form an
exotic atom and work as a catalyzer. The bound state
will induce reactions that can produce suitable primor-
dial abundance of 6Li and 7Li. In our model the scalar
singlet S− will form the bound state with 4He and this
bound state will play the role as the catalyzer. The cat-
alytic path to 6Li and 9Be is

S− → (4HeS−) →6 Li and

S− → (4HeS−) → (8BeS−) →9 Be. (26)

And the key for the nuclear catalysis is an enormous en-
hancement of the reaction rates in the photonless recoil
reactions mediated by S− :

(4HeS−) + D →6 Li + S− and

(8BeS−) + n →9 Be + S−. (27)

FIG. 4: three body decays of S−.

The rates of these catalyzed reactions depend sensi-
tively on the abundance of S− at the relevant times. The
observations impose strong constraints on the lifetime of
the negative charged particle to be ∼ 103s to live long
enough to form the exotic atom and catalyze the reac-
tions. In our model a long-lived S− can be achieved
through the three body decays into the lepton sectors
and dark matter in the final states as showed in Fig. 4.
With the new heavy leptonic doublet in the intermedi-
ate states plus the small Yukawa couplings and the phase
space suppression of the mass differences between S− and
φ2, the long-lived S− can be easily realized. The decay
rate of S− in Fig.4(a) and Fig.4(b) are
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We summarize the constraints from
Eqs.(9),(11),(14),(30), and(32):

fg(
µ

GeV
) ∼ 10−8,

fy ∼ 10−4,

gy ∼ 10−5,

f2y2(
δm

GeV
)5 ∼ 10−12,

(
µ

GeV
)2(

δm

GeV
)2 ∼ 10−11.

We find if µ ∼ 10−5 GeV, δm ! 1GeV, f ∼ 10−1, y ∼
10−3, and g ∼ 10−2, one can satisfy above conditions.

E. Leptogenesis

There are two sources of CP asymmetry from each of
the new Yukawa interactions as drawn in Fig.5. The
decay rates of N1 are the sum of

ΓN1 =

∑

α(y1α)2

16π
MN1 and ΓN1 =

(f †f)11
8π

MN1,(33)

FIG. 5: right-handed (left-handed) sector leptogenesis.

which correspond to right-handed (left-handed) lep-
tonic decay modes showed in Fig. 5 respectively. The
latter refers to the canonical leptogenesis where its cou-
plings are related to neutrino masses. Let’s consider the
right-handed leptogenesis first[14, 15], the CP asymme-
try in this process is given by

ε1 =
Γ(N1 → lφ+

2 ) − Γ(N1 → l̄φ−
2 )

Γ(N1 → lφ+
2 ) + Γ(N1 → l̄φ−

2 )

=
1

8π

∑

m "=1

Im[(y†y)21m]
∑

α(y†y)1α
{fv(

M2
m

M2
1

) + fs(
M2

m

M2
1

)}

=
3

16π

∑

m "=1

Im[(y†y)21m]
∑

α(y†y)1α

M1

Mm
, (34)

where we have assumed the hierarchical masses of heavy
neutrinos. Generally, the tiny neutrino masses would give
the constraints that small Yukawa couplings and imply
a highly suppressed CP asymmetry in a low-scale heavy

Majorana neutrino decay. However in our case the cou-
plings y′s are not bounded by neutrino masses such that
the constraints are much relaxed. We have to check the
conditions for leptogenesis, first the amount of the baryon
asymmetry,

nB

s
= −

28

79

nL

s
= −1.36 × 10−3ε1η = 9 × 10−11, (35)

where η is the efficiency factor. For maximal efficiency,
η = 1, we have the constraint[15]

y(2) =

√

Im[(y1α)(y∗
2α)]2

∑

α(y1α)(y∗
1α)

≥ 1.05 × 10−3

√

MN2

MN1

, (36)

which means that at least one of the y2α couplings is of
order 10−3 ×

√

MN2/MN1. The second constraint comes
from the out-of-equilibrium condition, it reads

ΓN1 < H(T ) =

√

4π3g∗
45

T 2

Mpl
|T=MN1

. (37)

We have

y(1) =

√

∑

i

|y1i|2 < 3 × 10−4

√

MN1

109GeV
. (38)

Thus a hierarchical Yukawa couplings to different species
of Ni reads

y(1)

y(2)
< 0.28 ×

√

MN1

MN2

MN1

109GeV
. (39)

One should mention here that in this mechanism the
small coupling y(1) was used to satisfy the out-of-
equilibrium condition, while the large coupling y(2) cor-
responds to the amount of CP asymmetry we need. From
these conditions, we can find the TeV solution of lepto-
genesis, for example, if MN1 = 1TeV , MN2 = 5TeV ,
y(2) ' 2.3 × 10−3, and y(1) ' 3 × 10−7. The effect of
CP asymmetry from the left-handed sector leptogenesis
is constrained by the scale of the neutrino mass and we
find that the right-handed one gives the dominate con-
tribution.

Note that there will be extra washout effects due to
gauge interactions because of the non-trivial quantum
numbers carried by Ni. A similar washout effects can be
found in type II seesaw with decaying scalar triplet [16]
and type III seesaw with decaying fermionic triplet [17].
It was shown in [16, 17] that due to the Boltzmann sup-
pression factor at temperatures below the gauge boson
masses, they can not wash-out the lepton asymmetry in
an efficient way. We should emphasis here that the DM
φ0

2 is formed in the decays of S− (in the process of nu-
cleosynthesis) and Ni (in the process of leptogenesis).

F. Direct detection and Collider phenomenology

Direct detection of DM can be measured through the
elastic scattering of a DM particle with a nuclei inside

Eq. (5)

The usual matter (light elements) and dark matter are formed at the same period !!



We put all constraints to find a consistent solutions  
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we obtain

(
µ

GeV
)2(

δm

GeV
)2 ≈ 10−11. (32)

We summarize the constraints from
Eqs.(9),(11),(14),(30), and(32):

fg(
µ

GeV
) ∼ 10−8,

fy ∼ 10−4,

gy ∼ 10−5,

f2y2(
δm

GeV
)5 ∼ 10−12,

(
µ

GeV
)2(

δm

GeV
)2 ∼ 10−11.

We find if µ ∼ 10−5 GeV, δm ! 1GeV, f ∼ 10−1, y ∼
10−3, and g ∼ 10−2, one can satisfy above conditions.

E. Leptogenesis

There are two sources of CP asymmetry from each of
the new Yukawa interactions as drawn in Fig.5. The
decay rates of N1 are the sum of

ΓN1 =

∑

α(y1α)2

16π
MN1 and ΓN1 =

(f †f)11
8π

MN1,(33)

FIG. 5: right-handed (left-handed) sector leptogenesis.

which correspond to right-handed (left-handed) lep-
tonic decay modes showed in Fig. 5 respectively. The
latter refers to the canonical leptogenesis where its cou-
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3

16π
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Im[(y†y)21m]
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α(y†y)1α

M1

Mm
, (34)

where we have assumed the hierarchical masses of heavy
neutrinos. Generally, the tiny neutrino masses would give
the constraints that small Yukawa couplings and imply
a highly suppressed CP asymmetry in a low-scale heavy

Majorana neutrino decay. However in our case the cou-
plings y′s are not bounded by neutrino masses such that
the constraints are much relaxed. We have to check the
conditions for leptogenesis, first the amount of the baryon
asymmetry,

nB

s
= −

28

79

nL

s
= −1.36 × 10−3ε1η = 9 × 10−11, (35)

where η is the efficiency factor. For maximal efficiency,
η = 1, we have the constraint[15]

y(2) =

√

Im[(y1α)(y∗
2α)]2
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α(y1α)(y∗
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≥ 1.05 × 10−3

√

MN2

MN1

, (36)

which means that at least one of the y2α couplings is of
order 10−3 ×

√

MN2/MN1. The second constraint comes
from the out-of-equilibrium condition, it reads

ΓN1 < H(T ) =

√

4π3g∗
45

T 2

Mpl
|T=MN1

. (37)
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109GeV
. (38)

Thus a hierarchical Yukawa couplings to different species
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√

MN1
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MN1

109GeV
. (39)

One should mention here that in this mechanism the
small coupling y(1) was used to satisfy the out-of-
equilibrium condition, while the large coupling y(2) cor-
responds to the amount of CP asymmetry we need. From
these conditions, we can find the TeV solution of lepto-
genesis, for example, if MN1 = 1TeV , MN2 = 5TeV ,
y(2) ' 2.3 × 10−3, and y(1) ' 3 × 10−7. The effect of
CP asymmetry from the left-handed sector leptogenesis
is constrained by the scale of the neutrino mass and we
find that the right-handed one gives the dominate con-
tribution.

Note that there will be extra washout effects due to
gauge interactions because of the non-trivial quantum
numbers carried by Ni. A similar washout effects can be
found in type II seesaw with decaying scalar triplet [16]
and type III seesaw with decaying fermionic triplet [17].
It was shown in [16, 17] that due to the Boltzmann sup-
pression factor at temperatures below the gauge boson
masses, they can not wash-out the lepton asymmetry in
an efficient way. We should emphasis here that the DM
φ0

2 is formed in the decays of S− (in the process of nu-
cleosynthesis) and Ni (in the process of leptogenesis).

F. Direct detection and Collider phenomenology

Direct detection of DM can be measured through the
elastic scattering of a DM particle with a nuclei inside

}
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Neutrino masses 

Anomalous muon g-2

Lithium problem

1 The formula

mβ < 1.8eV(Mainz + Troitsk)
mββ < 0.81eV

Σimi < 24eV (1)

nB − nB̄

nγ
≈ 10−10 (2)

LY = fαil
T
LαC−1LLiS

+ + yαiL̄Liφ̃2lRα + gαi l̄Lαφ̃2E
−
Ri + h.c.

= fαi(ν̄αE−
i + l−α N c

i )S+ + yαi(Niφ
+
2 l−Rα − E+

i φ0∗
2 l−Rα)

+gαi(ν̄φ+
2 E−

Ri − l̄αφ0∗
2 E−

Ri) + h.c. (3)

∆aNP
µ(Nk) = − sin δ cos δ

16π2
(fµkyµk)

mµ

Mk
[F (xP1)− F (xP2)]

≈ − sin δ cos δ(fµkyµk)× 10−5∼−6

σ(DMN → DMN) =
G2

F M2
N

2π
(N − (1− 4 sin2 θW )Z)2

i, j = {0, 1, 2, 3, 4} =, 4He/H ∼ 0.08, 7Li/H ∼ 10−10

SBBN : 4He + D →6 Li + γ; Q = 1.47MeV
CBBN : (4HeS−) + D →6 Li + S−; Q & 1.13MeV (4)

µ ∼ 10−5GeV , δm <∼ 1GeV ,

f ∼ 10−1, y ∼ 10−3, and g ∼ 10−2

1



Leptogenesis

The difficulties to have a simple leptogenesis at the TeV-scale 

1. The out-of-equilibrium condition 

One can define a wash-out factor

∆m2
12 > 0 (7)

Ki =
Γi

H(Mi)
! 3× 1016g2

ν(
GeV

Mi
)δ2

Nη (8)

2



2. CP asymmetry   

On the other hand

with function

The amount of matter-antimatter asymmetry leads 

Usually 

∆m2
12 > 0 (7)

Ki =
Γi

H(Mi)
! 3× 1016g2

ν(
GeV

Mi
)δ2

Nη (8)

κ =
1
K

(9)

2



Three possibilities enhancement mechanisms 

1. Mass degeneracy : CP asymmetry induced by self-energy diagram 
display an interesting resonant behavior when the masses of the decaying 
particles are nearly degenerate. 

2. Hierarchy of couplings :  Assuming two particles (A,B) decaying into the 
same decay products. The lighter one A with the suppressed coupling gA 
to reach the out-of-equilibrium condition while the heavier one B with 
unsuppressed coupling gB will produce large CP asymmetry through one-
loop. 

3. Phase space suppression : Instead of tuning down the Yukawa couplings, 
one can simply use the phase space to suppress the wash-out factor while 
at the same time keep a large Yukawa couplings.   
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which means that at least one of the y2α couplings is of order 10−3 ×
√

MN2
/MN1

. The second constraint comes from the out-of-equilibrium con-
dition, it reads

ΓN1
< H(T ) =

√

4π3g∗
45

T 2

Mpl
|T=MN1

. (29)

We have

y(1) =

√

∑

i

|y1i|2 < 3 × 10−4

√

MN1

109GeV
. (30)

By considering the Boltzmann equations, we obtain,

y(1)

y(2)
< 0.28 ×

√

MN1

MN2

MN1

109GeV
. (31)

From these conditions, we can find the TeV solution of leptogenesis, such as,
if MN1

= 1TeV , MN2
= 5TeV , y(2) " 2.3 × 10−3, and y(1) " 3 × 10−7.

Note that the extra washout effects of Ni decaying through and/or into
gauge particles are depicted in Fig. 7. However, it was showed [3] that the
gauge interactions involve two particles and are therefore doubly Boltzmann
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ε1 =
Γ(N1 → lφ+

2 ) − Γ(N1 → l̄φ−
2 )

Γ(N1 → lφ+
2 ) + Γ(N1 → l̄φ−

2 )
=

1

8π

∑

m #=1

Im[(y†y)21m]
∑

α(y†y)1α
{fv(

M2
m

M2
1

) + fs(
M2

m

M2
1

)}

=
3

16π

∑

m #=1

Im[(y†y)21m]
∑

α(y†y)1α

M1

Mm
, (26)

where we assumed the hierarchy masses of heavy neutrinos. Due to neutrino
mass constraints, a low-scale heavy Majorana neutrinos must generally have
tiny Yukawa couplings and the CP asymmetry will be highly suppressed. How-
ever in our case the couplings y′s are not associated with neutrino masses, the
constraints are much relaxed. We have to check the conditions for leptogenesis,
first the amount of the baryon asymmetry,

nB

s
= −

28

79

nL

s
= −1.36 × 10−3ε1η = 9 × 10−11, (27)

where η is the efficiency factor. For maximal efficiency, η = 1, we have the
constraint

y(2) =

√

Im[(y1α)(y∗
2α)]2

∑

α(y1α)(y∗
1α)

≥ 1.05 × 10−3

√

MN2

MN1

, (28)
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on the lifetime of S−. Since we assume MEi
∼ O(1)TeV ,the decay rate of S±

is roughly,

Γs|αβ(Ni) ≈
(fαiyiβ)2

30π3M4
Ni

× (δm)5(1 −
5m2

l

δm2
)

≈ f2
αiy

2
iβ × 10−15(

δm

1GeV
)5GeV, (23)

where δm = Ms − Mφ2
. We can see the lifetime will be around

ταβ ≈ 6.6 × f−2
αi y−2

iβ × (
δm

1GeV
)−5 × 10−10s. (24)

As we can see from the neutrino masses generation that the couplings f ∼
O(10−4∼−5) if µ ∼ O(100)GeV , and the muon anomalous magnetic moment
gives the y ∼ 10−1 − 10−2. In order to satisfy the constraint from CBBN,
we need the masses of S− and dark matter φ2 have to be almost degenerate
to give us proper lifetime constrained by data. Let’s take δm ∼ O(1)GeV ,
that will bring us the final states of τ is not allowed. We have to remember
there is roughly factor of O(10) by including all the decay modes. And the
final states with electrons are much less suppressed, we will take the associated
Yukawa couplings smaller. Combine all of these we can have the prediction to
the pattern of neutrino mass structure is normal hierarchy.

Li/H = (1 ∼ 2) × 10−10 , Li/H = (1.23 ± 0.06) × 10−10,
Li/H = (2.19 ± 0.28)× 10−10

7Li/H = (5.24+0.71
−0.62) × 10−10 , 6Li/7Li ≤ 0.15

6Li/7Li ∼ 3.3 × 10−5 , X−

SBBN :4 He + D →6 Li + γ , δm ≤ 1GeV

1.5 Leptogenesis

There are two sources of CP asymmetry and lepton number violation processes
from each of the new Yukawa interactions as drawn in Fig. 5 and 6. The decay
rates of N1 are

ΓN1
=

∑

α(y1α)2

16π
MN1

and ΓN1
=

(f †f)11
8π

MN1
(25)

corresponding to Fig. 5 and Fig. 6 respectively. The latter one is similar
to the one in canonical leptogenesis where its couplings are related to neutrino
masses. Let’s consider the possibility that the scalar singlet φ−

2 as the final
states and yαi are the couplings not related to neutrino masses. We have the
CP asymmetry

8

The right-handed sector is not constrained by neutrino masses 

Fikugita,Yanagita(86)

1 The formula

mβ < 1.8eV(Mainz + Troitsk)
mββ < 0.81eV

Σimi < 24eV (1)

nB − nB̄

nγ
≈ 10−10 (2)

LY = fαil
T
LαC−1LLiS

+ + yαiL̄Liφ̃2lRα + gαi l̄Lαφ̃2E
−
Ri + h.c.

= fαi(ν̄αE−
i + l−α N c
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+
2 l−Rα − E+

i φ0∗
2 l−Rα)

+gαi(ν̄φ+
2 E−

Ri − l̄αφ0∗
2 E−

Ri) + h.c. (3)

∆aNP
µ(Nk) = − sin δ cos δ

16π2
(fµkyµk)

mµ

Mk
[F (xP1)− F (xP2)]

≈ − sin δ cos δ(fµkyµk)× 10−5∼−6

σ(DMN → DMN) =
G2

F M2
N

2π
(N − (1− 4 sin2 θW )Z)2

i, j = {0, 1, 2, 3, 4} =, 4He/H ∼ 0.08, 7Li/H ∼ 10−10

SBBN : 4He + D →6 Li + γ; Q = 1.47MeV
CBBN : (4HeS−) + D →6 Li + S−; Q & 1.13MeV (4)

µ ∼ 10−5GeV , δm <∼ 1GeV ,

f ∼ 10−1, y ∼ 10−3, and g ∼ 10−2

(mν)αβ =
∑

i

ỸναiỸνβi

16π2

O(λΦη)v2

Mi
ω(

M2
i

m2
η

) (5)

ω(zi) = (
zi

1− zi
)[1 +

zi ln zi

1− zi
] (6)

1
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where we assumed the hierarchy masses of heavy neutrinos. Due to neutrino
mass constraints, a low-scale heavy Majorana neutrinos must generally have
tiny Yukawa couplings and the CP asymmetry will be highly suppressed. How-
ever in our case the couplings y′s are not associated with neutrino masses, the
constraints are much relaxed. We have to check the conditions for leptogenesis,
first the amount of the baryon asymmetry,

nB

s
= −

28

79

nL

s
= −1.36 × 10−3ε1η = 9 × 10−11, (27)

where η is the efficiency factor. For maximal efficiency, η = 1, we have the
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where we assumed the hierarchy masses of heavy neutrinos. Due to neutrino
mass constraints, a low-scale heavy Majorana neutrinos must generally have
tiny Yukawa couplings and the CP asymmetry will be highly suppressed. How-
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where we assumed the hierarchy masses of heavy neutrinos. Due to neutrino
mass constraints, a low-scale heavy Majorana neutrinos must generally have
tiny Yukawa couplings and the CP asymmetry will be highly suppressed. How-
ever in our case the couplings y′s are not associated with neutrino masses, the
constraints are much relaxed. We have to check the conditions for leptogenesis,
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Out of equilibrium condition
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which means that at least one of the y2α couplings is of order 10−3 ×
√

MN2
/MN1

. The second constraint comes from the out-of-equilibrium con-
dition, it reads

ΓN1
< H(T ) =

√

4π3g∗
45

T 2

Mpl
|T=MN1

. (29)

We have

y(1) =

√

∑

i

|y1i|2 < 3 × 10−4

√

MN1

109GeV
. (30)

By considering the Boltzmann equations, we obtain,

y(1)

y(2)
< 0.28 ×

√

MN1

MN2

MN1

109GeV
. (31)

From these conditions, we can find the TeV solution of leptogenesis, such as,
if MN1

= 1TeV , MN2
= 5TeV , y(2) " 2.3 × 10−3, and y(1) " 3 × 10−7.

Note that the extra washout effects of Ni decaying through and/or into
gauge particles are depicted in Fig. 7. However, it was showed [3] that the
gauge interactions involve two particles and are therefore doubly Boltzmann
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if MN1

= 1TeV , MN2
= 5TeV , y(2) " 2.3 × 10−3, and y(1) " 3 × 10−7.

Note that the extra washout effects of Ni decaying through and/or into
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which means that at least one of the y2α couplings is of order 10−3 ×
√

MN2
/MN1

. The second constraint comes from the out-of-equilibrium con-
dition, it reads

ΓN1
< H(T ) =

√

4π3g∗
45

T 2

Mpl
|T=MN1

. (29)

We have

y(1) =

√

∑

i

|y1i|2 < 3 × 10−4

√

MN1

109GeV
. (30)

By considering the Boltzmann equations, we obtain,

y(1)

y(2)
< 0.28 ×

√

MN1

MN2

MN1

109GeV
. (31)

From these conditions, we can find the TeV solution of leptogenesis, such as,
if MN1

= 1TeV , MN2
= 5TeV , y(2) " 2.3 × 10−3, and y(1) " 3 × 10−7.

Note that the extra washout effects of Ni decaying through and/or into
gauge particles are depicted in Fig. 7. However, it was showed [3] that the
gauge interactions involve two particles and are therefore doubly Boltzmann

10

Consistent with the 
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Test of the model     

Direct detection

Experimental limit on Z exchange -- 
MH0 - MA0 ~ (102)keV

1.3 Dark matter

There are many possible dark matter (DM) candidates in the theory beyond
SM, such as supersymmetric, little Higgs, and extra dimension theories. The
neutral component of the inserted doublet scalar will be the DM candidate in
our model and the study of this DM have been investigated in literature [1].
Since φ0

2 consists two degrees of freedom (scalar and pseudoscalar components),
and their mass difference is determined by the sign of λ5 in the potential. If we
use the convention φ0

2 = φ0
2R + iφ0

2I , the masses of φ0
2R and φ0

2I are

m2
2 +

v2

2
(λ3 + λ4 ± λ5). (17)

Thus if λ5 is positive(negative), φ0
2I(φ

0
2R) is the DM. A detailed discussions

of the relations among the DM relic abundance, the scalar quartic couplings
and the mass splitting among scalars are showed in [2]. The lower bound of the
DM mass is

Mφ0

2
≥ 534GeV. (18)

A local distribution of DM could be detected by measuring the energy de-
posited in a low background detector by the scattering of a DM with a nuclei of
the detector. There are two kinds of processes at tree level, φ0

2Rq → Z → φ0
2Iq

and φ0
2Rq → h → φ0

2Rq. The experiments have reached such a level of sensitivity
that the Z exchange contribution is excluded by current limits. However, one
can evade this constraint by a mass splitting between φ0

2R and φ0
2I is higher

than a few 100KeV . The cross section of the scatterings mediated by Higgs is

σh
DM−N ≈

f2
Nλ2

φ0

2

4π
(

m2
N

mDMm2
h

)2. (19)

1.4 Lithium problem

The lithium problem arises from the significant discrepancy between the primor-
dial 7Li abundance as predicted by Standard Big Bang Nucleosynthesis (BBN)
and the WMAP baryon density, and the pre-Galactic lithium abundance in-
ferred from observations of metal-poor stars. It has been generally accepted
this is problem by using the standard solar model of Bahcall, and recent solar
neutrino data one can exclude systematic variations of the magnitude need to
resolve the SBBN 7Li problem at the ≥ 95% confidence level.

One of the solution to this is that so-called Catalytic Big Bang Nucleosynthe-
sis (CBBN) which states if a long-live negatively-charged particle exists, it would
capture a light element previously synthesized in SBBN and form a Coulombic
bound state. The exotic atom will work as a catalyzer since the bound state will
induce the reactions which will produce a suitable abundance of 6Li and 7Li
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σh
DM−N ≈

f2
Nλ2

φ0
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4π
(

m2
N

mDMm2
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)2, (19)

and if mDM > MW , there are contributions to elastic scattering through
exchange gauge bosons at 1-loop level,

σ1−loop =
9f2

Nπα4
2m

4
N

64M2
W

(
1

M2
W

+
1

m2
h

)2. (20)

1.4 Lithium problem

The lithium problem arises from the significant discrepancy between the primor-
dial 7Li abundance as predicted by Standard Big Bang Nucleosynthesis (BBN)
and the WMAP baryon density, and the pre-Galactic lithium abundance in-
ferred from observations of metal-poor stars. It has been generally accepted
this is problem by using the standard solar model of Bahcall, and recent solar

6

Independent of DM mass

LHC search see M. Hirsch,K.S. Babu
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Which is independent on DM mass and can be reached the sensitivity at the
next-generation experiment around σ ∼ 10−8 − 10−10 pb.

µ = λv , ρ0 = 0.3GeV/cm3

1.4 Lithium problem

The lithium problem arises from the significant discrepancy between the primor-
dial 7Li abundance as predicted by Standard Big Bang Nucleosynthesis (BBN)

6

mh = 120 GeV

Next generation experiment

T.Hambye, el(09)



Conclusions

The neutrino masses generated through the radiative seesaw mechanism 
with GIM suppression from singly charged Higgs mixing is presented.

Anomalous muon magnetic moment is given through the mechanism 
similar to neutrino masses generation.

Dark matter candidate is realized in inert doublet scalar, and a direct 
measurement is possible in next-generation experiments.

Lithium problem can be solved by a long-lived singly charged scalar S-  to 
by Catalyzed BBN method. 

DM is produced during the period of BBN. 

TeV-scale leptogenesis utilizing right-handed lepton sector as well as left-
handed is presented.

The model can be tested in near future at collider.  


