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Introduction 

The simplest model with a WIMP candidate is SM3+D:  

the minimal SM with 3 generations of fermions (SM3)  

plus a real scalar field D, called darkon, as dark matter.  

It’s been much studied, and its DM sector is compatible with 
current experimental data.  

 

The SM with a 4th sequential generation (SM4) has received lots 
of attention in recent years. 

Among the reasons are it 

is not ruled out by electroweak precision tests 

offers possible resolutions for some anomalies                                          

in flavor-changing processes 

might solve baryogenesis-related problems. 
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Introduction 

It is then of interest also to consider SM4+D. 

If a new sequential family exists, SM4+D is the simplest model having 

a WIMP candidate. 

 

The darkon in SM4+D can have major implications for the Higgs 
sector not present in SM3+D 

 

The extra fermions in SM4+D may lead to darkon-related 
experimental signatures absent or suppressed in SM3+D 

 

The LHC, and perhaps also the Tevatron, may be able to produce 
the new particles and/or detect their effects. 
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Relic density in SM3+D 

The interactions of any WIMP candidate with SM3 particles must 
satisfy constraints from relic-density data. 

The darkon annihilation rate into SM3 particles is related to its   
relic density ΩD by  

 

 

 

     h is the Hubble constant in units of 100km/(s·Mpc),  

     σann  the darkon annihilation cross-section into SM3 particles,   

     vrel  the darkon-pair relative speed in their cm frame.     

WMAP7 & other data yield         

We use the 90%-C.L. range          

J Tandean 1LHCFGW, 24 Apr 2010  8 

Kolb & Turner, 1990 

Komatsu et al., 2010 



Darkon annihilation rate 

For  mD ≤ mh  the relic density results from darkon annihilation 
into SM3 particles via Higgs (h) exchange. 
 

 

 

 

The h-mediated annihilation cross-section 
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Darkon annihilation rate 

For  mD > mh  contributions from  DD  hh  need to be included 
in  σann. 
 

 

 

 

 

 

For large darkon masses,  mD >> mW,Z,h,  these dominate, along 
with  DD  h* WW,ZZ  
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Darkon annihilation rate in SM4+D 

The new family/generation in SM4 consists of 

quarks:  t’  and  b’  

leptons:  ν’  and  l’  

 

Their presence increases the total Higgs width mainly via 

h   fermion  antifermion  (if kinematically allowed) 

loop effects in  h  gg   

 

This modifies the darkon annihilation cross-section σann 
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Constraints on masses of new fermions 

From searches at LEP  

 

From searches at Tevatron 

 

Electroweak precision data prefer 

 

 

Perturbative unitarity implies mt’ ,b’  not exceed  ~600 GeV   

 

For definiteness, we take 

mt’  = 500 GeV  and  mb’  = mt’  – 55 GeV   

mν’  = 150 GeV  and  ml ’ = 200 GeV 
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Darkon-Higgs coupling 

The darkon-Higgs coupling λ for each mD can be inferred from 

σannvrel range allowed by ΩD constraint, once mh is specified. 

 

Allowed ranges of λ vs. mD for  mh= 115,200,300 GeV  in SM3+D and 

SM4+D with  mt’ = 500 GeV  

 

 

 

 

 

 

 

 

The models comfortably satisfy the relic-density constraint. 

For lower mD values,  λ  is not very small.  
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Darkon-nucleon elastic cross-section 

The direct detection of dark matter is through the recoil of nuclei 
when a darkon hits a nucleon N. 

In SM+D, this occurs via Higgs exchange in the t-channel elastic 
scattering DN  DN. 

 

Amplitude for DN  DN 

 

 

 

 

Cross section of DN  DN 
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Higgs-nucleon couplings 

After relating Higgs-quark couplings to Higgs-nucleon couplings, 
in SM3 we estimate 

 

 

In SM4 the new quarks cause gNNh to increase by ~23%.  

 

In both models, estimates of gNNh involve uncertainties within 
factors of 2. 

 

With  λ  and  gNNh  known, one can predict                                                

the darkon-nucleon elastic cross-section  σel                               
for specific mD and mh values. 
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Darkon-nucleon elastic cross-section 

Predicted cross-section in SM3+D & SM4+D                                                                                                                                      

for  mh = 115, 200, 300 GeV 

 

 

 

Large regions in the parameter                                                   
space of the two models are                                                 
consistent with current data,                                  & CDMS II, 
although sizable part of it is                                                             
now excluded 
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Higgs branching ratios in SM4 

In the absence of the darkon,  h  gg  dominates for 

mh from  ~100  to ~140 GeV 
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Since the darkon is stable,  h  DD  mode will be invisible. 

If  mh > 2mD,  this new channel is open, increasing  B(h  invisible) 

If  mh < 2mD,  B(h  invisible) = B(h  invisibleSM),  not affected by the 

introduction of the darkon.  

 

Darkon presence in                                                                                         
both SM3+D and                                                                          
SM4+D can lead to                                                                                
huge enhancement of                                                                                             
Higgs’ total width via                                                                       a  
h  DD  if  mh > 2mD. 

 

This can significantly                                                                       
affect Higgs searches 

 

Higgs studies at LHC                                                                        
are complementary to                                                                     
DM direct searches in                                                                         
probing darkon properties 

Higgs invisible decay modes 
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Probing lower darkon masses 

Current and near-future direct DM searches are not expected to 
be sensitive to mD less than a few GeV. 

Such darkon masses can be probed using decays of mesons 
containing the b quark. 

 

Strong constraints on low-mD values can be obtained from the 
B-meson decay   B  KDD  

It contributes to the B decay into K plus missing energy. 

This is sensitive to mD up to  ~2.4 GeV 

Experimental information is available. 

 

For larger mD up to  ~5 GeV  there may also be bounds from  
future measurements of spin-1 bottomonium decay     γ DD. 

Present experimental limits on     γ + missing E  are not yet 

restrictive enough. 
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B KDD 

This arises from the quark decay b  sh*  sDD  with the 

bsh* vertex generated at one loop.  

The loop contains up-type quarks and W boson. 

 

 

 

The heaviest quarks in the loop dominate the amplitude. 

 

The darkon-Higgs coupling λ for the hDD vertex is found from 

 

 

 

But the Higgs decay rates for low mh are not precisely known.   
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Constraints for B KDD 

From the experimental bound 

    and the SM3 prediction   

    we infer  
 

Similar bound in SM4+D. 

 

Prediction in SM3+D 

involve significant                                                                  

uncertainties 

SM4+D prediction                                                     
comparable 

 

Much of the mD range below  ~1.5 GeV  is excluded.  

 

Improved data from future measurements are needed for more 
definitive conclusion. 
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Flavor-changing heavy quark decays 

The new quarks in SM4+D can have important implications for 
the darkon sector that are lacking or absent in SM3+D. 

For instance 

In SM3+D the loop-induced top decay t  ch*  cDD  is suppressed 

due to GIM cancelation and has a branching ratio of order 10–14   

But in SM4+D the heavy b’-quark can cause the rate to be enhanced 

by orders of magnitude. 

 

Some of the decay modes of t’ and b’ are 

t’  (c, t)h*  (c, t)DD   

b’  (s,b)h*  (s,b)DD  

If observed, they can probe mD from zero to hundreds of GeV. 

 

These decays can have sizable rates and may be detectable at 
the LHC or even the Tevatron. 
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t  cDD,  t ‘  cDD,  t ‘  tDD,  

 

 

 

 

 

 

 

 

 

 

 

 

The top decay may be undetectable in the near future, but 
the t’ decays are potentially measurable. 
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b’  sDD,   b’   bDD,  

 

 

 

 

 

 

 

 

 

 

 

 

These decays are also expectedly detectable. 
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ΩDh2 =
8.5×10−11 x f

g* J (x f )GeV 2

J (x f ) = dx
x f

∞

∫
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x2

x = m / T
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π
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4
e
− x v2

4
0

∞

∫ dv

σv  Α + Bv2 ,(v 1← Tf  mD / 20 mD ,non − relativistic)

A : s − wave, B : s, p − wave

Relic today is slightly different from 
the abundance at freeze out   

Time of freeze out determined first 
from H=Γ  

WIMP miracle 



Many	
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Dark Matter is called <-- relic & halo 

Direct Detection 

Indirect Detection  

Collider Searches 

WIMPs pair annihilation  WIMP-Nuclei elastic scattering  

29 

Can not say a signal does is  
due to WIMP scattering…    

Too complicated 
processes involved…    

Hard to produce if 
heavy…    
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