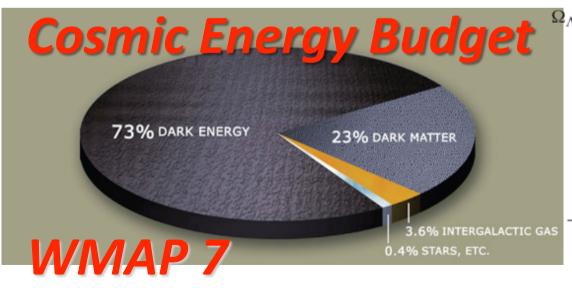
Scalar Dark Matter and Standard Model with Four Generations

e-Print: arXiv:1004.3464 [hep-ph]

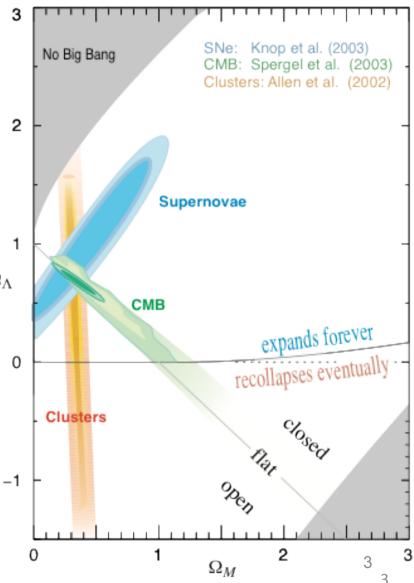
Ho-Chin Tsai

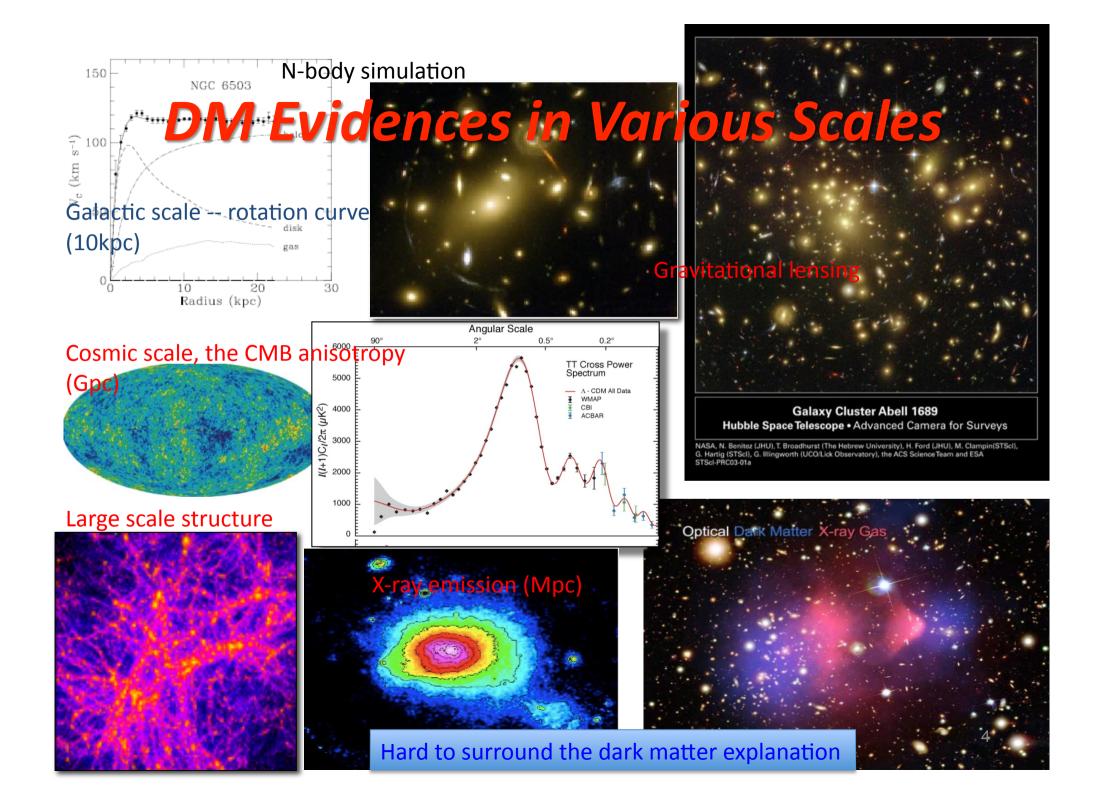
In Collaboration with XG He, SY Ho, J Tandean (NTU)

CYCU May 25, 2010


Outline

- 1. Introduction
- 2. Standard Model + Scalar Dark Matter
- 3. 4th Generation Fermions added
- 4. Darkon Effect on Higgs sector
- 5. Constraint from B decay
- 6. FCNC decay of Top quark and b', t'
- 7. Conclusions


1. Introduction


Hot Big-Bang Cosmology
Theoretical Support:
GR in FRW metric, particle physics, ...
Experimental support:
Hubble's Law, CMB, BBN, ...
DM PreBBN ?

Global fit to various cosmological parameter

 $\Omega_D h^2 = 0.1123 \pm 0.0035$

Introduction

- The simplest model with a WIMP candidate is SM3+D:
 - the minimal SM with 3 generations of fermions (SM3)

Silveira & Zee, 1985

- plus a real scalar field D, called darkon, as dark matter.
- It's been much studied, and its DM sector is compatible with current experimental data.
- The SM with a 4th sequential generation (SM4) has received lots of attention in recent years.
- Among the reasons are it
 - is not ruled out by electroweak precision tests
 - offers possible resolutions for some anomalies in flavor-changing processes
 - might solve baryogenesis-related problems.

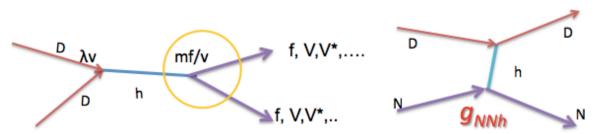
```
Kribs et al., 2007
Chanowitz, 2009
Hou et al., . . .
Soni et al., . . .
Hou, 2009
```

Introduction

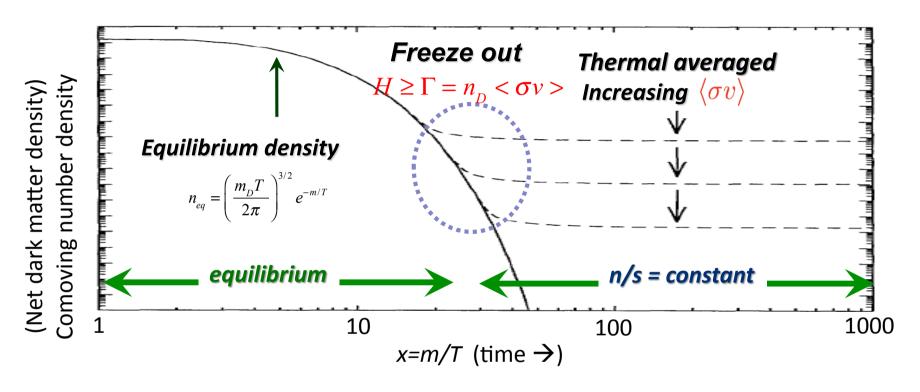
- It is then of interest also to consider SM4+D.
 - If a new sequential family exists, SM4+D is the simplest model having a WIMP candidate.
- The darkon in SM4+D can have major implications for the Higgs sector not present in SM3+D
- * The extra fermions in SM4+D may lead to darkon-related experimental signatures absent or suppressed in SM3+D
- The LHC, and perhaps also the Tevatron, may be able to produce the new particles and/or detect their effects.

Simplest Model SM+D

Add a real SM gauge singlet, Z2 symmetry


- -> stable, weakly interacting
- -> couple to Higgs only by renormalization

$$L_D = \frac{1}{2} \partial^{\mu} D \partial_{\mu} D - \frac{\lambda_D}{4} D^4 - \frac{m_0^2}{2} D^2 - \lambda D^2 H^{\dagger} H$$

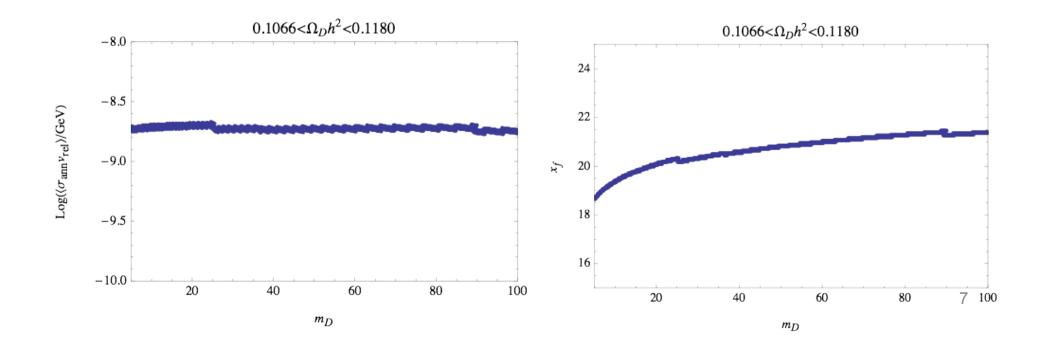

Few parameters

$$L_{D} = \frac{1}{2} \partial^{\mu} D \partial_{\mu} D - \frac{\lambda_{D}}{4} D^{4} - \frac{(m_{0}^{2} + \lambda v^{2})}{2} D^{2} - \frac{\lambda}{2} D^{2} h^{2} - \lambda v D^{2} h$$

lambda_D DD to hh

Dark Matter as Thermal Relic

Large cross section reduces relic abundance.


The competing effect of expansion and annihilation are described by the Boltzmann eq

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle (n^2 - n_{eq}^2) \quad T \ge m_D : H \propto T^2 \& n \propto T^3 \to n = n_{eq}$$
$$T_f \simeq m_D / 20, (x_f \simeq 20)$$

Reproduce DM relic

$$\Omega_D h^2 \simeq \frac{1.07 \times 10^9 \, x_f}{\sqrt{g_* \, m_{\rm Pl} \, \langle \sigma_{\rm ann} v_{\rm rel} \rangle \, {\rm GeV}}} \; , \qquad x_f \simeq \ln \frac{0.038 \, m_{\rm Pl} \, m_D \, \langle \sigma_{\rm ann} v_{\rm rel} \rangle}{\sqrt{g_* \, x_f}} \; , \label{eq:Omega_Dh}$$

h is the Hubble constant in units of 100 km/(s Mpc). g_* is the relativistic degrees of freedom with mass less than T_f

Relic density in SM3+D

- The interactions of any WIMP candidate with SM3 particles must satisfy constraints from relic-density data.
- The darkon annihilation rate into SM3 particles is related to its relic density Ω_D by

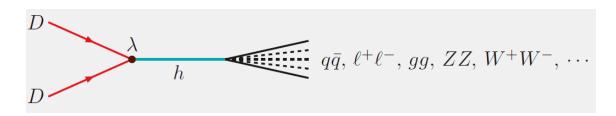
$$\Omega_D h^2 \sim \frac{0.1 \text{ pb}}{\langle \sigma_{\text{ann}} v_{\text{rel}} \rangle}$$

Kolb & Turner, 1990

h is the Hubble constant in units of 100 km/(s·Mpc), $\sigma_{\rm ann}$ the darkon annihilation cross-section into SM3 particles, $v_{\rm rel}$ the darkon-pair relative speed in their cm frame.

WMAP7 & other data yield $\Omega_D h^2 = 0.1123 \pm 0.0035$

$$\Omega_D h^2 = 0.1123 \pm 0.0035$$

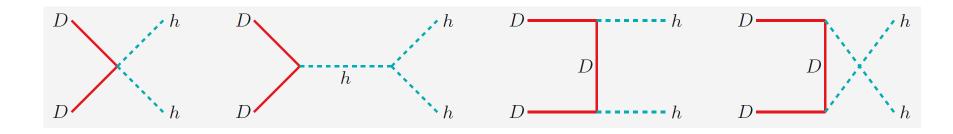

Komatsu et al., 2010

We use the 90%-C.L. range $0.1065 \le \Omega_D h^2 \le 0.1181$

$$0.1065 \le \Omega_D h^2 \le 0.1181$$

Darkon annihilation rate

* For $m_D \le m_h$ the relic density results from darkon annihilation into SM3 particles via Higgs (h) exchange.

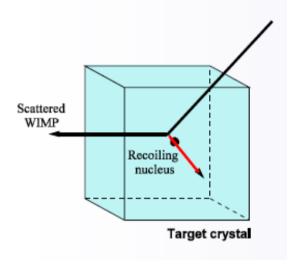

The h-mediated annihilation cross-section

$$\sigma_{\rm ann} v_{\rm rel} = \frac{8\lambda^2 v^2}{(4m_D^2 - m_h^2)^2 + \Gamma_h^2 m_h^2} \frac{\sum_i \Gamma(\tilde{h} \to X_i)}{2m_D}$$

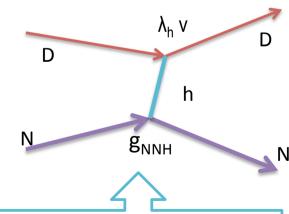
 \tilde{h} is a virtual Higgs boson having the same couplings to other states as the physical h of mass $m_h > m_D$, but with invariant mass $\sqrt{s} = 2m_D$, and $\tilde{h} \to X_i$ any possible decay mode of \tilde{h} .

Darkon annihilation rate

* For $m_D > m_h$ contributions from $DD \to hh$ need to be included in σ_{ann} .

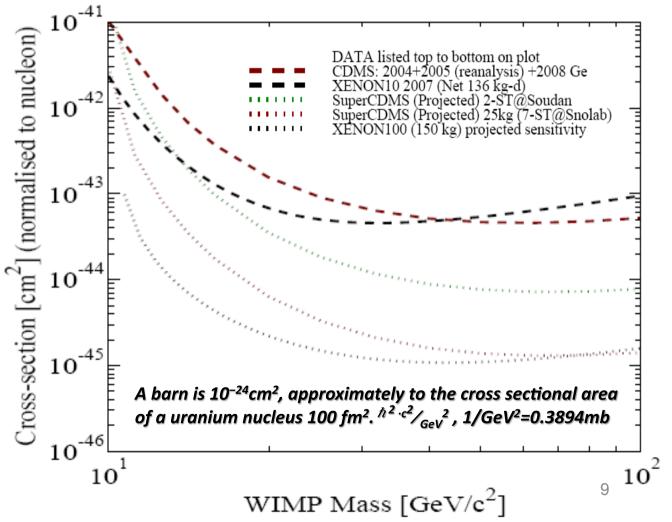

* For large darkon masses, $m_D >> m_{W,Z,h}$, these dominate, along with $DD \rightarrow h^* \rightarrow WW,ZZ$

Darkon annihilation rate in SM4+D


- The new family/generation in SM4 consists of
 - quarks: t' and b'
 - leptons: v' and ℓ'
- Their presence increases the total Higgs width mainly via
 - $h \rightarrow$ fermion antifermion (if kinematically allowed)
 - loop effects in $h \rightarrow gg$
- * This modifies the darkon annihilation cross-section σ_{ann}

$$\sigma_{\rm ann} \, v_{\rm rel} \; = \; \frac{8\lambda^2 v^2}{\left(4m_D^2 - m_h^2\right)^2 + \Gamma_h^2 \, m_h^2} \, \frac{\sum_i \Gamma(\tilde{h} \to X_i)}{2m_D}$$

Dark Matter Direct Search Experiment



$$\sigma_{\rm el}^{\rm SM} \simeq \frac{\lambda^2 g_{NNh}^2 v^2 m_N^2}{\pi \left(m_D + m_N\right)^2 m_h^4}$$

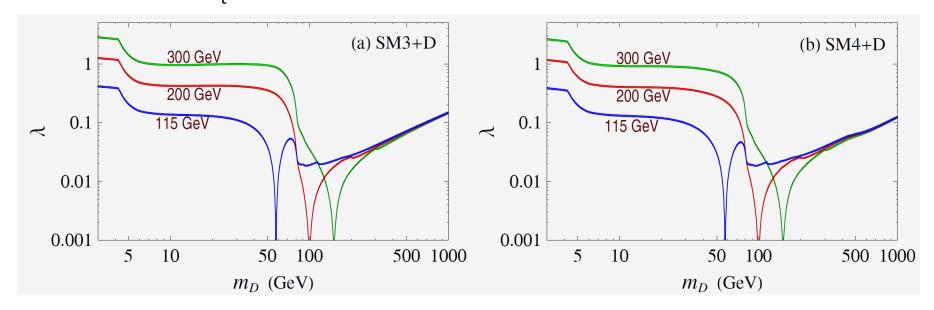
Effective Higgs-nucleon coupling is needed

The current and projected limits for the spin-independent WIMPnucleon elastic scattering cross-section as a functions of WIMP mass. http://dmtools.berkeley.edu/limitplots

Constraints on masses of new fermions

- * From searches at LEP $m_{\ell'} > 100.8 \, \mathrm{GeV}$ and $m_{\nu'} > 90.3 \, \mathrm{GeV}$
- * From searches at Tevatron $m_{t'} > 311 \, {\rm GeV} \, {\rm and} \, m_{b'} > 338 \, {\rm GeV}$

Electroweak precision data prefer


Kribs et al., 2007

$$m_{t'} - m_{b'} \simeq [5 + \ln(m_h/115 \,\text{GeV})] \times 10 \,\text{GeV}$$
 and $30 \,\text{GeV} \lesssim m_{\ell'} - m_{\nu'} \lesssim 60 \,\text{GeV}$

- * Perturbative unitarity implies $m_{t',b'}$ not exceed ~600 GeV
- For definiteness, we take
 - $m_{t'} = 500 \text{ GeV}$ and $m_{b'} = m_{t'} 55 \text{ GeV}$
 - $m_{v'} = 150 \,\text{GeV}$ and $m_{\ell'} = 200 \,\text{GeV}$

Darkon-Higgs coupling

- * The darkon-Higgs coupling λ for each m_D can be inferred from $\langle \sigma_{\rm ann} v_{\rm rel} \rangle$ range allowed by Ω_D constraint, once m_h is specified.
- Allowed ranges of λ vs. m_D for m_h = 115,200,300 GeV in SM3+D and SM4+D with $m_{t'}$ = 500 GeV

- The models comfortably satisfy the relic-density constraint.
- * For lower m_D values, λ is not very small.

Darkon-nucleon elastic cross-section

The direct detection of dark matter is through the recoil of nuclei when a darkon hits a nucleon N.

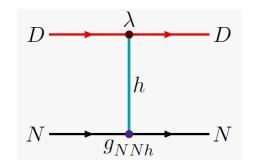
In SM+D, this occurs via Higgs exchange in the t-channel elastic scattering $DN \rightarrow DN$.

Amplitude for $DN \rightarrow DN$

$$\mathcal{M}_{\rm el} \simeq \frac{2\lambda \, g_{NNh} \, v}{m_h^2} \, \bar{N} N$$

 $\sigma_{
m el} \simeq \frac{\lambda^2 g_{NNh}^2 v^2 m_N^2}{\pi (m_D + m_N)^2 m_h^4}$

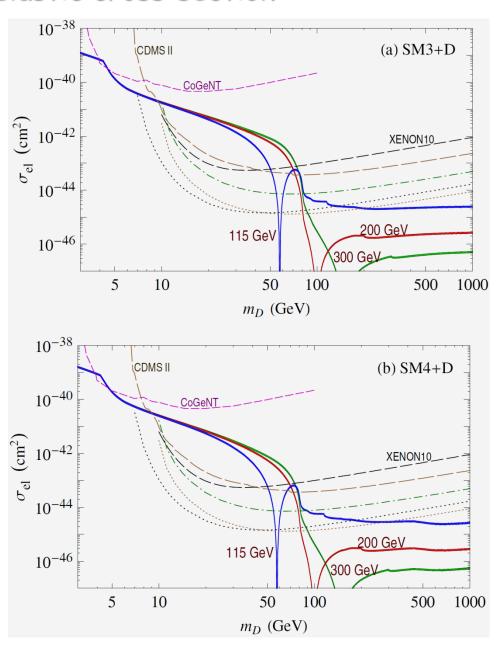
Cross section of $DN \rightarrow DN$


Higgs-nucleon couplings

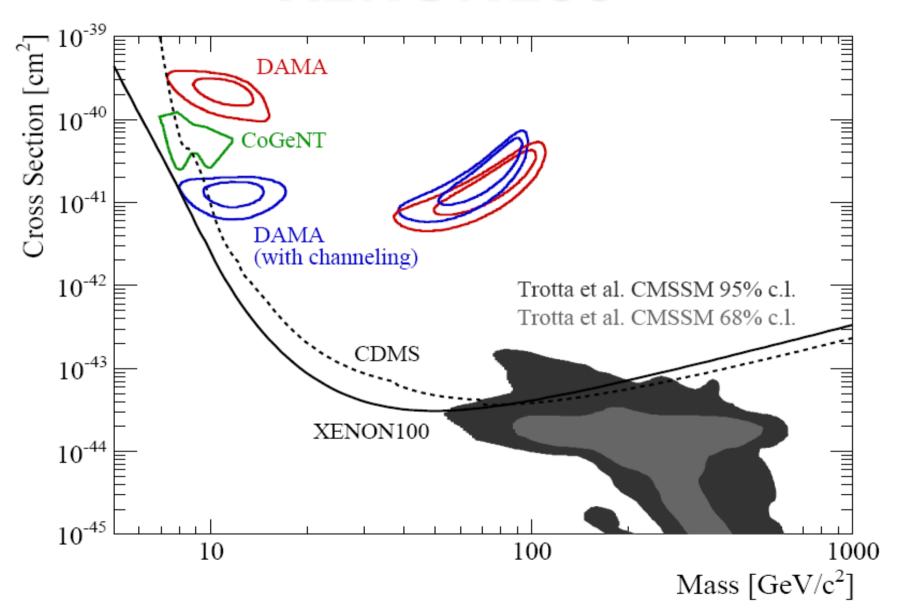
After relating Higgs-quark couplings to Higgs-nucleon couplings, in SM3 we estimate

 $g_{NNh} \simeq 1.71 \times 10^{-3}$

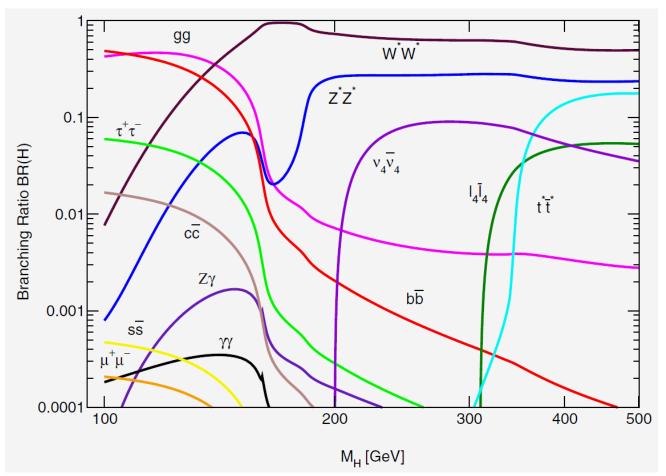
He, Li, Li, JT, Tsai, 2009


- In SM4 the new quarks cause g_{NNh} to increase by ~23%.
- In both models, estimates of g_{NNh} involve uncertainties within factors of 2.
- * With λ and g_{NNh} known, one can predict the darkon-nucleon elastic cross-section $\sigma_{\rm el}$ for specific m_D and m_h values.

Darkon-nucleon elastic cross-section


• Predicted cross-section in SM3+D & SM4+D for m_h = 115, 200, 300 GeV

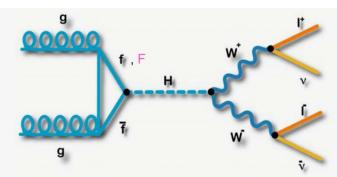
 Large regions in the parameter space of the two models are consistent with current data, although sizable part of it is now excluded


Disputed

XENON100

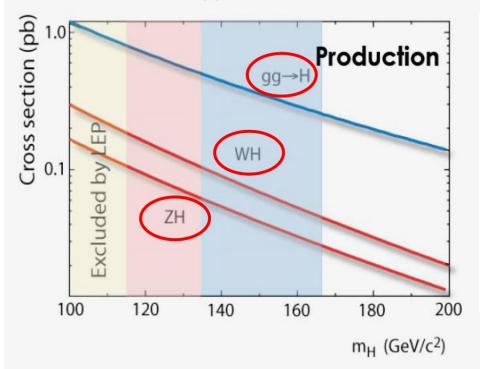
Higgs branching ratios in SM4

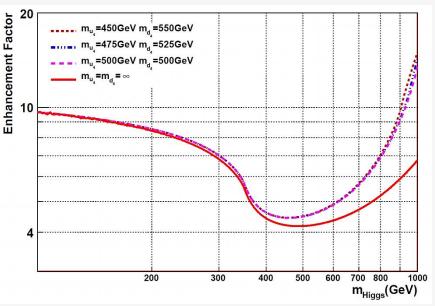

• In the absence of the darkon, $h \rightarrow gg$ dominates for m_h from ~100 to ~140 GeV


Kribs et al., 2007

Higgs invisible decay modes

- * Since the darkon is stable, $h \rightarrow DD$ mode will be invisible.
 - If $m_h > 2m_D$, this new channel is open, increasing $\mathcal{B}(h \to invisible)$
 - If $m_h < 2m_D$, $\mathcal{B}(h \to invisible) = \mathcal{B}(h \to invisible_{SM})$, not affected by the introduction of the darkon.
- * Darkon presence in both SM3+D and SM4+D can lead to huge enhancement of Higgs' total width via $h \rightarrow DD$ if $m_h > 2m_D$.
- This can significantly affect Higgs searches
- Higgs studies at LHC
 are complementary to
 DM direct searches in
 probing darkon properties

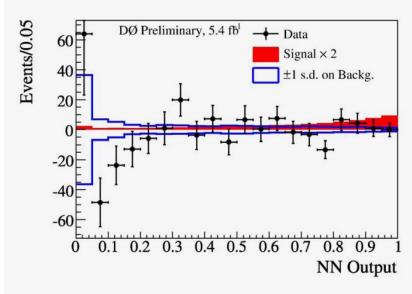


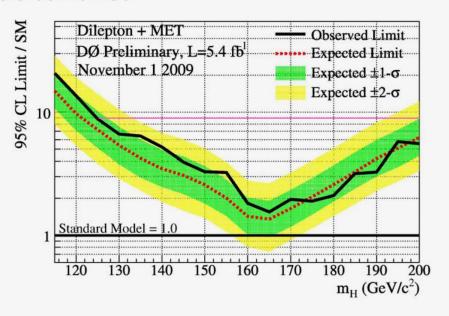

Search for H→WW*

Sensitive to > 3 SM generation since

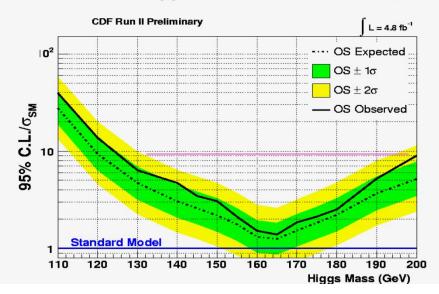
- additional heavy fermion (F) loops in the dominant gg-tusion process enhances
 times the Higgs production cross section
- the WW* decay is the best to study the gg-fusion production the bb and gg final states are swamped by the QCD background

N.Becerici Schmidt et al, arXiv:0908.2653v3


B3G WS 14-Jan-2010


E. Nagy - New Heavy Fermions

13


22

D0 all channels combined

CDF has obtained comparable limit on SM Higgs cross section (4.8 fb⁻¹)

Approximate sensitivity for a 4th generation fermion can be obtained by a line at ~9 x SM

Determination of a precise limit on 4th generation fermions in a combined CDF-D0 analysis is underway

18

B3G WS 14-Jan-2010

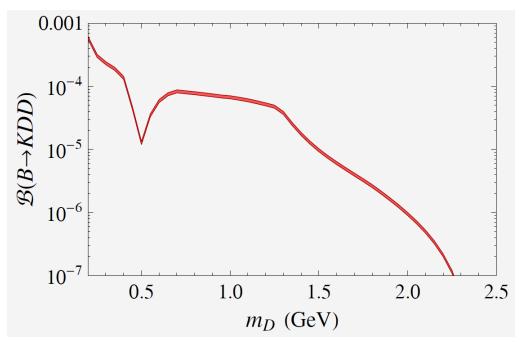
E. Nagy

Probing lower darkon masses

- * Current and near-future direct DM searches are not expected to be sensitive to m_D less than a few GeV.
- Such darkon masses can be probed using decays of mesons containing the b quark.
- * Strong constraints on low- m_D values can be obtained from the B-meson decay $B \to KDD$
 - It contributes to the B decay into K plus missing energy.
 - This is sensitive to m_D up to ~2.4 GeV
 - Experimental information is available.
- * For larger m_D up to ~5 GeV there may also be bounds from future measurements of spin-1 bottomonium decay $\Upsilon \rightarrow \gamma DD$.
 - Present experimental limits on $\Upsilon \rightarrow \gamma$ + missing E are not yet restrictive enough.

$$B \rightarrow KDD$$

- * This arises from the quark decay $b \rightarrow sh^* \rightarrow sDD$ with the bsh^* vertex generated at one loop.
 - The loop contains up-type quarks and W boson.

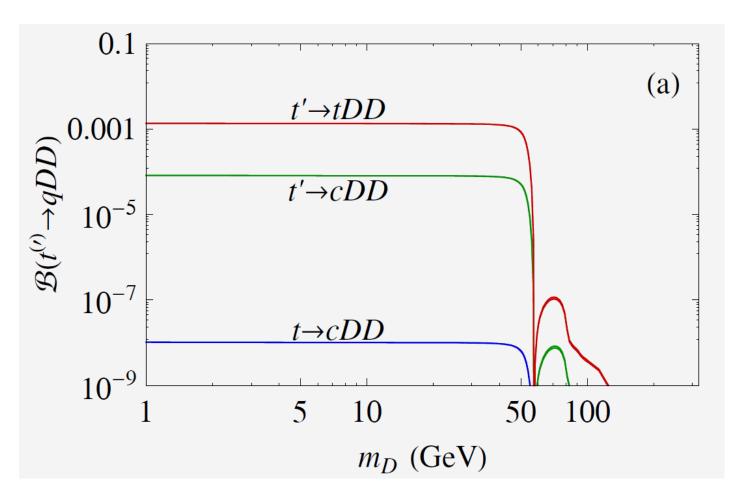

- The heaviest quarks in the loop dominate the amplitude.
- * The darkon-Higgs coupling λ for the hDD vertex is found from

$$\sigma_{\rm ann} \, v_{\rm rel} \simeq \frac{\lambda^2}{m_h^4} \, \frac{4v^2 \sum_i \Gamma(\tilde{h} \to X_i)}{m_D}$$

But the Higgs decay rates for low m_h are not precisely known.

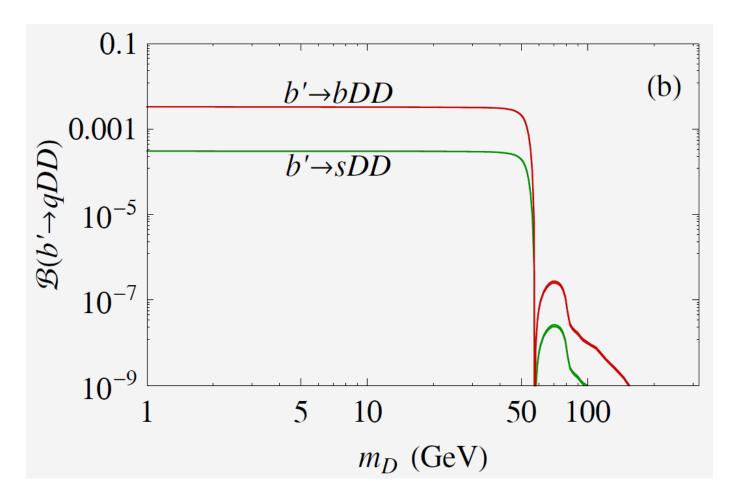
Constraints for $B \rightarrow KDD$

- * From the experimental bound $\mathcal{B}_{\exp}(B^+ \to K^+ \nu \bar{\nu}) < 14 \times 10^{-6}$ and the SM3 prediction $\mathcal{B}_{\mathrm{SM3}}(B^+ \to K^+ \nu \bar{\nu}) \sim 4.5 \times 10^{-6}$ we infer $\mathcal{B}(B^+ \to K^+ DD) < 1 \times 10^{-5}$
- Similar bound in SM4+D.
- Prediction in SM3+D
 - involve significant uncertainties
- SM4+D prediction comparable



- * Much of the m_D range below ~1.5 GeV is excluded.
- Improved data from future measurements are needed for more definitive conclusion.

Flavor-changing heavy quark decays

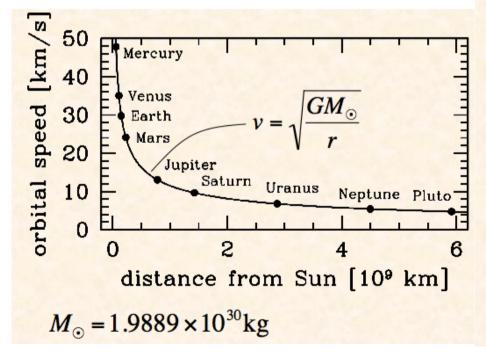

- The new quarks in SM4+D can have important implications for the darkon sector that are lacking or absent in SM3+D.
- For instance
 - In SM3+D the loop-induced top decay $t \rightarrow ch^* \rightarrow cDD$ is suppressed due to GIM cancelation and has a branching ratio of order 10^{-14}
 - But in SM4+D the heavy **b**'-quark can cause the rate to be enhanced by orders of magnitude.
- Some of the decay modes of t' and b' are
 - * $t' \rightarrow (c, t)h^* \rightarrow (c, t)DD$
 - * $b' \rightarrow (s,b)h^* \rightarrow (s,b)DD$
- If observed, they can probe m_D from zero to hundreds of GeV.
- These decays can have sizable rates and may be detectable at the LHC or even the Tevatron.

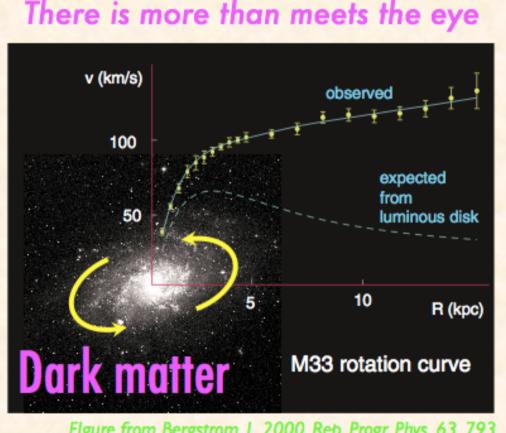
The top decay may be undetectable in the near future, but the t' decays are potentially measurable.

These decays are also expectedly detectable.

Summary

- 1. We have explored the simplest WIMP DM model in the presence of 4 sequential generations of quarks and leptons, SM4+D.
- We obtained constraints on the SM4+D from DM direct searches and from B→KDD
 - Most parameter allowed, Similar in SM3+D case.
- 3. We considered processes absent or suppressed in SM3+D $t' \rightarrow cDD$, tDD and $b' \rightarrow sDD$, bDD, $t \rightarrow cDD$ They may be observable at the LHC and help test darkon models
- 4. The interplay between direct searches for DM and LHC studies on Higgs boson & new quarks can yield crucial information about darkon properties.

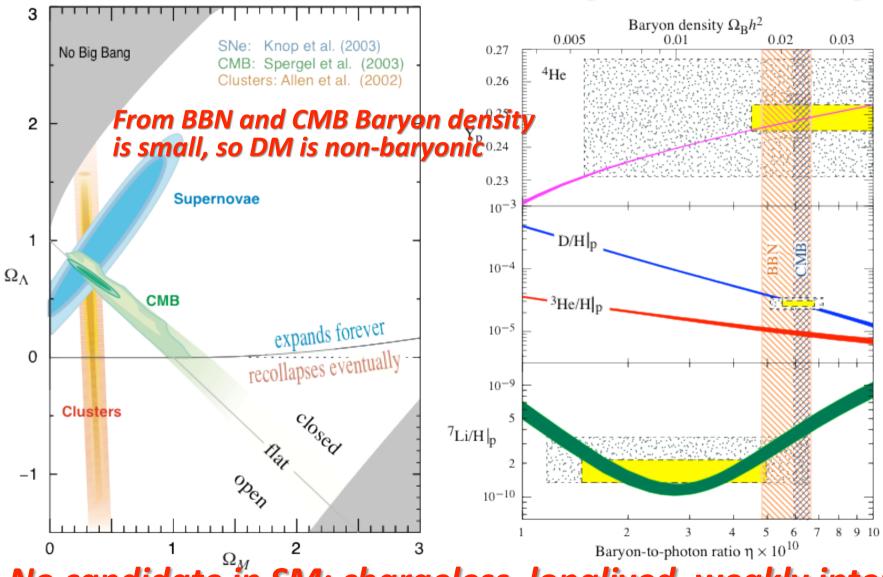

Thanks for Your Attentions!!


Dark Matter Evidence

Galaxy rotation curves - most concrete evidence

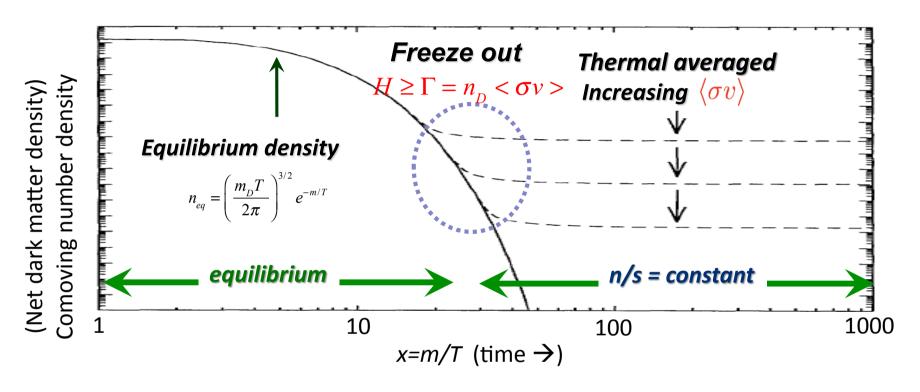
1970' Vera Rubin

$$\frac{M}{M_{\rm vis}} > 4$$



Flgure from Bergstrom, L. 2000. Rep. Progr. Phys. 63, 793

First evidence of DM: Fritz Zwicky in 1933 used viral theorem measure mass to light ratio of galaxy cluster


$$rac{M}{M_{
m vis}} \simeq 0$$

Dark Matter and Baryon Density

No candidate in SM: chargeless, longlived, weakly interact, Nonrelativistic

Dark Matter as Thermal Relic

Large cross section reduces relic abundance.

The competing effect of expansion and annihilation are described by the Boltzmann eq

25

$$\frac{dn}{dt} + 3Hn = -\langle \sigma v \rangle (n^2 - n_{eq}^2) \quad T \ge m_D : H \propto T^2 \& n \propto T^3 \to n = n_{eq}$$
$$T_f \simeq m_D / 20, (x_f \simeq 20)$$

Thermal Equilibrium

T >> m

$$n_{eq} \simeq \frac{g}{2\pi^2} \int_0^\infty \frac{E^2 dE}{e^{E/T} \mp 1} = \begin{cases} \frac{g}{\pi^2} \zeta(3) T^3 - boson \\ \frac{3}{4} \frac{g}{\pi^2} \zeta(3) T^3 - fermion \end{cases}$$

$$\rho \simeq \frac{g}{2\pi} \int_0^\infty \frac{E^3 dE}{e^{E/T} \mp 1} = \begin{cases} \frac{\pi^2}{30} gT^4 - boson \\ \frac{7}{8} \frac{\pi^2}{30} gT^4 - fermion \end{cases}$$

T << m

$$n_{eq} \simeq \frac{g}{2\pi^2} \int_0^\infty p^2 e^{-\left(m + \frac{p^2}{2m} - \mu\right)/T} dp = g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-(m-\mu)/T}$$

$$\rho \simeq (m + \frac{3}{2}T)n$$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}; \zeta(2) = \frac{\pi^2}{6} \approx 1.645; \zeta(3) = 1.202$$

$$s = \frac{\rho + P}{T} = \frac{2\pi^2}{45} g_{*S} T^3; S = a^3 s = const.$$

$$T \propto 1/a$$

$$H = 1.66g_*^{1/2}T^2 / m_{pl} \leftarrow H^2 \simeq 4\pi G_N \rho_R$$
$$m_{pl} = 1.22 \times 10^{19} \, GeV$$

$$RD: a \propto t^{1/2}, T \propto 1/a \propto t^{-1/2}, H = \dot{a}/a = t^{-1}/2 \sim T^2$$

 $MD: a \propto t^{2/3}, T \propto 1/a \propto t^{-2/3}, H = \dot{a}/a = 2t^{-1}/3 \sim T^{3/2}$

$$MD: a \propto e^{Ht}, T \propto 1/a \propto e^{-Ht}$$

Relic Abundance

$$\Omega_D h^2 = \frac{8.5 \times 10^{-11} x_f}{\sqrt{g_* J(x_f) GeV^2}}$$

$$J(x_f) = \int_{x_f}^{\infty} dx \frac{\langle \sigma v \rangle}{x^2}$$

$$x = m / T$$

Time of freeze out determined first from
$$H=\Gamma$$

$$<\sigma v> = \frac{2x^{3/2}}{\sqrt{\pi}} \int_0^\infty (\sigma v) \frac{v^2}{4} e^{-x\frac{v^2}{4}} dv$$

$$\sigma v \simeq A + Bv^2, (v \ll 1 \leftarrow T_f \simeq m_D / 20 \ll m_D, non - relativistic)$$

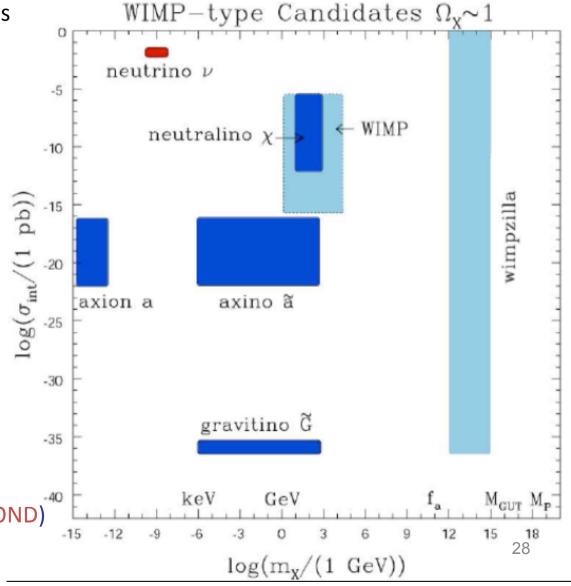
$$A: s-wave, B: s, p-wave$$

$$\Omega_D h^2 \sim 0.1 \left(\frac{3 \times 10^{-26} cm^3 / \text{sec}}{\left\langle \sigma_{ann} v_{rel} \right\rangle} \right)$$
 WIMP miracle

Weakly Interacting Massive Particles

The WIMP miracle,

for typical gauge coupling and masses of order the electroweak scale we obtain correct relic

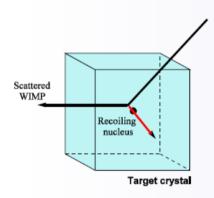

$$\Omega_D h^2 \sim 0.1 \left(\frac{3 \times 10^{-26} cm^3 / \text{sec}}{\langle \sigma_{ann} v_{rel} \rangle} \right)$$

Many candidates, Axions,

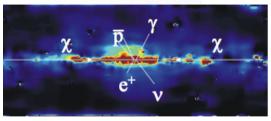
Weakly Interacting Massive Particles (WIMPS),

Lightest Supersymmetric Particle,
Lightest Kaluza-Klein Particle,
SIMPs, CHAMPs, SIDM,
WIMPzillas, Scalar DM, Light DM,

... Modified Newtonian Dynamics (MOND)


Dark Matter Study

Dark Matter is called <-- relic & halo


Direct Detection

Indirect Detection

Collider Searches

Can not say a signal does is due to WIMP scattering...

(10 mm) (10 mm

Too complicated processes involved...

Hard to produce if heavy...