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Introduction

* The simplest model with a WIMP candidate is SM3+D:
¢ the minimal SM with 3 generations of fermions (SM3) Silveira & Zee, 1985
¢ plus a real scalar field D, called darkon, as dark matter.

» It's been much studied, and its DM sector is compatible with
current experimental data.

* The SM with a 4th sequential generation (SM4) has received lots
of attention in recent years.

* Among the reasons are it
. .. Kribs et al., 2007
¢ IS not ruled out by electroweak precision tests Chanowitz, 2009

o oOffers possible resolutions for some anomalies Hou et Z:" e
In flavor-changing processes

. . Hou, 2009
¢ Might solve baryogenesis-related problems. o

J Tandean 1LHCFGW, 24 Apr 2010 4



Introduction

# It is then of interest also to consider SM4+D.

+ If a new sequential family exists, SM4+D is the simplest model having
a WIMP candidate.

+ The darkon in SM4+D can have major implications for the Higgs
sector not present in SM3+D

* The extra fermions in SM4+D may lead to darkon-related
experimental signatures absent or suppressed in SM3+D

» The LHC, and perhaps also the Tevatron, may be able to produce
the new particles and/or detect their effects.

J Tandean 1LHCFGW, 24 Apr 2010



Simplest Mode!/ SM—+2D

Add a rea/ SM gauge 5:}{9/&‘ , 22 Symmelry
~> stable, a)eaé/y fnfel-ddf/rg
- C’,oap/e Zo %&9\5 on/y Ay renorralization

1 2
LD =58”D8#D—%D4 _%D2 —ADZHTH

Feco paramelers

1 A
LD — —a”DauD— —DD4 —
2 4 2

(o + ) e _ %Di’-h2 — AwD%h

lambda_D :
DD Zo Ah D v miy o fVVEL
Tl :



Dark Matter as Thermal Relic
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Large cross section reduces relic abundance.

The competing effect of expansion and annihilation are described by the Boltzmann eq
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Relic density in SM3+D

* The interactions of any WIMP candidate with SM3 particles must
satisfy constraints from relic-density data.

* The darkon annihilation rate into SM3 particles is related to its
relic density Q, by

0.1 pb

<aannvrel>

Qph? ~

Kolb & Turner, 1990

h

O..n the darkon annihilation cross-section into SM3 particles,
V. the darkon-pair relative speed in their cm frame.

*» WMAP7 & other data yield Qph* = 0.1123 4 0.0035 Komatsu et al., 2010

* We use the 90%-C.L. range 0.1065 < Qph* < 0.1181

J Tandean 1LHCFGW, 24 Apr 2010



Darkon annihilation rate

* For mp<m, the relic density results from darkon annihilation
into SM3 particles via Higgs (h) exchange.

qq. {0, g9, ZZ, WTW—, ..

# The h-mediated annihilation cross-section
8202 ST (h— X;)
(4m% ) + Fh mh 2mp

Tann Urel —

h is a virtual Higgs boson having the same couplings to other states as
the physical A of mass m, > mp, but with invariant mass /s = 2mp,
and h — X, any possible decay mode of h.

J Tandean 1LHCFGW, 24 Apr 2010



Darkon annihilation rate

» For mpj>m, contributions from DD - hh need to be included
N O,nn-

» For large darkon masses, m,>>m,, ,,, these dominate, along
with DD — h*—> WW,ZZ

J Tandean 1LHCFGW, 24 Apr 2010



Darkon annihilation rate in SM4+D

* The new family/generation in SM4 consists of
¢ quarks: t’ and b’

¢ leptons: v’ and [’

* Their presence increases the total Higgs width mainly via
¢ h — fermion antifermion (if kinematically allowed)
¢ loop effectsin h — gg

* This modifies the darkon annihilation cross-section o,

82y ST (h— X;)
(4m% ) + Fh mh 2mp

Tann Urel —

J Tandean 1LHCFGW, 24 Apr 2010 11



Dark Matter Direct Search Experiment
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Constraints on masses of new fermions

+ From searches at LEP m, > 100.8 GeV and m,, > 90.3 GeV

+ From searches at Tevatron  m, > 311GeV and m;, > 338 GeV
CDF, 2008 & 2010

* Electroweak precision data prefer Kribs et al., 2007
my —my ~ [5+1n(m,, /115 GeV)]| x10 GeV and 30 GeV Smy —m,, S 60 GeV

+ Perturbative unitarity implies m; ,. not exceed ~600 GeV
* For definiteness, we take

¢ M, =500GeV and m, =m, —55GeV
¢ m,.=150GeV and m, =200 GeV

J Tandean 1LHCFGW, 24 Apr 2010 12



Darkon-Higgs coupling

The darkon-Higgs coupling A for each m, can be inferred from
(O.nnVre) Fange allowed by Q, constraint, once m, is specified.

Allowed ranges of A vs. m, for m,= 115,200,300 GeV in SM3+D and
SM4+D with m, = 500 GeV
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l%csooeev @ , LN\ 300Gev WIEiEA |
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_ ol _ ol
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0.001 —— e ‘ 0.001 —— — ‘
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The models comfortably satisfy the relic-density constraint.
For lower m, values, A is not very small.

J Tandean 1LHCFGW, 24 Apr 2010 13



Darkon-nucleon elastic cross-section

The direct detection of dark matter is through the recoil of nuclei
when a darkon hits a nucleon N.

In SM+D, this occurs via Higgs exchange in the t-channel elastic
scattering DN — DN.

D - % - D
Amplitude for DN — DN "
2\ _
M, ~ Z2INNRT Ry e
mj INNh
\2 02 02 m2
Cross section of DN — DN o, o~ INNh N

el T (mp +my)2my
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Higgs-nucleon couplings

After relating Higgs-quark couplings to Higgs-nucleon couplings,

in SM3 we estimate
Iy, = 171 X 1073 He, Li, Li, JT, Tsai, 2009

In SM4 the new quarks cause g,,, to increase by ~23%.

In both models, estimates of g,,, involve uncertainties within
factors of 2.

With A and g,,, known, one can predict

the darkon-nucleon elastic cross-section o h
for specific m, and m,, values.

J Tandean 1LHCFGW, 24 Apr 2010 15



Darkon-nucleon elastic cross-section

% Predicted cross-section in SM3+D & SM4+D

for m,=115,200, 300 GeV

+ Large regions in the parameter

space of the two models are
consistent with current data,
although sizable part of it is
now excluded

J Tandean

1LHCFGW, 24 Apr 2010
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Higgs branching ratios in SM4

+ In the absence of the darkon, h— gg dominates for
m, from ~100 to ~140GeV
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Higgs invisible decay modes

+ Since the darkon is stable, h—>DD mode will be invisible.
¢ If m,>2mg, this new channel is open, increasing B(h— invisible)

o If m,<2mgy, ®B(h—invisible) =&(h—invisibleg,), not affected by the
introduction of the darkon.
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Search for H>WW*

Sensitive to > 3 SM generation since
- additional heavy fermion (F) loops in the dominant gg-tusion process enhances
~9 times the Higgs production cross section
- the WW* decay is the best to study the gg-fusion production
the bb and gg final states are swamped by the QCD background
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DO all channels combined
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Probing lower darkon masses

Current and near-future direct DM searches are not expected to
be sensitive to m, less than a few GeV.

Such darkon masses can be probed using decays of mesons
containing the b quark.

Strong constraints on low-m, values can be obtained from the
B-meson decay B —- KDD

¢ It contributes to the B decay into K plus missing energy.
¢ This is sensitive to my up to ~2.4 GeV
¢ EXxperimental information is available.

For larger m, up to ~5 GeV there may also be bounds from
future measurements of spin-1 bottomonium decay Y — y DD.

¢ Present experimental limits on Y — y + missing E are not yet
restrictive enough.

J Tandean 1LHCFGW, 24 Apr 2010



B - KDD

- This arises from the quark decay b —->sh* —» sDD with the
bsh* vertex generated at one loop.

s The loop contains up-type quarks and W boson.

oy i <l v i

- The heaviest quarks in the loop dominate the amplitude.

- The darkon-Higgs coupling A for the hDD vertex is found from
A2 4023 T'(h— X))

(% =~
ann Yrel 4
my, mp

But the Higgs decay rates for low m, are not precisely known.

J Tandean 1LHCFGW, 24 Apr 2010



Constraints for 8 > kDD

» From the experimental bound B.,,(B"™ — Ktvi) < 14 x 107°
and the SM3 prediction Bs\3(B™ — K vw) ~ 4.5 x 107°

we infer B(B™ — KTDD) <1x107°

0.001

» Similar bound in SM4+D. .

gm -

+ Prediction in SM3+D < 10
¢ Involve significant g,

[a—
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uncertainties
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# Much of the mj range below ~1.5 GeV is excluded.

p—
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» Improved data from future measurements are needed for more
definitive conclusion.

J Tandean 1LHCFGW, 24 Apr 2010 26



Flavor-changing heavy quark decays

The new quarks in SM4+D can have important implications for
the darkon sector that are lacking or absent in SM3+D.

For instance

¢ In SM3+D the loop-induced top decay t —» ch* — cDD is suppressed
due to GIM cancelation and has a branching ratio of order 10-14

¢ Butin SM4+D the heavy b’-quark can cause the rate to be enhanced
by orders of magnitude.

Some of the decay modes of t" and b’ are

* t'—> (c,)h* > (c, )DD

# b’— (s,b)h* — (s,b)DD

If observed, they can probe m, from zero to hundreds of GeV.

These decays can have sizable rates and may be detectable at
the LHC or even the Tevatron.

J Tandean 1LHCFGW, 24 Apr 2010 27
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* The top decay may be undetectable in the near future, but
the t’ decays are potentially measurable.

J Tandean 1LHCFGW, 24 Apr 2010



B(b'->gDD)

b'— sDD, b’ — bDD,
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* These decays are also expectedly detectable.

J Tandean
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Summary

We have explored the simplest WIMP DM model in the presence
of 4 sequential generations of quarks and leptons, SM4+D.

We obtained constraints on the SM4+D from DM direct searches
and from B>KDD

Most parameter allowed, Similar in SM3+D case.

We considered processes absent or suppressed in SM3+D
t’=>cDD, tDD and b’ =2sDD, bDD, t >cDD

They may be observable at the LHC and help test darkon models

The interplay between direct searches for DM and LHC studies
on Higgs boson & new quarks can yield crucial information
about darkon properties.
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Dark Matter Evidence

Galaxy rotation curves - most concrete evidence
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Dark Matter and Baryon Density
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Dark Matter as Thermal Relic
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Relic Abundance

o 8.5x10" HX Time of freeze out determined first

Q ) from H=I"
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Weakly Interacting Massive Particles

The WIMP miracle,

for typical gauge coupling and masses
of order the electroweak scale we
obtain correct relic
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Dark Matter Study

Dark Matter is called <-- relic & halo

Direct Detection

Indirect Detection

Collider Searches

Can not say a signal does is
due to WIMP scattering...

processes involved...

Hard to produce if
heavy...
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