Dynamics of Spacetime from a Large N Matrix Model

Dan Tomino (富野 弾)

東海大学物理学系

Dynamics of Spacetime from a Large N Matrix Model

Yang-Mills (YM) type: -tr[A,A][A,A]/4

String Theory

Fundamental degrees of freedom are extended object,
 not point like particles

- A nice candidate for the unified quantum theory with gravity
- To investigate strong gravity phenomenon (Black Hole, very early Universe), 2nd quantized formulation may be needed.

Main remarkable properties from this extension:

1. Infinitely many state of string vibration

Infinitely many one particle state
(include graviton, gauge boson, ...)

- 2. Formulated in higher dimension (e. g. D=26, D=10 flat space)
- 3. UV finiteness of loop amplitude

String theory is a nice candidate of the unified quantum theory including gravity.

 Well established formulation is 1-st quantized/ perturbative formulation

Coupling constant of gravitational correction in perturbation theory (D=10):

$$(E^8G_N)$$

 G_N : Newton constant in 10D

Perturbation theory will breaks down in processes with very high energy.

There will be large back reaction to spacetime if

$$E > \frac{1}{g^{1/4}\sqrt{\alpha'}}$$

g: string coupling. α' : (string length scale)².

There could be black hole production with Schwatzschild radius:

$$R \sim (G_N E)^{1/7}$$

• To investigate strong gravity phenomenon (Black Hole, very early Universe), 2nd quantized formulation may be needed.

Proposals for 2nd quantized theory

String Field Theory

Reproduces perturbative expansion of S-matrix

Still difficult to see non-perturbative effect

(Recent Progresses: Tachyon condensation, D-bane solution,)

✓ • Reformulation by Large N Matrix Theory

Proposals for critical superstring in recent 15 years

1 dim model (BFSS), 0 dim model (IKKT), etc.

Matrix Theory proposal (I): IKKT model

Ishibashi, Kawai, Kitazawa, Tsuchiya (1996)

Fundamental degrees of freedom:

N × N hermitian matrices

$$A_{(a)}$$
, ψ

$$S = -\frac{1}{4g^2} tr\left([A_a, A_b][A^a, A^b] \right) + \frac{1}{2g^2} tr\left(\bar{\psi} \Gamma^a [A_a, \psi] \right)$$

String World Sheet

distribution of diagonal elements

space-time picture

Matrix Theory proposal (II): BFSS model

Banks, Fishler, Shenker, Susskind (1996)

Large N matrix quantum mechanics

$$X^{(I)}(t), A_{(a)}(t), \Psi(t)$$

$$S_{BFSS} = \int dt \, tr \left(-\frac{1}{2} [D_0, X_{(i)}] [D^0, X^{(i)}] + \frac{1}{4} [X_{(i)}, X_{(j)}] [X^{(i)}, X^{(j)}] - \frac{1}{2} \bar{\Psi} D_0 \Psi - \frac{1}{2} \bar{\Psi} \Gamma^{(i)} [X^{(i)}, \Psi] \right)$$

D0 brane effective theory in type IIA superstring

Large N limit formulates M-theory on a circle in light-cone direction

Having these Yang-Mills matrix models, we have a possibility to study the dynamics of spacetime that emerges from matrix.

→ "Quantum theory of gravity"

Purpose of this talk:

To introduce a part of studies that have been done along this interest.

Contents

1. Introduction and Motivtion

2. Matrix Description of Space(time)

Dynamics

3. More on the Matrix Description of Spacetime

General curved spacrtime

Non-commutative spaces

Dynamics

4. Summary and Outlook

Matrix Description of space(-time)

Space time may be described by matrix degrees of freedom

Dynamics of diagonal element
--> similar to the statistical system of polymer

There are toy examples that is more similar to ordinary space.

- Two Examples
 - 1. Fuzzy Sphere
 - 2. Fuzzy Torus

Matrix Description of space(-time) I: Fuzzy Sphere

Spin 1/2 operators are gives by 2 \times 2 matrices (Pauli matrices)

$$J_1 = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}, \quad J_2 = \begin{pmatrix} 0 & -\frac{i}{2} \\ \frac{i}{2} & 0 \end{pmatrix}, \quad J_3 = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$$

$$[J_a, J_b] = i\epsilon_{abc}J_c$$

Eigen states: | I, m >

$$J_3|l, m> = m|l, m>$$

 $J^2|l, m> = l(l+1)|l, m>, J^2 = J_1^2 + J_2^2 + J_3^2$

For 2 \times 2 matrices, l=1/2 and m=1/2, -1/2

Matrices J_a can be identified with coordinate X_a (operator!)

| I, m >:
 Eigenstate of coordinate operators

$$X_1^2 + X_2^2 + X_3^2 = \frac{3}{4}$$

This is a sphere with only 2-point.

$$[X_a, X_b] = i\epsilon_{abc}X_c$$

Coordinates are non-comutative → "Fuzzy"

Field on Fuzzy Sphere

Hermitian Matrix

$$A = \begin{pmatrix} a+d & b-ic \\ b+ic & a-d \end{pmatrix} = a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} + d \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
$$= 2aY_{0,0} + \sqrt{2}(b-ic)Y_{1,-1} + \sqrt{2}(b+ic)Y_{1,1} + 2dY_{1,0}$$

$Y_{l,m}$: Matrix spherical harmonics Eigen matrix of

$$[J_3, Y_{l,m}] = mY_{l,m},$$

$$[J_1, [J_1, Y_{l,m}]] + [J_2, [J_2, Y_{l,m}]] + [J_3, [J_3, Y_{l,m}]] = l(l+1)Y_{l,m}.$$

2×2 matrix $\rightarrow N \times N$ matrix

(N = 2l+1)

$$(Y_{p,m})_{s,t} = (-1)^{l-s} \sqrt{2p+1} \begin{pmatrix} l & p & l \\ -s & m & t \end{pmatrix}$$

$$p = 0, 1,, 21$$

3j-symbol

$$m = -p, -p+1, ..., -1, 0, 1, ... p-1, p$$

 $N \times N \text{ matrix} \rightarrow \infty \times \infty \text{ matrix} (N \rightarrow \infty)$

Continuum limit

Matrix description of space(time) II: Fuzzy Torus

$$U = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad V = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

property:
$$U^2 = V^2 = 1$$
, $UV = (-1)VU$

Hermitian matrix

$$A = \begin{pmatrix} a+d & b-ic \\ b+ic & a-d \end{pmatrix} = a\mathbf{1} + dU + bV + icUV.$$

$$\phi(\sigma_1, \sigma_2) = \sum_{m,n=0,1} \phi_{m,n} e^{im\sigma_1 + in\sigma_2}$$

$$U = e^{i\hat{\sigma}_1}, \qquad V = e^{i\hat{\sigma}_2}$$

$$[\hat{\sigma}_1, \hat{\sigma}_2] = -i\pi$$
 : non-commutativity

Derivative:

$$[\hat{\sigma}_1,] \Leftrightarrow -i\pi \frac{\partial}{\partial \sigma_2}, \qquad [\hat{\sigma}_2,] \Leftrightarrow -i\pi \frac{\partial}{\partial \sigma_1}.$$

Kinetic term:

$$\frac{1}{\pi^2} \sum_{i=1,2} [\sigma_i, \phi] [\sigma_i, \phi] \Leftrightarrow \sum_{i=1,2} \partial_i \phi \partial_i \phi$$

2×2 matrix $\rightarrow N \times N$ matrix

$$U_{ij} = \omega^{i-1} \delta_{ij}, \quad (\omega = e^{\frac{2\pi i}{N}}),$$
$$V_{ij} = \delta_{i,j-1},$$

$$U^{N} = 1, \quad V^{N} = 1, \quad UV = \omega^{-1}VU,$$

Non-commutativity:

$$[\hat{\sigma}_1, \hat{\sigma}_2] = -\frac{2\pi i}{N}$$

Matrix Model and Fuzzy Space (Dynamics)

Decompose matrix A as A=X+aX: back ground, a: field

Yang-Mills matrix model \rightarrow Gauge theory on X

$$-\frac{1}{4}Tr[A_{i}, A_{j}]^{2}$$

$$[A_{1}, A_{2}] = [X_{1}, X_{2}] + [X_{1}, a_{1}] - [X_{2}, a_{1}] + [a_{1}, a_{2}].$$

$$(F_{12} = \partial_{1}a_{2} - \partial_{2}a_{1} + [a_{1}, a_{2}])$$

Quantum Correction

partition function:
$$Z = \int \mathcal{D}A \ e^{-S[A]}$$
 (A=X+a, integrate over a) $= \int \mathcal{D}X \ e^{-\Gamma[X]}$

Integration of $X \approx Taking saddle point:$ $\delta \Gamma [X]/\delta X=0$

Quantum correction of fuzzy space X can be calculated in this way.

Stability Analysis

• fuzzy S2 (2d)	Imai, Kitazawa, Takayama, D.T [03]
• fuzzy S2 ×S2 (4d)	Imai, Kitazawa, Takayama, D.T [03] Imai, Takayama [03]
• fuzzy S2 ×S2 ×S2 (6d)	Kaneko, Kitazawa, D.T [05]
fuzzy spaces with SU(3) isometry(4d, 6d)	Kaneko, Kitazawa, , D.T [05]

4d fuzzy spaces are more stable than 2d, 6d fuzzy spaces.

More on the matrix description of space-time

We saw

Matrix can describe

Non-commutative sphere, torus Fields on these spaces

More general curved spacetime? (Black Hole, RW spacetime, etc.)

Einstein Equation?

Approach by Hanada, Kawai, Kimura (HKK) [05]

Matrix with ∞ size _____ Differential operator in curved spacetime

$$A_{(a)} = R_{(a)}{}^{a}(g)D_{a}(\nabla, \omega)$$

 ∇ : covariant derivative

ω: spin connection

Example: Covariant derivatives on 2-sphere

Two sphere (with stereographic coordinate)

$$\nabla_{(+)}^{[z]} = e^{-2i\theta} \left((1 + z\bar{z})\partial_z + \frac{\imath}{2}\bar{z}\partial_\theta \right),$$

$$\nabla_{(-)}^{[z]} = e^{2i\theta} \left((1 + z\bar{z})\partial_{\bar{z}} - \frac{\imath}{2}z\partial_\theta \right).$$

around the north pole of sphere.

Description include south pole is achieved by

$$z = 1/w. \qquad \text{and} \qquad \theta' = \theta + \arg(z) + \frac{\pi}{2}. \qquad \text{Then}$$

$$\nabla^{[w]}_{(+)} = e^{-2i\theta'} \left((1 + w\bar{w})\partial_w + \frac{i}{2}\bar{w}\partial_{\theta'} \right),$$

$$\nabla^{[w]}_{(-)} = e^{2i\theta'} \left((1 + w\bar{w})\partial_{\bar{w}} - \frac{i}{2}w\partial_{\theta'} \right),$$

Generally, matrix may be expanded as like

There are Infinite number of fields with various spin.

Applications of the HKK: "A $\sim \nabla$ "

Driving

- 1. Classical gravity equation
- 2. Quantum gravity equation

from the YM- matrix model : S= -Tr [A,A][A,A]/4

Classical Gravity Equations from the Matrix Model

Matrix equation of motion:

$$[A^{(b)}, [A_{(b)}, A_{(a)}]] = 0$$

provides equations for infinitely many fields with various spins.

 \rightarrow truncate only $A \rightarrow \nabla_a = e_a{}^b \partial_b + \omega_a^{bc} \mathcal{O}_{bc}$ vielbein: $e_\mu{}^a$, spin connection: $\omega_a{}^{bc}$

Gravity Equations

(Furuta, Hanada, Kawai, Kimura [06])

$$R_{ab} + \nabla^c T_{b,ca} + T^{p,q}{}_a T_{b,pq} = 0,$$
$$\nabla^a R_{abcd} + T^{p,q}{}_b R_{pqcd} = 0,$$

torsion:
$$-T^c_{\ ,ab} = e_\mu^{\ \ c}(\partial_a e^\mu_{\ b} - \partial_b e^\mu_{\ a}) + \omega_{ab}^{\ \ c} - \omega_{ba}^{\ \ c},$$

torsion:
$$-T^c{}_{,ab} = e_\mu{}^c(\partial_a e^\mu{}_b - \partial_b e^\mu{}_a) + \omega_{ab}{}^c - \omega_{ba}{}^c,$$
 curvature:
$$R_{ab}{}^{cd} = \partial_a \omega_b{}^{cd} - \partial_b \omega_c{}^{cd} + \omega_a{}^c{}_e \omega_b{}^d{}_e - \omega_b{}^c{}_e \omega_a{}^d{}_e$$

Including torsion degrees of freedom

Classical solutions (H. Isono, D.T [09])

Time-dependent solutions with torsion:

- FRW type metric ansatz
- Expansion with acceleration
 - → application to dark energy?

Spherical symmetric solution with torsion

- Black hole solutions
- All founded solutions are asymptotically non-flat

Quantum Gravity Equation from Matrix Model

Schrodinger equation of matrix quantum mechanics:

$$i\frac{\partial}{\partial t}\Psi(A,t) = H(A,\frac{\partial}{\partial A})\Psi(A,t)$$

After HKK: "A $\sim \nabla$ ",

$$i\frac{\partial}{\partial t}\Psi(\nabla,t) = H(\nabla,\frac{\partial}{\partial \nabla})\Psi(\nabla,t)$$

We get a quantum gravity equation.

Explicit form

$$i\frac{\partial}{\partial t}\Psi = \int d^dx \sqrt{h_d} \, tr_{\hat{g}} \left\{ \frac{1}{\sqrt{h_d}} \frac{1}{2} \left(\frac{\delta}{\delta e_i^K} \partial_K \right) \sqrt{h_d} \left(\frac{\delta}{\delta e_i^L} \partial_L \right) + \frac{1}{2} \left(\frac{\delta}{\delta \omega_i^{jk}} \mathcal{O}_{jk} \right) \left(\frac{\delta}{\delta \omega_i^{lm}} \mathcal{O}_{lm} \right) - \frac{1}{\sqrt{h_d}} \frac{1}{4} (T_{ij}^K \partial_K) \sqrt{h_d} (T_{ij}^L \partial_L) - \frac{1}{4} (R_{ij}^{kl} \mathcal{O}_{kl}) (R_{ij}^{mn} \mathcal{O}_{mn}) \right\} \Psi.$$

(T. Matsuo, W-Y. Wen, S. Zeze, D.T [08])

Covariant only in spatial directions, no boost invariance

metric: $-dt^2 + h_d(t,x)_{IJ}dx^Idx^J$

Divergent quantities appear. Some regularization is required.

Minisuperspace Model

$$ds^2 = -dt^2 + \frac{1}{y(t)^2} dx^2.$$

Quantum mechanics of y(t)

Schrodinger equation was explicitly solved.

A wave packet solution was constructed

$$\Psi(t,y) = \sqrt{\frac{(2\beta)^{\frac{5}{3}}}{\Gamma(5/3)}} \frac{y^2}{3^{\frac{7}{6}}(\beta + iAt)^{\frac{5}{3}}} \exp\left[-\frac{y^3}{9(\beta + iAt)}\right].$$

This wave function describes a shrinking universe in $|t| \rightarrow \infty$

$$\langle g_{xx} \rangle = \langle y^{-2} \rangle = \frac{1}{\Gamma(\frac{5}{3})} \left(\frac{2}{9}\right)^{\frac{2}{3}} \left[\frac{\beta}{\beta^2 + A^2 t^2}\right]^{\frac{2}{3}}.$$

Number of questions have been left

- * Full covariance? ----- IKKT model may give a covariant equation. But to do this, we have to derive a sort of the Schrodinger equation from the model without time.
- What is a good regularization? ----- by introducing finite size matrix effect?, imposing some gauge condition?
- How go proceed further beyond the minisuperspace model?

Summary and Outlook

Various spacetime dynamics are studied by IKKT matrix model

Finite size matrix: Non-commutative space

Well defined, Gravity is not-manifest.

Stability analysis through the effective action

Infinite size matrix: HKK prescription $A \sim \nabla$

More formal, Gravity is manifest.

We got quantum and classical equations of a torsion gravity

We need more understanding on large N (matrix size $\rightarrow \infty$) limit.....

Matrix Renormalization Group (matrix RG) may be a useful approach.

Integrating out a part of matrix \rightarrow flow equation

Links to the critical phenomena, Wilsonian RG are also expected.

(END)