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All the HEP people are expecting

the Large Hadron Collider (LHC)

ATLAS Experiment (C) 2011 CERN

... Do you know what is expected?



Expecting LHC

LHC is expected to find the Higgs particle,

the last missing piece of the

Standard Model of Particle Physics (SM).

But NOT only the Higgs. Let me explain why.



Hierarchy Problem – Is the Nature Natural?

One-loop contributions to the Higgs self-energy in SM:

Z

t h

,W



They roughly tell us

δSMm
2
H
∼ cSM

16π2
Λ2, cSM ∼ 1

◮ Λ should be regarded as modeling new physics

effects at high energy.

◮ Higgs mass is sensitive to the highest energy scale

in the theory (quadratic dependence on Λ).



For an order estimate, take mH ∼ 102GeV. Then

cΛ ∼ 16π2
m2

H

Λ2
∼ 102
�

102GeV

Λ

�2

∼
�

1TeV

Λ

�2

As an illustration, take Λ ∼ (Planck Scale) ∼ 1019 GeV.

cΛ ∼
�

103GeV

1019GeV

�2

∼ 10−32

This is an Extreme Fine Tuning !



Taking Λ to be Planck scale is rather extreme.

The formula

cΛ ∼
�

1TeV

Λ

�2

tells the Standard Model is already unnatural if

Λ ¦ 10TeV�

�

�

�

We expect that the Nature IS Natural,

and thus we expect

New Physics Beyond the SM at the LHC !



What are the expected properties of the New Physics in

order to maintain the Naturalness ?

Two fundamental concepts in the Naturalness criterion

— Symmetry and Effective Field Theory

◮ Symmetry can forbid terms which do not respect

it.

Softly broken symmetry can protect those from

quantum corrections.

SM does not have any (approx.) symmetry

to protect Higgs mass term.

◮ From the point of view of effective field theory,

all the terms not forbidden by symmetry should

appear. Natural magnitude of dim. D operator is

Λ4−D (Λ is the energy scale where the effective field

theory breaks down).



Further Reading

For interested audiences we refer to

“NATURALLY SPEAKING:

The Naturalness Criterion and Physics at the LHC"

Gian Francesco GIUDICE

arXiv:0801.2562 [hep-ph]



Popular Symmetries for the New Physics Models

◮ Supersymmetry

◮ Technicolor – Chiral Symmetry

◮ Gauge symmetry

◮ etc.



Gauge-Higgs Unification

The inhomogeneous part of the Gauge

transformation:

Aμ → U()AμU
†() + U()∂μU

†()

forbids the mass term

−m2trAμA
μ

for the gauge fields.

◮ Apparently Higgs is a scalar, not a gauge field in 4D.

◮ But what if the Higgs is a component of a gauge

field in Extra Dimension?



Example: Gauge-Higgs with S1 extra D.

The mass of the zero modes on S1 is not completely

protected by the gauge symmetry.



Gauge Transformation:

A5(, y)→ U(, y)A5(, y)U
†(, y) + U(, y)∂yU

†(, y)

(y ∼ y+ 2πR: Coordinate on S1.)

The inhomogeneous part of the gauge transformation

for the zero-modes are generated by:

Uj = exp[λδjy] (λ : const.)

This is periodic in y only when λ =
1
R
.

The zero mode transforms as

A5(0) → A5(0) +
1

R



The discrete identification allows the periodic potential

of the form

V(exp[2πRA5(0)])

The Taylor expansion gives the mass of the zero

modes.

The operator appearing above are nothing but the

Wilson loop wrapped on the S1:

Pep





∮ 2πR

0

dy A5







Since the Wilson loop wrapped on S1 has size ∼ 2πR,
it is expected to be insensitive to the physics shorter

than this scale.

Thus the mass of the zero-mode is expected to be

around

m2 ∼
g2
4D

16π2

1

R2



Why Gauge-Higgs in Fuzzy Extra Dimensions?

First, motivations:

◮ Allows purely 4D description (cf. (De)construction).�
�

�



Fuzzy Spaces are created through the

Spontaneous Gauge Symmetry Breaking

⇔ In ordinary Gauge-Higgs, the Extra D. is given

a priori.

© Possibly renormalizable (and asymptotically free)

4D gauge theory at high energy.

... Particularly nice as a solution to the

hierarchy problem.

◮ Fuzzy spaces are ubiquitous in string theory.



Why String Theory is Good?

◮ Simple Principles:
◮ Just extending Quantum Field Theory based on
Particles to Strings

◮ Based on QFT and general coordinate tr. invariance
◮ No parameter ... (if ideally formulated)

◮ Rich Consequences:
◮ Unification
◮ Highly constrained ... space-time dimensions, gauge
group, matter contents (reps.) ...

◮ Almost unique UV completion of quantum gravity,
so far known

◮ Microscopic explanation of Black Hole
Thermodynamics

◮ Extra D. and SUSY naturally incorporated
◮ Reduces to QFT in low energy, but NOT arbitrary
◮ etc. etc.



D-branes, Open Strings (and Closed Strings)

◮ Closed strings (∋ graviton) propagate in 10D.

◮ Open strings (∋ gauge field) are constrained on

D(irichlet)-branes.

◮ Closed string interactions are weak when the (true)

Extra D. is much larger than the string scale.



Matrix Coordinates of D-branes

b

µ ab

XI
ab

a

A

X
b
: N×N Hermite Matrices (N: # of D-branes)

(adjoint rep. of U(N) gauge group).



D-branes Are Fuzzy !

[ , XX I J ] 0= [ , XX I J ] 0= θIJ[ , XX I J ] i=

Generically non-commutative (or Fuzzy) !



◮ Commuting matrices can be simultaneously

diagonalized by U(N) gauge rotation.

◮ Then, each diagonal component can be interpreted

as a position of a D-brane.

X =
















1

0 · · · 0

0 
2

0
...

... 0
. . .

0 · · · 
N

















Example: Non-commutative R
2

[X1
c
, X2

c
] = θ12 (const.)

◮ Realized by ∞×∞ matrices

(cf. Quantum Mechanics).

◮ Infinitely many Dp-branes with θ

= D(p+2)-brane with b.g. 2-form field Bj (θ ∼ B−1).



Define

∂̂ ≡ −BJXJc
Then

[∂̂ , X
J
c
] = δ

J

⇒ ∂̂ is a derivative operator on NC R
2.

Expand the D-brane matrix coordinate field X():

X() = X
c
− θJAJ()

= θJ
�

∂̂J + AJ()
�



The original gauge transformation:

X()→ U()X()U†()

Expand around the vacuum and fix the vacuum part in

the gauge transformation:

X() = θJ
�

∂̂J + AJ()
�

→ U()θJ
�

∂̂J + AJ()
�

U†()

= θJ
�

∂̂ + U()[∂̂ , U()
†] + U()AJ()U

†()
�

A() transforms as a gauge field on NC R
2 !

(Notice the appearance of the inhomogeneous term.)



The potential term on D-branes is turned into

the kinetic term of the gauge field

in the directions of Fuzzy Extra Dimension:

V(X) ∼ gKgJL[X
 , XJ][XK , XL]

→ GKGJL �FJ + BJ
�

(FKL + BKL)

FJ ≡ ∂AJ − ∂JA + [A , AJ]

where

GJ ≡ (θgθ)J
(open string metric)



Summary of Fuzzy Spaces (Created via SSB)

◮ Ubiquitous in D-brane systems

◮ Allows lower dimensional QFT description

◮ Gauge fields appear from the fluctuations around

the fuzzy vacua

⇒ Provides a natural setting for the Gauge-Higgs

Unification in Extra D. because it gives�
�

�



Unified description of

Space, Gauge field and Higgs !
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A Model with Fuzzy Torus

Torus was a good setup for Gauge-Higgs Unifications.

⇒ Let’s try Fuzzy Torus !

(Circle is simpler, but we don’t have fuzzy circle since

we need at least 2 coordinates to define a fuzzy space)



4D Action (Effective field theory with cut-off Λ):

S =

∫

d4 trU(kN)

�

− 1

2
Fμν()F

μν()

+ ƒ2
∑

=1,2

DμU()D
μU†


()

+ g2ƒ4
�

�

�[eθ
12

U1U2 − U2U1]

�

�

�

2

+ . . .

�

First we choose

θ12 ≡ θ = 2π

N

Naturalness of this value is an issue discussed later.

(We also suppressed order one coefficients for the

simplicity of presentations.)



U() ( = 1,2): Unitary Matrix Fields.

Covariant Derivative:

DμU() = ∂μU()− g[Aμ(), U()]

Gauge Field Strength:

Fμν = ∂μAν − ∂νAμ + g[Aμ, Aν]



Two familiar ways to look at the model:

1. System of two pion-like fields coupled to a gauge

field (chiral perturbation theory).

2. (Twisted) lattice gauge theory in Extra D. directions.



The cut-off of this model should be taken around

Λ ∼ 4πƒ

Don’t be confused with the cut-off for the SM.

The cut-off for the SM should be taken as

ΛSM ∼
2πgƒ

N
≡ 1

R

since 1/R is the new physics scale.



Symmetries of the model

• 4D Poincare Symmetry

• Gauge Symmetry

• U(1)2 Global Symmetry (Center Symmetry):

U → eα U ( = 1,2)



Approx. symmetries of the model

• Global (UL(kN)× UR(kN))2 “chiral" symmetry

(broken by the coupling to the gauge field)

U → LUR
†


( = 1,2)

• Reflections in Extra Dimensions:

P1 : U1 → U−1
1
= U†

1

P2 : U2 → U−1
2
= U†

2

• CP

Aμ → AT
μ

U → UT




Why “chiral"?

The model may be obtained from a (chiral) quiver

gauge theory

A q1
L

2qL

q2
R

q1
RB

Moose before chiral

symmetry breaking

1A

2U

U

Moose after chiral

symmetry breaking

The chiral symmetry will be crucial for the

suppression of the mass of the to be Higgs field.



Minimum of the Potential

U1 = U ≡W1 ⊗ 1k
U2 = V ≡W2 ⊗ 1k

W1 and W2 are so-called ’t Hooft-Weyl matrices which

generate the Fuzzy Torus:

W1W2 = e
−θW2W1

(See below.)



The fuzzy torus vacuum breaks the symmetries as

follows:

◮ Gauge symmetry: U(kN)→ U(k)

◮ Center symmetry: U(1)2 → ZN ×ZN

The unbroken part of the center symmetry is

crucial for the suppression of the mass of the to

be Higgs field.



Fuzzy Torus

W1W2 = e
−θW2W1

W1 =

















1

e−θ

e−2θ
. . .

e−(N−1)θ

















W2 =















0 1
0 1

. . .
. . .

0 1
1 0

















“Fourier expansion" on the fuzzy torus:

φ ∼
∑

m

∑

n

φ(m,n)e
mnθWm

1
Wn

2

The sums run integers in −N

2
≤m,n <

N

2
.

Define

δ1φ ≡ W1φW
†
1
− φ

δ2φ ≡ W2φW
†
2
− φ

We have

δ1(W
m
1
Wn

2
) = (e−nθ − 1)(Wm

1
Wn

2
)

δ2(W
m
1
Wn

2
) = (emθ − 1)(Wm

1
Wn

2
)



Define (“lattice spacing")

 ≡ 1

gƒ

In N→∞ limit with 2πR ≡ N fixed:

1


δ1W

n
2
→ − n

R
Wn

2
↔ ∂ϕ2e

− n
R
ϕ2

1


δ2W

m
1
→ 

m

R
Wm

1
↔ ∂ϕ1e


m
R
ϕ1

In this limit W1,2 are identified with coordinates on

ordinary torus:

W1 → e−
ϕ1
R , W2 → e

ϕ2
R



The mass spectrum around the fuzzy torus vacuum is

obtained as

m2
(m,n)

≡
�

2



�2

sin2
mθ

2
+

�

2



�2

sin2
nθ

2

=
2

2
(1− cosmθ) +

2

2
(1− cosnθ)

In the large N limit with fixed 2πR ≡ N, it reduces to
that of the KK modes on the ordinary torus with radius

R:

m2
(m,n)
→
�

m

R

�2

+

�

n

R

�2



To see the mass of the zero-modes,�
�

�



Calculate 1PI effective potential for the

zero modes on the fuzzy torus.

Below we study the case k = 2 as an illustration.

The zero modes:

U1 = U0 ≡ Ue
1

ƒ
p
4N
()

, U2 = V0 ≡ Ve
1

ƒ
p
4N
()

with

 = 1N ⊗
1
p
2
σ3

σ ( = 1,2,3): Pauli matrices (∵ k = 2).



After appropriate gauge fixing and inclusion of the

ghost contribution,

V1−oop(,) =  logdet((D0)2)−6/2 +  logdet((D0)2)+1

= −2Tr log((D0)2)

(D0)2 ≡ ∂μ∂μ + Δ0

Δ0


Δ0
1
φ ≡ 1



�

U0φU
†
0
− φ
�

, Δ0
2
φ ≡ 1



�

V0φV
†
0
− φ
�



After Wick rotation,

V1−oop(,)

= 2
∑

m

∑

n

2
∑

,j=1

∫

d4k

(2π)4
log
�

k2 +m2
(m,n)(,j)

(,)
�

where ...



m2
(m,n)(,j)

(,)

≡
�

2



�2

sin2
1

2

�

mθ+ ( − j)
�

+

�

2



�2

sin2
1

2

�

nθ+ ( − j)
�

=
2

2

�

1− cos
�

mθ+ ( − j)
��

+
2

2

�

1− cos
�

nθ+ ( − j)
��

,

1 = −2 =
1
p
2Nƒ

, 1 = −2 =
1
p
2Nƒ





With the momentum cut-off at Λ,

V1−oop(,)

=
∑

m,n

2
∑

,j=1

�

Λ2

8π2
m2
(m,n)(,j)

(,)

+
1

16π2
(m2

(m,n)(,j)
(,))2 log

m2
(m,n)(,j)

(,)

Λ2
+O(Λ−2)
�

Notice that the sum of m2
(m,n)(,j)

(,) over m and n

depends neither on () nor () for N ≥ 2 due to the

cancellations between phases.

Also, the sum of (m2
(m,n)(,j)

(,))2 over m and n

depends neither on () nor () for N ≥ 3.



Cancellation of phases (N = 6)

N−1
∑

m=0

exp

�

2πm

N

�

= 0



Thus, there’s no quadratic “divergence" for N ≥ 2,
and there’s no log “divergence" for N ≥ 3 in the

potential (other than the constant part which we

neglect).

The masses of the zero-modes turn out to be

m2 ∼
g2
4D

16π2

1

R2

as expected.

The potential for the zero-modes can be regarded as a

potential for discretized version of the Wilson loops.



Comments

This particular model has some similarity with the

(De)construction by Arkani-Hamed-Cohen-Georgi’01

(latticizing extra dims. by quiver gauge theory)

But ...

◮ Large N reduction (Eguchi-Kawai model) ’82

◮ Twisted Eguchi-Kawai model ’83

◮ Myers effect (fuzzy sphere from D-branes) ’99

... The fuzzy versions of the (de)construction are

already known before the (de)construction !

Another large class of 4D description of Extra D.

Of course, we respect that they first applied the

(de)construction to the hierarchy problem.
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Summary, so far

◮ Constructed a 4D model in which Fuzzy Extra D. are

created through the spontaneous gauge symmetry

breaking.

◮ Mass spectrum through the Higgs mechanism

mimics the low-lying KK modes.

◮ Identified the Higgs with the extra dimensional

component of the gauge field emerged on the

Fuzzy Extra D. vacuum.

◮ Mechanism to solve the hierarchy problem
◮ No Quadratic “divergence" at 1-loop.
◮ No Log divergence for N ≥ 3, which is rather small.

◮ Goes back to 4D in high-energy.



(Cartoon)

1

4

6

.

.

.

Energy

Dimensions

KK modes .. ?

,
,

R

N

R



Further Results in Our Paper

1. All loop analysis based on symmetries:

Unbroken part of the Center symmetry and

Chiral symmetry are crucial.

2. N dependence:

N/R is a UV cut-off in the extra D. directions.

3. Rigidness of the results under small variation of θ,

and the naturalness of its value.

4. Realization on D-branes.

... Please read the original paper for the detail.



Future Directions

1. Gauge representation

(SU(2) doublet from U(3) adjoint off-diagonal)

2. Wine-bottle potential

(May be solved together with 1.)

3. Coupling to SM fermions

3.1 In Gauge-Higgs, Yukawa originates from gauge
coupling. Notice that gauge coupling is more
restricted than usual Yukawa.

3.2 Fuzziness also constrains possible gauge reps.
3.3 Fuzziness may also introduce interesting structures

(cf. FK-Okuyama ‘10 – Yukawa texture from fuzzy
intersections)⇔ new ingredients for 3.1

4. Generalization to other fuzzy spaces

(Non-trivial. But similar if it has non-trivial 1-cycle

on which Wilson loop can wrap?)

We have to construct a model with the condition that it

has a fuzzy vacuum.



Little bit more about 3.3

In FK-Okuyama (as well as many D-brane models), the

Yukawa couplings appear from intersection of D-branes.

ordinary overlap fuzzy overlap

The fuzzy overlap may introduce particular structures

to the Yukawa couplings.



Thank You !
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