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This lecture introduce the basic elements of vector analysis.

I. VECTORS IN 3-D EUCLIDEAN SPACE

Mathematically any object which has the properties of addition and multiplying a scalar

is called ”vector”. In three-dimensional Euclidean space one can identify an arrow as an

”Euclidean vector”. The arrow is defined as
−→
AB where A is the staring point and B is the

ending point. A and B are two point in Euclidean space.

One has the Cartesian coordinates which consists of three unit basis vectors which is

normal to each others. A vector is a linear combination of the three basis vectors: êi, i =

1, 2, 3 such as
−→
F = F1ê1 + F2ê2 + F3ê3.

Naturally one can define the addition as

−→
F +

−→
G = (F1 +G1)ê1 + (F2 +G2)ê2 + (F3 +G3)ê3.

Also one can multiply a vector by a scalar factor:

c
−→
F = cF1ê1 + cF2ê2 + cF3ê3.

The length of a vector
−→
F is defined as |

−→
F | =

√
F 2

1 + F 2
2 + F 2

3 . This is due to the fa-

mous Pythagoras theorem. This is the essence of Euclidean space. In this lecture we call

”Euclidean vector” as ”vector” for short.

II. SCALAR PRODUCT AND VECTOR PRODUCT OF VECTORS IN

EUCLIDEAN SPACE

There are two operations on vectors are very important. The first one is scalar product.

It is defined as follows:

−→
F = F1ê1 + F2ê2 + F3ê3,

−→
G = G1ê1 +G2ê2 +G3ê3.
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The scalar product is defined as

−→
F ·
−→
G = F1G1 + F2G2 + F3G3 =

∑
i=1,2,3

FiGi.

The scalar product of two vectors is a scalar. The length of a vector is |
−→
F | =

(−→
F ·
−→
F
)1/2

.

Actually one can show the following:

−→
F ·
−→
G = |

−→
F ||
−→
G | cos θ.

θ is the angle between this two vector.

Another important operation between two vectors are vector product which is defined as

−→
F ×

−→
G = (F2G3 − F3G2)ê1 + (F3G1 − F1G3)ê2 + (F1G2 − F2G1)ê3.

The vector product of two vectors is a vector. To make the definition of the vector product

more simple, one can use Levi-Civita symbol: εijk=1 if ijk is an even permutation of 123.

On the other hand εijk=−1 is ijk is an odd permutation of 123. And εijk=0 if any two of

i, j, k are equal. That is

ε123 = ε231 = ε312 = 1, ε132 = ε213 = ε321 = −1.

Others are all zero. With Levi-Civita symbol one can define the vector product as

−→
F ×

−→
G =

∑
i,j,k

εijkêiFjGk.

In other words, (~F × ~G)i =
∑

jk εijkFjGk. From this definition it is trivial to show

~F × ~G = −~G× ~F . To save time, we will adopt Einstein notation. Which means, when the

same index appears twice, then it means sum over this index from 1 to 3.

Example 1.1: Prove ~F × (~G× ~H) = ~G(~F · ~H)− ~H(~F · ~G).

Solution:

~F × (~G× ~H) = εijkêiFj(~G× ~H)k = εijkêiFjεklmGlHm

Here we apply

εijkεklm = εijkεlmk = δilδjm − δimδjl.

Hence

εijkêiFjεklmGlHm = (δilδjm−δimδjl)êiFjGlHm = êiFjGiHj− êiFlGlHi = ~G(~F · ~H)− ~H(~F · ~G).
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Example 1.2: Prove ~F · ~G× ~H = ~G · ~H × ~F = ~H · ~F × ~G

Solution:

~F · ~G× ~H = Fi(~G× ~H)i = FiεijkGjHk = εijkFiGjHk.

Similar ~G · ~H × ~F = εijkGiHjFk and ~H · ~F × ~G = εijkHiFjGk. From the property of

Livi-Civeta symbol we have

εijkFiGjHk = εjkiFiGjHk = εlmnFnGlHm = εlmnGlHmFn = ~G · ( ~H × ~F ).

Similarly one can prove it is identical to ~H · ~F × ~G.

Exercise 1.1: Please show that (
−→
F ·
−→
G)2 + |

−→
F ×

−→
G |2 = |

−→
F |2|
−→
G |2.

Solution:

|
−→
F ×

−→
G |2 = (εijkFjGk)(εilmFlGm) = (δjlδkm − δjmδkl)FjGkFlGm

= FjFjGkGk − FjGjGkFk = (
−→
F ·
−→
F )(
−→
G ·
−→
G)− (

−→
F ·
−→
G)(
−→
F ·
−→
G)

(
−→
F ·
−→
G)2 + |

−→
F ×

−→
G |2 = (

−→
F ·
−→
F )(
−→
G ·
−→
G) = |

−→
F |2|
−→
G |2.

From this result one can derive that |~F × ~G|=|~F ||~G| sin θ.

Home Work 1.1:Prove that (
−→
A ×

−→
B ) · (

−→
C ×

−→
D)=(

−→
A ·
−→
C )(
−→
B ·
−→
D)− (

−→
A ·
−→
D)(
−→
B ·
−→
C ).

Home Work 1.2:Prove that
−→
F × (

−→
G ×

−→
H ) +

−→
G × (

−→
H ×

−→
F ) +

−→
H × (

−→
F ×

−→
G) = 0.

III. GRADIENT, CURL AND DIVERGENCE

The basic elements of vector analysis are the following operations:

1. Gradient: ∇f = ∂f
∂x1
ê1 + ∂f

∂x2
ê2 + ∂f

∂x3
ê3. It operates on a scalar function and obtains a

vector.

2. Curl: ∇ ×
−→
F = εijkêi

∂Fk

∂xj
. It operates on a vectorial function and obtains another

vectorial function.

3. Divergence: ∇ ·
−→
F = ∂Fi

∂xi
. It operates on an vectorial function and obtains a scalar

function.

4. Laplacian: ∇2f=∇·∇f . It operates on a scalar function and obtains a scalar function.
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One can combine those operations and make rather complicated operations.

Example 1.3: Show that (a) ∇ × ∇f(x)=0. (b) ∇ · ∇ × ~F (x)=0. Here f is a scalar

function and ~F (x) is a vector.

Solution:

(a)

∇×∇f(x) = εijk
∂

∂xj
∂

∂xk
f(x) = εijk

∂2f(x)

∂xj∂xk
= εikj

∂2f(x)

∂xk∂xj
= −∇×∇f(x).

Hence ∇×∇f(x)=0

(b)

∇·∇× ~F (x) =
∂

∂xi
εijk

∂Fk(x)

∂xj
= εijk

∂2Fk(x)

∂xi∂xj
= εjik

∂2Fk(x)

∂xj∂xi
= −εijk

∂2Fk(x)

∂xi∂xj
= −∇·∇× ~F (x)

Hence ∇ · ∇ × ~F (x)=0.

Example 1.4:

(a)Show that ∇× (~F × ~G)=~F (∇ · ~G)− (~F · ∇)~G+ (~G · ∇)~F − ~G(∇ · ~F ).

(b)∇× (∇× ~F )=∇(∇ · ~F )−∇2 ~F .

(c)∇(~F · ~G)=(~F · ∇)G+ (~G · ∇)F + ~F ×∇× ~G+ ~G×∇× ~F

Solution:

(a)

∇× (~F × ~G) = εabi
∂(~F × ~G)i

∂xb
êa = εabiεijk

∂

∂xb
(F jGk)êa.

Because εabiεijk = εiabεijk = δajδbk − δakδbj. Hence

[∇× (~F × ~G)]a = (δajδbk − δakδbj)
∂

∂xb
(F jGk) =

∂

∂xb
(F aGb)− ∂

∂xb
(F bGa)

=
∂F a

∂xb
Gb +

∂Gb

∂xb
F a − ∂F b

∂xb
Ga − ∂Ga

∂xb
F b

∇× (~F × ~G) = ~G · ∇~F + (∇ · ~G)~F − (∇ · ~F )~G− ~F · ∇~G

(b)

[∇× (∇~F )]a = εabi
∂

∂xb
εijk

∂F k

∂xj
= (δajδbk − δakδbj)

∂F k

∂xb∂xj

=
∂2F b

∂xb∂xa
− ∂2F a

∂xb2
= [∇(∇ · ~F )]a − [∇2 ~F ]a
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(c)

~F × (∇× ~G)a = εabiεijkF
b∂G

k

∂xj
= (δajδbk − δakδbj)F b∂G

k

∂xj

= F b∂G
b

∂xa
− F b∂G

a

∂xb

~G× (∇× ~F )a = Gb∂F
b

∂xa
−Gb∂F

a

∂xb
.

Hence

~F × (∇× ~G)a + ~G× (∇× ~F )a = F b∂G
b

∂xa
− F b∂G

a

∂xb
+Gb∂F

b

∂xa
−Gb∂F

a

∂xb

=
∂(F bGb)

∂xa
− (~F · ∇)~Ga − (~G · ∇)~Fa

~F × (∇× ~G) + ~G× (∇× ~F ) = ∇(~F · ~G)− (~F · ∇)~G− (~G · ∇)~F

Home Work 1.3:

(a) Show that ∇ · (~F × ~G)=~G · (∇× ~F )− ~F · (∇× ~G).

(b)Show that ∇× (f∇f)=0.

IV. STOKE’S THEOREM AND GAUSS THEOREM

The basic theorems of vector analysis are the following:

1. Divergence Theorem: ∮
S

−→
F · −→n dA =

∫
V

∇ ·
−→
F dV.

Here S is the boundary of V . −→n is the unit normal vector of the surface boundary.

2. Stokes’ Theorem: ∮
C

−→
F · d~l =

∫
S

∇×
−→
F · −→n dA.

Here C is the boundary of S. −→n is the unit normal vector of the surface. d~l is the

unit tangent vector of the boundary curve.
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To define n̂, if the surface is defined as ~r=~r(u, v). Then

~N =
∂~r

∂u
× ∂~r

∂v
, ~n =

~N

| ~N |
.

The surface area element is defined as

d ~A = ~Ndudv, dA = | ~N |dudv.

In fact, using more advanced mathematical language, these two theorems are one, it is∫
Ω

dω =

∫
∂Ω

ω.

This language is called ”differential form”. Interesting readers should find it in the standard

textbooks.

Example 1.5 Prove that
∮
C

Φd~l =
∫
S
n̂×∇ΦdA.

Solution: From Stokes theorem
∮
C

−→
F · d~l =

∫
S
∇×

−→
F · −→n dA, Choose

−→
F = Φ

−→
K . Here

−→
K

is an arbitrary nonzero vector. Then∮
C

Φ
−→
K · d~l =

∫
S

∇× Φ
−→
K · −→n dA =

∫
S

∇Φ×
−→
K · −→n dA =

∫
S

−→
K · −→n ×∇ΦdA.

=⇒
−→
K ·

(∮
C

Φd~l −
∫
S

−→n ×∇ΦdA

)
= 0.

Hence
∮
C

Φd~l =
∫
S
−→n ×∇ΦdA.

Example 1.6: Please prove that
∮
S
n̂×
−→
GdA =

∫
V
∇×

−→
GdV

Solution:

From Divergence theorem:
∮
S

−→
F · −→n dA =

∫
V
∇ ·
−→
F dV , we choose

−→
F =
−→
K ×

−→
G here

−→
K is an

arbitrary constant nonzero vector. Then∮
S

−→
F · −→n dA =

∮
S

−→
K ×

−→
G · −→n dA =

∮
S

−→
K ·
−→
G × n̂dA∫

V

∇ ·
−→
GdV =

∫
V

∇ · (
−→
K ×

−→
G)dV = −

∫
V

−→
K · (∇×

−→
G)dV

=⇒
−→
K ·

(∮
S

−→
G × n̂dA+

∫
V

(∇×
−→
G)dV

)
= 0.

=⇒
∮
S

−→
G × n̂dA+

∫
V

(∇×
−→
G)dV = 0.
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Hence
∮
S
n̂×
−→
GdA =

∫
V
∇×

−→
GdV . Here we apply

∇ · (
−→
K ×

−→
G) =

∂

∂xi
εijkKjGk = εijkKj

∂Gk

∂xi

= −Kjεjik
∂Gk

∂xi
= −
−→
K · ∇ ×

−→
G.

Example: 1.7: Prove that if ∇× ~F = 0 then there exists ϕ such that ~F = −∇ϕ.

Solution:

Choose two different pathes from the origin O to any point A. The first path is called

P1 and the second path is called P2. The area enclosed by P1 and P2 is called S. Since

∇ × ~F = 0,=⇒
∫
S
∇ × ~F = 0 From Stock’s theorem:

∫
C
~F · d~l=0. C is the boundary of

S which is P1 − P2. Hence
∫
P1

~F · d~l −
∫
P2

~F · d~l = 0. It means the value of
∫
P
~F · d~l is

independent of the path. P is any path connecting O and A. For every point C in the whole

space, Define ϕ(~r =
−→
OC) =

∫
P
~F · d~l here P is any path connecting the origin O and C.

Now taking gradient of ϕ:

−∇ϕ = ∇
∫ C

0

~F · d~l =

∫ C+δC

C

~F · d~l = ~F (~r =
−→
OC).

Exercise 1.2: Prove that (a)
∫
V
∇ΦdV=

∮
S

Φn̂dA. (b)
∫
S
(n̂×∇)×

−→
GdA=

∮
C
d~l ×

−→
G .

Home Work 1.4: Prove that
∫
V

(f∇2g − g∇2f)dV=
∮
S
(f∇g − g∇f) · n̂dA.

Home Work 1.5: If C is a close loop in the plane. Please evaluate
∮
C
−→r × d~l. Assume the

origin is inside the loop.
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V. DELTA FUNCTION

Here I would like to introduce Dirac delta function which is very useful object in this

course. First, let us calculate the following quantity:

∇2

(
1

|~r − ~r′|

)
= ∇ ·

(
−(x1 − x′1)ê1 + (x2 − x′2)ê2 + (x3 − x′3)ê3

(
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2)3

)

=
−1

(
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2)3
+

(
3(x1 − x′1)2

(
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2)5

)

+
−1

(
√

(x2 − x′2)2 + (x2 − x′2)2 + (x3 − x′3)2)3
+

(
3(x2 − x′2)2

(
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2)5

)

+
−1

(
√

(x3 − x′3)2 + (x2 − x′2)2 + (x3 − x′3)2)3
+

(
3(x3 − x′3)2

(
√

(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2)5

)

=
−3

|~r − ~r′|3
+ 3
|~r − ~r′|2

|~r − ~r′|5
= 0.

This is hold when ~r 6= ~r′. However when ~r is close to ~r′ we find something interesting.

Assume B is the ball with the radius ρ and the center at A here
−→
OA=~r′. We choose ρ to be

very small. Then by calculating the following integral:

∫
B

∇ · ∇
(

1

|~r − ~r′|

)
d3V =

∫
S

∇
(

1

|~r − ~r′|

)
· n̂dA = −

∫
S

~r − ~r′

|~r − ~r′|3
· n̂dA.

= −
∫
S

~r − ~r′

|~r − ~r′|3
· ~r −

~r′

|~r − ~r′|
dA = −

∫
S

|~r − ~r′|2

|~r − ~r′|4
dA

= −
∫
S

1

ρ2
dA = −

∫
1

ρ2
ρ2dΩ = −

∫
dΩ = −4π.
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Actually we can even prove that∫
B

(
∇ · ∇

(
1

|~r − ~r′|

))
f(~r)d3V

=

∫
B

∇ ·
(
f(~r)∇

(
1

|~r − ~r′|

))
d3V −

∫
B

∇
(

1

|~r − ~r′|

)
· ∇f(~r)d3V

=

∫
S

f(~r)∇
(

1

|~r − ~r′|

)
· n̂dA−

∫
B

~r′ − ~r
|~r − ~r′|3

· ∇f(~r)d3V

=

∫
S

(
f(~r)

−~r + ~r′

|~r − ~r′|3

)
· n̂dA+

∫
V

1

r2

∂f

∂r
r2drdΩ

= −
∫
S

f(~r)dΩ +

∫ ρ

0

∂f

∂r
drdΩ = −

∫
S

f(~r)dΩ +

∫
(f(~r)||~r−~r′|=ρ − f(~r)||~r−~r′|=0)dΩ = −4πf(~r′).

Here r=|~r − ~r′| and dA=r2dΩ. Hence we know

∇2 1

|~r − ~r′|
= −4πδ(~r − ~r′) = −4πδ(x1 − x′1)δ(x2 − x′2)δ(x3 − x′3).

here δ(x1 − x;1 ) is called Dirac delta function which is defined as∫ b

a

f(x)δ(x− x0) = f(x0), ifx0 ∈ [a, b],

∫ b

a

f(x)δ(x− x0) = 0, otherwise.

Obviously we know δ(x − x0)=0 when x 6= 0. However the value of the function at x = x0

is not well defined. Therefore one must take Dirac delta function as the limit function

of a sequence of functions. Namely there should be a sequence fn(x) and when n → ∞,

fn(x)→ δ(x− x0). Several properties of this function can be derived.

Example 1.8: Prove that

(a):
∫∞
−∞ f(x)δ(a(x− x0))dx= 1

a
f(x0). (b):Evaluate

∫
δ(x2 − a2)f(x)dx.

Solution:

(a):

∫ ∞
−∞

f(x)δ(a(x− x0))dx =

∫ ∞
−∞

f(y/a)δ(y− ax0)d
y

a
=

1

a

∫ ∞
−∞

f(y/a)δ(y− ax0)dy =
1

a
f(x0).

(b):

∫ ∞
−∞

f(x)δ(x2−a2)dx =

∫ ∞
0

f(
√
y)δ(y−a2)d

y

2
√
y

+

∫ ∞
0

f(−√y)δ(y−a2)d
y

−2
√
y

=
f(|a|)
2|a|

+
f(−|a|)
−2|a|

.

Exercise 1.3: Show that
∫
δ′(x− x0)f(x)dx=−f ′(x0).
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VI. HELMHOLTZ’S THEOREM

Here we will apply the previous section to derive the following theorem. It is important

for electromagnetism and fluid Mechanics.

If ∇ · ~F (~r)=s(~r) and ∇× ~F (~r)=~c(~r) then ~F (~r)=−∇ϕ(~r) +∇× ~ψ(~r) where

ϕ(~r) =
1

4π

∫
d3r′

s(~r′)

|~r − ~r′|
, ~ψ =

1

4π

∫
d3r′

~c(~r′)

|~r − ~r′|
.

Here it is assumed that ~c(~r′) approaches zero faster 1

|~r′|
.

Proof:

It is straightforward proof. We simply operate divergence and curl on the object con-

structed. First, let us take the divergence of ~F :

∇ · ~F = −∇ · ∇ϕ+∇ · ∇ × ~ψ = −∇2ϕ(~r)

= −∇2 1

4π

∫
d3r′

s(~r′)

|~r − ~r′|
=
−1

4π

∫
d3r′∇2

(
s(~r′)

|~r − ~r′|

)

=
−1

4π

∫
d3r′s(~r′)∇2

(
1

|~r − ~r′|

)
=
−1

4π

∫
d3r′s(~r′)(−4π)δ3(~r − ~r′)

= s(~r)

Indeed it gives the right answer. next step is to take the curl of the expression:

∇× ~F = −∇×∇ϕ+∇× (∇× ~ψ) = ∇(∇ · ~ψ(~r))−∇2 ~ψ(~r).

The first term is given as

∇(∇ · ~ψ(~r)) = ∇

(
∇ · 1

4π

∫
dV

~c(~r′)

|~r − ~r′|

)
= ∇

∫
d3r′~c(~r′) · ∇

(
1

|~r − ~r′|

)
=

1

4π

∫
d3r′ci(~r′)

∂

∂xk

∂

∂xi

1

|~r − ~r′|
êk =

1

4π

∫
d3r′ci(~r′)

∂2

∂xk∂xi

[
1

|~r − ~r′|

]
êk
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Then we notice that ∂2

∂xk∂xi

[
1

|~r−~r′|

]
= ∂2

∂x′k∂x
′
i

[
1

|~r−~r′|

]
hence we have

∇(∇ · ~ψ(~r)) =
1

4π

∫
d3r′ci(~r′)

∂2

∂x′k∂x
′
i

[
1

|~r − ~r′|

]
êk

=
1

4π

∫
d3r′

∂

∂x′i

[
ci(~r′)

∂

∂x′k

1

|~r − ~r′|

]
êk −

1

4π

∫
d3r′

∂ci(~r′)

∂x′i

∂

∂x′k

[
1

|~r − ~r′|

]
êk

But ∇′ · ~c(~r′) = 0 since ~c(~r′) = ∇′ × ~F (~r′). Therefore the second term vanishes.

∇(∇ · ~ψ(~r))k =
1

4π

∫
d3r′∇ ·

(
~c(~r′)

[
∂

∂x′k

1

|~r − ~r′|

])
=

1

4π

∫
S

~c(~r′)

[
∂

∂x′k

1

|~r − ~r′|

]
· n̂dA′ =⇒ 0.

If ~c(~r′) approaches zero faster 1

|~r′|
. Note that ∇′ · ~C(~r′) = 0. The second term is given as

−∇2 ~ψ =
−1

4π
∇2

∫
dV

(
~c(~r)

|~r − ~r′|

)
=
−1

4π

∫
d3r′ci(~r′)∇2

(
1

|~r − ~r′|

)
êi

=
−1

4π

∫
d3r′ci(~r′)(−4π)δ3(~r − ~r′)êi = ci(~r)êi = ~c(~r).

=⇒ ∇ · ~F = s(~r), ∇× ~F = ~c(~r′).

Example 1.9 prove that ~G = 0 if ∇ · ~G = ∇× ~G = 0.

Solution:

Since ∇× ~G=0 we have ~G=−∇ϕ.

0 =

∫
ϕ∇2ϕdV =

∫
∇ · (ϕ∇ϕ)dV −

∫
(∇ϕ) · (∇ · ϕ)dV =

∫
S

ϕ∇ϕ · n̂dA−
∫

(∇ϕ) · (∇ · ϕ)dV

S →∞ =⇒
∫

(∇ϕ) · (∇ϕ)dV =

∫
~G · ~GdV = 0.

Hence ~G=0.

VII. CURVILINEAR COORDINATES

Sometimes Cartesian coordinate is not very convenient and we need use other coordinates.

To identify a point one needs three coordinate functions: qi(x1, x2, x3), i = 1, 2, 3. There are
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two way to generate the basis vectors. The first way is to fix two coordinate functions.

By this way one obtains a curve with one parameters. The tangent vector of this curve is

identified as one basic vector. In other words we can define the basis vectors as

~bi =
∂x1

∂qi
ê1 +

∂x2

∂qi
ê2 +

∂x3

∂qi
ê3 =

∂−→r
∂qi

.

On the other hand, there is another way. Namely one can choose the gradients of the

coordinate functions to be the basis vectors.

~bi =
∂qi

∂x1
ê1 +

∂qi

∂x2
ê2 +

∂qi

∂x3
ê3 = ∇qi.

Interestingly one has

~bi ·~bj = δij.

Therefore a vector
−→
F can be expressed as

−→
F = F̃ 1~b1 + F̃ 2~b2 + F̃ 3~b3 = F̃1

~b1 + F̃2
~b2 + F̃3

~b3.

How to relate F̃ i and F̃i ? The crucial point is to define the following quantity:

ds2 = d~r · d~r =
∂−→r
∂qi

dqi · ∂
−→r
∂qj

dqj = g̃ijdq
idqj.

Here

g̃ij =
∂xm

∂qi
∂xm

∂qj
.

Then one has

g̃ij~b
j =

∂xk

∂qi
∂xk

∂qj
∂qj

∂xl
êl =

∂xk

∂qi
δklêl =

∂xk

∂qi
êk = ~bi.

Apply this relation one has

F̃1 = F̃ 1g̃11 + F̃ 2g̃21 + F̃ 3g̃31,

F̃2 = F̃ 1g̃12 + F̃ 2g̃22 + F̃ 3g̃32,

F̃3 = F̃ 1g̃13 + F̃ 2g̃23 + F̃ 3g̃33,

That is

F̃k = g̃klF̃
l.
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To invert this relation, we define the following quantity:

g̃ij g̃jk = δik.

One should find that

g̃ijF̃j = g̃ij g̃jkF̃
k = F̃ i.

The upper and lower index are only convenient but really own very concrete meaning. It

can only be seen by transforming the coordinates. Suppose now we have another coordinate

functions pi. Similarly we can define

~ci =
∂−→r
∂pi

, ~ci = ∇pi.

The relationships between two coordinates are as follow:

~ci =
∂−→r
∂pi

=
∂−→r
∂qj

∂qj

∂pi
= ~bj

∂qj

∂pi
.

~ci =
∂pi

∂xk
êk =

∂pi

∂qj
∂qj

∂xk
êk =

∂pi

∂qj
−→c j.

A vector
−→
F can express as

−→
F = F̄ 1~c1 + F̄ 2~c2 + F̄ 3~c3 = F̃ 1~b1 + F̃ 2~b2 + F̃ 3~b3.

It is easy to see

F̃ 1 = F̄ 1∂q
1

∂p1
+ F̄ 2∂q

1

∂p2
+ F̄ 3∂q

1

∂p3
.

F̃ 2 = F̄ 1∂q
2

∂p1
+ F̄ 2∂q

2

∂p2
+ F̄ 3∂q

2

∂p3
.

F̃ 3 = F̄ 1∂q
3

∂p1
+ F̄ 2∂q

3

∂p1
+ F̄ 3∂q

3

∂p3
.

That is

F̃ k = F̄ l∂q
k

∂pl
.

A quantity transforms in this way is called contravariant vector. Similarly we have

−→
F = F̄1~c

1 + F̄2~c
2 + F̄3~c

3 = F̄1
~b1 + F̄2

~b2 + F̄3
~b3.
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And one has

F̃k = F̄l
∂pl

∂qk
.

A quantity transforms in this way is called covariant vector.

Let us remember

ds2 = d~r · d~r =
∂−→r
∂pi

dpi · ∂
−→r
∂pj

dpj = ḡijdp
idpj.

Here

ḡij =
∂xk

∂pi
∂xk

∂pj
.

Again we have

F̄k = ḡklF̄
l.

Since

F̃k = F̄l
∂pl

∂qk
= ḡljF̄

j ∂p
l

∂qk
= ḡlj

∂pl

∂qk
∂pj

∂qi
F̃ i

= g̃kiF̃
i.

So one has

ḡlj
∂pl

∂qk
∂pj

∂qi
F̃ i = g̃kiF̃

i.

This is consistent with the definition since

g̃ki =
∂xm

∂qk
∂xm

∂qi
=
∂xm

∂pl
∂pl

∂qk
∂xm

∂pj
∂pj

∂qi

= ḡlj
∂pl

∂qk
∂pj

∂qi

Therefore gij is a covariant quantity, but it is not a vector but a tensor. It is called

metric tensor.

Home Work 1.6 Please obtain the ~bi and ~bi and gij for the following coordinates:

(a) Spherical coordinate: x1 = r sin θ cosφ, x2 = r sin θ sinφ and x3 = r cos θ.

(b) Cylindrical coordinate: x1 = ρ cos θ, x2 = ρ sin θ and x3 = z.

(c) Parabolic cylindrical coordinate: x1=στ and x2= τ2−σ2

2
,x3=z.

(d) Parabolic coordinate: x1 = στ cosϕ and x2 = στ sinϕ and x3 = 1
2
(σ2 − τ 2).
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VIII. ORTHOGONAL COORDINATES IN EUCLIDEAN SPACE

Here we will restrict ourselves to discuss the coordinate whose basis vectors are orthogonal

to each other. In other words, ~bi ·~bj=0 if i 6= j. Naturally we have

gij = ~bi ·~bj = hih2δij.

Here hi=|~bi| = | ∂~r∂qi |. Consequently one has

d~r = ~bidq
i = hidq

ib̂i.

Here b̂i =
~bi
|~bi|

. Furthermore for a surface area element

n̂idA = ~Ni = εijkhjhkdq
jdqkb̂i.(no summation)

For a volume element it becomes

dV = ~bi ·~bj ×~bk = hihjhkb̂i · b̂j × b̂kdqidqjdqk = hihjhkdq
idqjdqk.

Here we want to discuss the expressions for gradient, divergence and curl in the orthogonal

curvilinear coordinates. The gradient is most easy. From

df = ∇f · d~r = ∇f ·~bidqi = (∇f)ihidq
ib̂i =

∂f

∂qi
dqi.

One has

∇f =
1

hi

∂f

∂qi
b̂i.

From Gauss theorem: ∇ · ~F=limV→0

∮
S
~F ·n̂dA
V

Assume the eight corners the volume is

A=(q1, q2, q3), B=(q1+dq1, q2, q3), C=(q1, q2+dq2, q3), D=(q1, q2, q3+dq3), E=(q1+dq1, q2+

dq2, q3), F=(q1, q2 +dq2, q3 +dq3), G=(q1 +dq1, q2, q3 +dq3), H=(q1 +dq1, q2 +dq2, q3 +dq3).

~F · dA(�EBGH) = ~F1(q1 + dq1, q2, q3)h2(q1 + dq1, q2, q3)h3(q1 + dq1, q2, q3)dq2dq3,

~F · dA(�ACFD) = −~F1(q1, q2, q3)h2(q1, q2, q3)h3(q1, q2, q3)dq2dq3,

~F · dA(�FDGH) = ~F3(q1, q2, q3 + dq3)h1(q1, q2, q3 + dq3)h2(q1, q2, q3 + dq3)dq1dq2,

~F · dA(�ACEB) = −~F1(q1, q2, q3)h1(q1, q2, q3)h2(q1, q2, q3)dq1dq2,

~F · dA(�CGHF ) = ~F2(q1, q2 + dq2, q3)h1(q1, q2 + dq2, q3)h3(q1, q2 + dq2, q3)dq1dq3,

~F · dA(�ABGD) = −~F1(q1, q2, q3)h1(q1, q2, q3)h3(q1, q2, q3)dq1dq3,
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Hence

lim
V→0

∮
S

~F · n̂dA =
1

h1h2h3dq1dq2dq3
[(F1h2h3(q1 + dq1, q2, q3)− F1h2h3(q1, q2, q3))dq2dq3

+ (F2h1h3(q1, q2 + dq2, q3)− F2h1h3(q1, q2, q3))dq1dq3

+ (F3h1h2(q1, q2, q3 + dq3)− F3h1h2(q1, q2, q3))dq2dq3]

=
1

h1h2h3

[
∂(h2h3F1)

∂q1
+
∂(h1h3F2)

∂q2
+
∂(h1h2F3)

∂q3

]

Now we will derive similar expression for curl. From Stock’s theorem one has ∇ ×
~F=limA→0

∮
C
~f ·d~l
A

Choose Four point A=(q1, q2, q3), B=(q1, q2 + dq2, q3), C=(q1 + dq1, q2, q3)

and D=q1 + dq1, q2 + dq2, q3). Now we have C as combination of AC and CD and DB and

BA. ∫ C

A

~F · d~l = F1(q1, q2, q3)h1(q1, q2, q3)dq1,∫ D

C

~F · d~l = F2(q1 + dq1, q2, q3)h2(q1 + dq1, q2, q3)dq2,∫ B

D

~F · d~l = −F1(q1, q2 + dq2, q3)h1(q1, q2 + dq2, q3)dq1,∫ A

B

~F · d~l = −F2(q1, q2, q3)h2(q1, q2, q3)dq2,

Hence∮
C

~F ·d~l = (F2h2(q1+dq1, q2, q3)−F2h2(q1, q2, q3))dq2−(F1h1(q1, q2+dq2, q3)−F1h1(q1, q2, q3))dq1.

Hence

(∇× ~F )3 =
1

h1h2

(
∂(F2h2)

∂q1
− ∂(F1h1)

∂q2

)
.

Similar we have

(∇× ~F )1 =
1

h2h3

(
∂(F3h3)

∂q2
− ∂(F2h2)

∂q3

)
.

(∇× ~F )2 =
1

h1h3

(
∂(F1h1)

∂q3
− ∂(F3h3)

∂q1

)
.

In short we can write down the following expression:

∇× ~F = εijk
hib̂i

h1h2h3

(
∂Fkhk
∂qj

− ∂Fjhj
∂qk

)
.
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Last, we need the expression for Laplacian. This is easy:

∇ · ∇f =
1

h1h2h3

[
∂

∂q1
(h2h3∇f1) +

∂

∂q2
(h1h3∇f2) +

∂

∂q3
(h1h2∇f3)

]
=

1

h1h2h3

[
∂

∂q1

(
h2h3

h1

∂f

∂q1

)
+

∂

∂q2

(
h1h3

h2

∂f

∂q2

)
+

∂

∂q3

(
h1h2

h3

∂f

∂q3

)]

Example 1.9 Spherical coordinate: r=
√
x2 + y2 + z2, θ=tan−1

(
z√
x2+y2

)
,

φ = tan−1
(
y
x

)
. Express gradient, curl, divergence and Laplaian in this coordinate.

Solution:

~r = r sin θ cosφê1 + r sin θ sinφê2 + r cos θê3.

Hence

~br = sin θ cosφê1 + sin θ sinφê2 + cos θê3,

~bθ = r cos θ cosφê1 + r cos θ sinφê2 − r sin θê3,

~bφ = −r sin θ sinφê1 + r sin θ cosφê2.

One can obtain that hr=1, hθ=r and hφ=r sin θ. Consequently one has

∇f =
∂f

∂r
b̂r +

1

r

∂f

∂θ
θ̂ +

1

r sin θ

∂f

∂φ
φ̂.

∇ · ~F =
1

r2 sin θ

[
∂r2 sin θFr

∂r
+
∂r sin θFθ

∂θ
+
∂rFφ
∂φ

]
=

1

r2

∂(r2Fr)

∂r
+

1

r sin θ

∂(sin θFθ)

∂θ
+

1

r sin θ

∂Fφ
∂φ

.

∇× ~F =
1

r sin θ

(
∂ sin θFφ

∂θ
− ∂Fθ

∂φ

)
b̂r +

1

r

(
1

sin θ

∂Fr
∂φ
− ∂rFφ

∂r

)
θ̂ +

1

r

(
∂rFθ
∂r
− ∂Fr

∂θ

)
êφ.

∇2f =
1

r2

∂

∂r

(
r2∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
.

Exercise 1.4: Cylindrical coordinate: ρ=
√
x2

1 + x2
2, φ = tan−1

(
x2
x1

)
. x3=z Express

gradient, curl, divergence and Laplaian in this coordinate.

Home Work 1.7: Parabolic cylindrical coordinate: x1=στ and x2= τ2−σ2

2
,x3=z. Express

gradient, curl, divergence and Laplacian in this coordinate.
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Home Work 1.8: Elliptic cylindrical coordinate: x1=a coshµ cos ν and x2=a sinhµ sin ν,

x3=z Express gradient, curl, divergence and Laplacian in this coordinate.

IX. SEPARATION OF VARIABLES OF LAPLACE OPERATOR

Here we want to show how to obtain three ordinary second order differential equations

from the separation of variables of Laplace equation at different curvilinear coordinates.

First let us do it at spherical coordinate. Here Φ is a function and its Laplacian at spherical

coordinate is

∇2Φ =
1

r2

∂

∂r

(
r2∂Φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2
= 0.

Now we assume Φ can be written as the follows: Φ=R(r)P (θ)W (φ). This is bold as-

sumption, nevertheless let us try! We first obtain

1

Rr2

∂

∂r

(
r2∂R

∂r

)
+

1

Pr2 sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
+

1

Wr2 sin2 θ

∂2W

∂φ2
= 0.

Multiplying r2 sin2 θ and it becomes

sin2 θ

R

∂

∂r

(
r2∂R

∂r

)
+

sin θ

P

∂

∂θ

(
sin θ

∂P

∂θ

)
+

1

W

∂2W

∂φ2
= 0.

Observe the above equation we find that the first terms are independent on φ but the last

term is only dependent on φ. Therefore we have

1

W

d2W

dφ2
= −m2.

The reason to choose the negative number is because otherwise one won’t obtain periodic

function of φ. Sequently we obtain

sin2 θ

R

∂

∂r

(
r2∂R

∂r

)
+

sin θ

P

∂

∂θ

(
sin θ

∂P

∂θ

)
−m2 = 0.

Now we divide the equation by sin2 θ:

1

R

∂

∂r

(
r2∂R

∂r

)
+

1

P sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
− m2

sin2 θ
= 0.

The first term is independent on θ but the other two terms are only dependent on θ, so that

1

R

d

dr

(
r2dR

dr

)
= k.
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Here k is arbitrary number. At the end of this process we have

1

sin θ

∂

∂θ

(
sin θ

∂P

∂θ

)
− m2

sin2 θ
P + kP = 0.

To make our equation more elegant we choose the variable µ=cos θ, d
dθ

=−(1− µ2)1/2 d
dµ

.

1

sin θ

d

dθ

(
sin θ

dP

dθ

)
=

1√
1− µ2

[
−(1− µ2)1/2 d

dµ

] [
−(1− µ2)

dP

dµ

]
=

d

dµ

(
(1− µ2)

dP

dµ

)
.

The solution of this equation is Legendre functions. Next we try to do similar thing at

cylindrical coordinate. The Laplacian at cylindrical coordinate is

1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2

∂2Φ

∂φ2
+
∂2Φ

∂z2
= 0.

Assume the separation of variable works: Φ = R(ρ)W (φ)Z(z) Then we have

1

Rρ

∂

∂ρ

(
ρ
∂R

∂ρ

)
+

1

Wρ2

∂2W

∂φ2
+

1

Z

∂2Z

∂z2
= 0.

The last term is only dependent on z and other terms are independent of z so that 1
Z
∂2Z
∂z2

= k2.

The reason to choose positive number is because z(z) must vanish when z → ±∞. So that

1

Rρ

∂

∂ρ

(
ρ
∂R

∂ρ

)
+

1

Wρ2

∂2W

∂φ2
+ k2 = 0.

Multiplying ρ2 one obtains

ρ

R

∂

∂ρ

(
ρ
∂R

∂ρ

)
+ k2ρ2 +

1

W

∂2W

∂φ2
= 0.

Now the first two terms are independent of φ and the last one only depends on φ so 1
W

∂2W
∂φ2

=

−m2. The reason to choose negative is because W (φ) must be periodic function. Now we

have

ρ
∂

∂ρ

(
ρ
∂R

∂ρ

)
+ k2ρR− m2

ρ
R = 0.

To make the equation more elegant we choose the new variable: x=kρ. The equation

becomes

kρ
∂

∂(kρ)

(
kρ

∂R

∂(kρ)

)
+ k2ρR− km2

kρ
R = 0.

kx
∂

∂x

(
x
∂R

∂x

)
+ kxR− km2

x
R = 0.
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Namely we have

x
d

dx

(
x
dR

dx

)
+ xR− m2

x
R = 0.

The solution of this equation is called Bessel function.

Both of Legendre functions and Bessel functions are both well studied in this summer

course. Next lecture we will first study the general theory of ordinary differential equation.

Home Work 1.9: Please operate the same procedure of separation of variable for the

Laplace equation at elliptic cylindrical coordinate.

X. APPENDIX: DIVERGENCE IN CURVILINEAR COORDINATES:

GENERAL CASE

The next task is how to write down the gradient, curl and divergence in term of arbitrary

coordinate. The crucial pint is the basis vectors here are dependent on the position. Assume

∂~bi
∂qj

=
∂xm

∂qi∂qj
êm = Γkij

~bk.

Note that
∂~bj
∂qi

=
∂xm

∂qj∂qi
= Γkji

~bk.

It is easy to see Γkij=Γkji.

Then the differential of a vector in curvilinear coordinate becomes

∂
−→
F

∂qi
=

∂

∂qi

(
F̃ j~bj

)
=
∂F̃ j

∂qi
~bj + F̃ j ∂

~bj
∂qi

=
∂F̃ j

∂qi
~bj + F̃ jΓkji

~bk =

(
∂F̃ k

∂qi
+ F̃ jΓkji

)
~bk.

Therefore

∇ ·
−→
F =

∂Fi
∂xi

=
∂
−→
F

∂xi
· êi =

∂
−→
F

∂qk
· êi

∂qk

∂xi

=

(
∂F̃ k

∂qi
+ F̃ jΓkji

)
~bk · êi

∂qk

∂xi
=

(
∂F̃ k

∂qi
+ F̃ jΓkji

)
∂xi

∂qk
∂qk

∂xi

=
∂F̃ i

∂qi
+ F̃ jΓiji.
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So we need evaluate Γkij. This is a little bit tricky. Remember that g̃ij = ~bi ·~bj. Hence

∂g̃ij
∂qk

=
∂~bi
∂qk
·~bj +

∂~bj
∂qk
·~bi = Γmik

~bm ·~bj + Γmjk
~bm ·~bi = Γmikg̃mj + Γmjkg̃mi.

Similarly we have

∂g̃kj
∂qi

= Γmkig̃mj + Γmji g̃mk.
∂g̃ik
∂qj

= Γmij g̃mk + Γmkj g̃mi.

One has
∂g̃ij
∂qk

+
∂g̃kj
∂qi
− ∂g̃ik
∂qj

= 2Γmkig̃jm.

So one has
1

2
g̃nj
(
∂g̃ij
∂qk

+
∂g̃kj
∂qi
− ∂g̃ik
∂qj

)
=

1

2
g̃nj (2Γmkig̃jm) = Γnki.

Therefore

Γiij =
1

2
g̃il
(
∂g̃jl
∂qi

+
∂g̃il
∂qj
− ∂g̃ji
∂ql

)
=

1

2
g̃il
(
∂g̃jl
∂qi

+
∂g̃il
∂qj

)
− 1

2
g̃li
(
∂g̃jl
∂qi

)
=

1

2
g̃il
∂g̃il
∂qj

The determinant of g̃ij is expressed as

g̃ = det(g̃ij) =
∑
i

g̃ijA
ij,

∂g̃

∂g̃ij
= Aij.

Here Aij is the cofactor. Remember g̃ij is the inverse of g̃ij. Therefore

g̃ij =
Aij

det gij
.

Hence one has
1

g̃

∂g̃

∂gij
= g̃ij.

So we have
1

2
g̃il
∂g̃il
∂qj

=
1

2g̃

∂g̃

∂qj
.

Therefore

∇ ·
−→
F =

∂F̃ i

∂qi
+ F̃ jΓiji =

∂F̃ i

∂qi
+

1

2g̃

∂g̃

∂qi
F̃ j =

1√
g̃

∂

∂qi

(
F (i)

√
g̃
)
.


