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This lecture introduce the basic elements of vector analysis.

I. VECTORS IN 3-D EUCLIDEAN SPACE

Mathematically any object which has the properties of addition and multiplying a scalar
is called ”vector”. In three-dimensional Euclidean space one can identify an arrow as an
"Euclidean vector”. The arrow is defined as 1@ where A is the staring point and B is the
ending point. A and B are two point in Euclidean space.

One has the Cartesian coordinates which consists of three unit basis vectors which is
normal to each others. A vector is a linear combination of the three basis vectors: é;,i =
1,2,3 such as

F = Fyéy + Fyéy + Faés,

Naturally one can define the addition as
F 4G =(F+G)er+ (F+ Ga)és + (Fy + Ga)és.
Also one can multiply a vector by a scalar factor:
cF = cFyéy + cFyéy + cFaés.

The length of a vector F is defined as |?| = /F?+ F}+ F. This is due to the fa-
mous Pythagoras theorem. This is the essence of Euclidean space. In this lecture we call

”Fuclidean vector” as ”vector” for short.

II. SCALAR PRODUCT AND VECTOR PRODUCT OF VECTORS IN
EUCLIDEAN SPACE

There are two operations on vectors are very important. The first one is scalar product.

It is defined as follows:

? - Flél + FQéQ + Fgég, 8 - Glél + Ggég + Ggég.



The scalar product is defined as
F.G=FG+FRG+FG= Y FG.

i=1,2,3

1/2
The scalar product of two vectors is a scalar. The length of a vector is ]?\ = <? : ?) .

Actually one can show the following:
F .G = |F||C)cosh.

0 is the angle between this two vector.

Another important operation between two vectors are vector product which is defined as
? X 8 = (FyG3 — F3Ga)ér + (F5G1 — FiG3)és + (F1Gy — F>Gh)és.

The vector product of two vectors is a vector. To make the definition of the vector product
more simple, one can use Levi-Civita symbol: €;;,=1 if ijk is an even permutation of 123.
On the other hand €;;,=—1 is ¢jk is an odd permutation of 123. And ¢;;;,=0 if any two of
1,7,k are equal. That is

€123 = €231 = €312 = 1, €132 = €213 = €321 = —1.
Others are all zero. With Levi-Civita symbol one can define the vector product as
? X 8 = ZeljkéZFij‘
/L'7j’k
In other words, (ﬁ X @)Z = ij €ijkF;Gr.  From this definition it is trivial to show

FxG=-GxF. To save time, we will adopt Einstein notation. Which means, when the

same index appears twice, then it means sum over this index from 1 to 3.
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Example 1.1: Prove F x (G
Solution:
ﬁ X (C_j X ﬁ) = Ewkélf’jﬂ<é X ﬁ)k = eijkéiFjEklmGZHfm
Here we apply
€ijk€klm = €ijk€imk = 5i15jm - 5im5jl'

Hence

EijkéiF}lemGle == (6il5jm—5im5ﬂ)é¢FleHm = é,F}GzH]—élﬂGle == é(ﬁﬁ)—ﬁ(ﬁé)



— —

Example 1.2: Prove F'- G x H=G-HxF=

—»

FxG
Solution:

ﬁ . é X I‘_j = E(C_j X [‘7)1 = FieijijHk = EijkEGij-

Similar G - H x F = €;;xGiH;F}, and H - FxG = €k H;F;Gy. From the property of

Livi-Civeta symbol we have
eiinFyGiHy, = €3 FiGiHy = €mn FyGiHp = €1mnGiHmF, = G - (H x F).

Similarly one can prove it is identical to H-FxQG.
Exercise 1.1: Please show that ? 8 - \F 8]2 ]?\ |8]2

Solution:

‘? X 8’2 = <€zng}Gk>(€zlmEGm) = (5jl5km — 5]m5kl)F]GkEGm
— FF,GGyr— FG,GF=(F-F)G-G)—(F-G)F - )
(F- G2 + |[Fxdp=(F F)d-0)=Fpdp

From this result one can derive that |F x G|=|F]||G|sin 6.

Home Work 1.1:Prove that (A x B) - (C x D)=(A-C)B-D)— (A-D)B- ).
Home Work 1.2:Prove that F x (8 X ﬁ) + a x (ﬁ X ?) + H x (? X 8) = 0.

III. GRADIENT, CURL AND DIVERGENCE

The basic elements of vector analysis are the following operations:

1. Gradient: Vf = a—f + 8‘9 1{[ € —I— 63 It operates on a scalar function and obtains a

vector.

2. Curl: V x F = €jkCi ‘gF L It operates on a vectorial function and obtains another

vectorial function.

3. Divergence: V - ?

(%Z. It operates on an vectorial function and obtains a scalar

function.

4. Laplacian: V2f=V-V f. It operates on a scalar function and obtains a scalar function.



One can combine those operations and make rather complicated operations.
Example 1.3: Show that (a) V x Vf(z)=0. (b) V-V x F(z)=0. Here f is a scalar
function and F(z) is a vector.

Solution:

(a)

9 0 0°f(x) 0*f(x)
VxVf(zx)= %k%@f@) = Gk g onk M kg —V x Vf(z).
Hence V x V f(2)=0
(b)
— o 0 6Fk($) o 82Fk(l‘) . 82Fk($) - asz(a:) - =
VAV E(@) = 5 i = G griag i aman e VY < F W)

Hence V - V x F(x)=0.
Example 1.4:
(a)Show that V x (F x G)=F ”( .G)—(F-V)G+(G-V)F -G(V-F).
(b)Vx(VxF) V(V-F

()V(F - G)=(F- V)G + (

Solution:

(a)

“ij
11
<
Q)
_I_

Q2
X

<
X

E11

) =
+(G-V )

=3 = 0 ﬁ X C_j in 0 . R
V x (F X G) = eabi%ea = Eabiﬁijk%(F]Gk)ea

Because €.4i€ijk = €iab€iji = 0qj0pk — 0arOp;. Hence

Lo d o . . 5, .
[V X (F xG)la = (64j06k — Sar0s;) o b(FJG’“) o — (PG — o b(FbG )
oFe _,  OG OF® oGe _,
— _Fa _ = (a F
oxb G+ Oxb Oxb ¢  Oxb

Vx (FxG =G - VF+(V-G)F—(V-F)G-F-VG

B, o OF* OF*
[V x(VF), = Cabi gy 3 Ciik g7 = (0a;Obk — 5ak5bj)5$baxj
O*FP D*F°

= Ozbore b2 =[V(V- ﬁ)]a - [V2ﬁ]a



F x (V X G)a = Eabieiijb% = (5aj5bk — 5ak5bj)F G
oG* o0G*
— Fb— o Fb
ox® Oxb
= - OF? oF*®
R
Gx(VxF),=G 5 G o
Hence
oG® oG® OF® oF*
_ b b b b
Fx(VxG)y+Gx(VXF),=F e F It +G e G o
Fb b . . .
:mﬁfthvmfwavM;

Home Work 1.3:

!
l

— —

(a) Show that V- (F x G)=G - (Vx F) = F - (V x G).
(b)Show that V x (fV f)=0.

IV. STOKE’S THEOREM AND GAUSS THEOREM

The basic theorems of vector analysis are the following:

1. Divergence Theorem:
fﬁﬁmz/vﬁw
s v

Here S is the boundary of V. 7 is the unit normal vector of the surface boundary.
2. Stokes’ Theorem:

%jWJ:AVXFJMA

Here C' is the boundary of S. 7 is the unit normal vector of the surface. dl is the

unit tangent vector of the boundary curve.



To define 7, if the surface is defined as 7=7(u,v). Then

The surface area element is defined as
dA = Ndudv, dA = |N|dudv.

In fact, using more advanced mathematical language, these two theorems are one, it is

/dw:/ w.
Q L)

This language is called ”differential form”. Interesting readers should find it in the standard

textbooks.
Example 1.5 Prove that ¢, dl = Jo x VOdA.

Solution: From Stokes theorem §C ? dl = fs V x ? - WdA, Choose ? = @[_(). Here ?

is an arbitrary nonzero vector. Then

f@?-di—/Vxcb?.ﬁdA—/Vcbx?-ﬁdA—/?-ﬁchbdA.
C S S S
s ?-(%@di—/ﬁwi/l):o.

C S

Hence fc ddl = fs T x VOdA.

Example 1.6: Please prove that 555 n X 8dA = fv V x 8dV
Solution:
From Divergence theorem: fs ? L HdA = fv V. ?dV, we choose ?:[_() X 8 here [—g is an

arbitrary constant nonzero vector. Then

ﬁ?.mm - ﬁ?xﬁ-m/xzé?ﬁmm

/Vvﬁdv - /Vv-(?xﬁ)dvz—/v?-(vXB)dv
:>?~(£8xﬁdA+/v(V><8)dv>:0.
:>%g8xﬁdA+/‘/(Vx8)dV:0.



Hence g7 % CdA = [,V x CdV. Here we apply
0 0Gy,
V- (? X 8) = O 2@ij Gk ez]ng i

= KGJZk :—? an

Example: 1.7: Prove that if V x F = 0 then there exists ¢ such that F = —Vo.
Solution:

Choose two different pathes from the origin O to any point A. The first path is called
P, and the second path is called P,. The area enclosed by P, and P, is called S. Since
VxF=0=— SV % F = 0 From Stock’s theorem: fcﬁ -di=0. C is the boundary of
S which is P, — P,. Hence fP1ﬁ cdl — fpgﬁ -dl = 0. Tt means the value of fpﬁ Sl is
independent of the path. P is any path connecting O and A. For every point C' in the whole
space, Define ¢(7 = O?) = fPﬁ -dl here P is any path connecting the origin O and C.
Now taking gradient of :

Cc+6C
V= v/ / Fdl = F(7=00),

Exercise 1.2: Prove that (a) [, VOdV=§, ®idA. (b) [,(i x V) x GdA=§,.dl x G
Home Work 1.4: Prove that [,,(fV?g —gV?f)dV=9¢.(fVg—gVf) - ndA.
Home Work 1.5: If C'is a close loop in the plane. Please evaluate fo 7 x dl. Assume the

origin is inside the loop.



V. DELTA FUNCTION

Here I would like to introduce Dirac delta function which is very useful object in this

course. First, let us calculate the following quantity:

2 1 —(:Bl xl)el + (ZBQ — 352)62 + (1‘3 — 933)é
Vi ——)=vV-
(!F—T’!> ((V(m—x1)2+(932—w2)2+(w3—933)2) )

_ 1 . 3(z1 — )’ )
(V{1 —21)? + (w9 — 25)? + (23 — 25)%)3  \ (V (21 — 21)? + (22 — 25)? + (x5 — 25)?)°
. 1 . 3(zy — )2 )
(Vg —25)? + (w9 — 25)? + (z3 — 24)%)3  \ (V/ (21 — 21)? + (w2 — 25)? + (x5 — 25)?)°
N -1 N 3(z3 — 5)? >
((ws — 252 + (w2 — 25 + (23— a5)2)°  \(v/(@r — 20)® + (w2 — 23)2 + (25 — 25)%)°
- +3:_: ’

This is hold when 7 # . However when 7 is close to r’ we find something interesting.
—_—
Assume B is the ball with the radius p and the center at A here O A=r’. We choose p to be

very small. Then by calculating the following integral:

v-v( 1ﬁ>d3vz/v<ﬁlq).ﬁdz4
B |7 = 7| s \|F—=7]

L3
—/f L idA.
s |r—1r'|3

e d | —'__; a2
S [ Sy P U
s|r=r3 |r—r| s|r—r*



Actually we can even prove that

‘A(V V(ri|>)(mf
- [ v (Z)) o= 7 () o

::/f®V<r ) A= [ T vy
S T—rTr B

AN 1of ,
= ) — | -ndA+ | == Q
/S (f(r E r’|3> nd /VTQ 5" drd

) »of .
=—Lﬂmm+0Eymm:—Aﬂmm+/ummﬁ%—ﬂmmﬂ@m=—Mﬂm.

Here r=|7 — 77| and dA=r2dQ). Hence we know

1 - / /
P = —Amd(F — 1) = —4nd(x1 — x))0 (22 — x5)0(x3 — 27).

VZ

here 0(x; — x;; ) is called Dirac delta function which is defined as

/ f(x)d(x — xo) = f(xo),ifzo € [a,b], / f(z)dé(x — o) = 0, otherwise.

Obviously we know §(x — x9)=0 when x # 0. However the value of the function at = = x
is not well defined. Therefore one must take Dirac delta function as the limit function
of a sequence of functions. Namely there should be a sequence f,(x) and when n — oo,

fn(x) = 6(x — x¢). Several properties of this function can be derived.

Example 1.8: Prove that
a): [~ f(x)d(a(z — xo))dz=1Lf(xo). (b):Evaluate [ d(z? — a?)f(z)dx.

Solution:

(a):

| r@itate—aonds = [~ sjasty - amal =5 [ fojarsty - azody = o).

o0

/OO f(x)é(xQ—a2)dx= /Ooo F(Vy)é(y d_+/ fl= JU )d Qy\/_ - 2(||Z||)+f£;||z||)

Exercise 1.3: Show that [0'(x — o) f(v)dz=—f'(z).
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VI. HELMHOLTZ’S THEOREM

Here we will apply the previous section to derive the following theorem. It is important

for electromagnetism and fluid Mechanics.

—

If V- F(7)=s() and V x F(7)=&F) then F(7)=—V¢(7) + V x ¢(F) where

p(7) = ;/d?”

—
/

Here it is assumed that &(r’) approaches zero faster L.

||
Proof:

It is straightforward proof. We simply operate divergence and curl on the object con-

structed. First, let us take the divergence of F:

V-F=-V - Vp+V-Vxi=—-VF)

:_v 1/dSI (rl 1/d3 va 5(7’)_)
4m |7 — 7| 4 |77 — 7|

- di”r's(ﬁ)v?( L ) i / drs(7)(—4m)3 (7 — )

47

Indeed it gives the right answer. next step is to take the curl of the expression:

—

VX F=-VxVp+Vx(Vxi)=V(V- (7)) - V(7).

The first term is given as

-
/

1

F
0o o0 1 1 1
d3 / A - ) _ R
T ar alr )&ckaxl |r—7”| dm / e axkaxl {|F_T/J c
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R YRR XA Py VR SRR

oy, [jr— )|

-
/

But V' - &) = 0 since &r’) = V' x F(r7). Therefore the second term vanishes.

o 1 - 0 1
V(V-Y(r)y=— d3r'V~(5r’ [ —_,}>
(V-3 =1 | ) g
1 . [a 1

= Sc(r)

]-ﬁdA’:>0.

pry
/

Oz, |7 — |

—

If &) approaches zero faster ﬁ Note that V' - C(r7) = 0. The second term is given as

I e(r) -1 - 1
i 2 :—VQ/dV< q):—/d3r’cir’v2( 4>éi
v 4m |77 — 1| 4 (') |77 — 7|

Example 1.9 prove that G=0ifV-G=V xG=0.
Solution:

Since V x G=0 we have é:—Vgo.

0 — /goVQQOdV — /V-(sOW)dV—/(W) (Voppv :/

[ 9 iaa - / (V) - (V- @)dV

S—>oo:>/(Vgo)-(Vgo)de/é-C?deO.

Hence G=0.

VII. CURVILINEAR COORDINATES

Sometimes Cartesian coordinate is not very convenient and we need use other coordinates.

To identify a point one needs three coordinate functions: ¢'(x!, 2% 2%),i = 1,2,3. There are
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two way to generate the basis vectors. The first way is to fix two coordinate functions.
By this way one obtains a curve with one parameters. The tangent vector of this curve is

identified as one basic vector. In other words we can define the basis vectors as

02 ox3 o

= 2 + T+
_¢ _¢
oq ! g’ 2

b =

-¢ —.
¢ > dg
On the other hand, there is another way. Namely one can choose the gradients of the

coordinate functions to be the basis vectors.

~ 0¢ . 0¢ .  Oq .

b = O e + 02 €9 + O3 €3 = Vql.
Interestingly one has

Therefore a vector ? can be expressed as
? - Flgl —|— ﬁv252 + FSB’g - Flgl + FQEZ + F353.

How to relate F* and F; ? The crucial point is to define the following quantity:

or . 0T . o
ds® = di - d7 = -dq' - —dq¢’ = §;;dq*dq’ .
S T dr 8q’q0qjq gijaq aq
Here
_ ox™ Ox™
gij = _aq"' 8qj .
Then one has
~ 7 8$k al’k 8qj . 8,’1;'k . 8xk . 5

Gij dq O O l BYG ki€l o k
Apply this relation one has

By = F'gi1 + F?go1 + Fgs,
Fy = F'gio+ F2Gas + F33,

Fy = ﬁlf]lz + 152923 + F3§33,

That is
E, = guF".
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To invert this relation, we define the following quantity:
37 Gk = 0}
One should find that
gz‘jﬁwj _ gijgjkﬁvk — pi
The upper and lower index are only convenient but really own very concrete meaning. It

can only be seen by transforming the coordinates. Suppose now we have another coordinate

functions p;. Similarly we can define

The relationships between two coordinates are as follow:

L _ 07 _070¢ _yof
opi  Ogi opi T opi
op' . op'og .  op —i

ek = 7= 6k =
Oxk " Ogi Oxk "

Al
I

A vector ? can express as
F = F'é, + F2, + F3¢, = BB, + F25, + 3%,

It is easy to see

~ B aql B aql _ 8q1
Ft' = Pl P2 L 3
opt + op? + op?
_ 02 -0 .0
F2 — Fl_ 271 F3_
op! op? + op?
B 8(]3 B aq3 _ aq3
3 Fl_ F2_ F3_
op! * op! * op?
That is
= %0
op'

A quantity transforms in this way is called contravariant vector. Similarly we have

F =R+ B+ B = Fb + B+ BiP
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And one has
_ opt

F, = B~
k laqk

A quantity transforms in this way is called covariant vector.

Let us remember

or . T . .
ds* = di - dif = —dp' - —dp’ = g;.dp'dp’.
s rrapzpap]p] Gijdp'dp’
Here
o _ Ot oat
95 = B0 o7
Again we have
Fy = gl
Since
- _opt _ _opt _ optapT -,
B = Figm = 0l 5% = 9550 g
= Gk
So one has
opl opd - -
G ——F" = qu; "
gljaqk aqz gk

This is consistent with the definition since

dz™ dx™  dx™ a_pl ox™ Op’
d¢" d¢'  Op' dg* Op' dg'
_ optop

9ij dq* Og

ki =

Therefore g;; is a covariant quantity, but it is not a vector but a tensor. It is called

metric tensor.

Home Work 1.6 Please obtain the b; and b and gi; for the following coordinates:

(a) Spherical coordinate: x7 = rsinf cos ¢, xo = rsinfsin ¢ and z3 = r cos 6.
(b) Cylindrical coordinate: x1 = pcosf, xs = psinf and z3 = z.

(

(

2=

2

. . . 2
c¢) Parabolic cylindrical coordinate: x;=c7 and xo="5% r3==2.

d) Parabolic coordinate: z; = o7 cos ¢ and 7o = o7sing and z3 = (0 — 72).
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VIII. ORTHOGONAL COORDINATES IN EUCLIDEAN SPACE

Here we will restrict ourselves to discuss the coordinate whose basis vectors are orthogonal

to each other. In other words, l;; . gj:O if i # j. Naturally we have
gij = l_); . gj = h,hgém

Here hi=|bi| = | 2%

. Consequently one has

di’ = bydq' = hydq'b;.

1

i Furthermore for a surface area element

i

=

Here ZA)Z =

4

o

A dA = N; = eijkhjhkdqjqul;i.(no summation)
For a volume element it becomes
AV = b; - b; X by = hihjhgh; - by x bpdg'dg? dg* = hihjhydg'dg dg*.

Here we want to discuss the expressions for gradient, divergence and curl in the orthogonal

curvilinear coordinates. The gradient is most easy. From

df = V- di =V f-Bdg = (Vf)shidq'b; — g—édqi.
One has
1of .

From Gauss theorem: V - F =limy _,q Is F‘}ﬁdA Assume the eight corners the volume is

A=(¢", %, ¢%), B=(¢*+dq", ¢*. ¢*), C=(q", @*+d¢*. ¢*), D=(q", ¢*, ¢*+d¢®), E=(¢" +dq*, ¢*+
dg*, ¢*), F=(¢", ¢*+dq*, ¢* +d¢*), G=(q¢" +dq¢*, ¢*, ® +dq®), H=(q" +dq*, * +dq*, ¢* + d¢®).

—

I
ol

F-dADEBGH) = Fi(q"' +dq', ¢*,¢*)ha(q" + dq', ¢*, ¢*)hs(q" + dg', ¢, ¢*)dg*dq?,
F-dADACFD) = —Fi(q",¢*. " )halq", %, ¢*)hs(a", ¢*, ¢*)dg*dg’,
F-dA(OFDGH) = Fs(q",¢% ¢* + dg*)hi(d", *, ¢* + dg*)ha(q', &%, ¢* + dq®)dg'dq”,
F-dA(OACEB) = —Fi(¢".¢*.¢")h(q". ¢*. " )h*(q", ¢*, ¢°)dg' dg?,
) = Bylq', ¢ +d¢*.¢*)hi(q'. ¢* + dg*. ¢*)hs(q', ¢ + dg*, ¢*)dq" dg?,
)

= —Fi(¢" ¢, P)(d", ¢, ¢*)hs(q", ¢, ¢*)dg* dg?,

F-dA(OCGHF
F-dA(OABGD
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Hence

1
li F.-hdA = Fihohs (gt + dqt, 6%, ¢®) — Fihohs(q'. ¢, ¢*))dq?dq?
lim ¢ F-# T hahedd dgidg (Fiheha(d +da', ¢ ¢%) = Fiaha(a, ¢°. ¢*))da’dg

+ (FBehahs(q', ¢ + dg*, ¢°) — Fohihs(q', 4%, ¢%))dq' dg®

+ (Fshiha(q", ¢, ¢* + dg*) — Fshaha(q', ¢, ¢*))dq*dq’]
L [OhahsFy) | O(hahsFy) | O(hihoFy)
hihgohs 86]1 8(12 3q3

Now we will derive similar expression for curl. From Stock’s theorem one has V x
Fetim s o %57 Choose Four point A=(q",¢%, ¢*), B=(¢', ¢+ e, ¢*), C=(¢' +dq', ¢*,¢*)
and D=q' + dq ,¢* +dq?, ¢*). Now we have C' as combination of AC' and C'D and DB and
BA.

C
/ Fdl = F(¢', ¢ ¢hi(¢", ¢, ¢)dg',

D
/ = (¢ +dq*, ¢, ¢*)ha(q" + dg*, ¢, ¢*)dg?,
C

S+

/ F-dl = —Fi(¢", ¢+ dg®, ) (¢, ¢ + dd?, ¢)dq,
D

A
/ Fdl = —Fy(q", ¢, ¢*)ha(q", ¢, ¢°)dd?,

s}

Hence
% F-dl = (Fyho(q'+dg", %, ¢*)— Faha(qh, ¢, ¢*)de* — (Fiha (¢4, *+dq?, ¢*)— Fiha (¢, 6%, ¢°))dg’.
C

Hence

1 (0(Bhy)  O(Fihy)
(VXF)3_h1h2( o7 op )

Similar we have

@ By — (a(thg) - a<F2h2)) |

h2h3 0q2 8q3
3 1 (O(Fihy)  (Fyhy)

F)y = - .
(Vx £ hlhg( o7 o

In short we can write down the following expression:

hib; (aFkhk athj)

igh hihghs oq’ B 8qk

Vxﬁ:
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Last, we need the expression for Laplacian. This is easy:

1 {8 0 0

VS = g [V ) + o o (hhsV f2) + ﬁ(hthVfg)l

_ [0 (hahadfY O (M OfY, O (IahyOf
N hlhghg 8q1 hl 0q1 8(]2 hg an 8(]3 h3 8q3

Example 1.9 Spherical coordinate: r=+/22 +y? + 22, fO=tan! (\/ijy?)’

¢ =tan"! (%) Express gradient, curl, divergence and Laplaian in this coordinate.

Solution:

7 = rsin f cos ¢pé; + rsin 0 sin péy + r cos fé;.

Hence

b, = sinf cos ¢pé; + sin f sin péy + cos Bés,
by = 1 cosfcospéy + rcosbsinpés — rsinfés,

by = —rsinfsin¢é; + rsin b cos pé.

One can obtain that h,=1, hy=r and hy=rsinf. Consequently one has

Cof, 1of, 1 of.
vi= or ol +7“800+7"sin98¢¢'

= 1 Or?sinfF, OrsinfF, OrFy
VoE = TQSiIlQ{ or * 00 * 0¢ ]
B i@(r2Fr) n 1 O(sinbFy) N 1 OF,
o2 or rsinf 96 rsing 0¢
= 1 8sin0F¢ 8F9 ~ 1 1 8Fr 8’/’F¢ ~ 1 8rF9 aFr N
F = — - — - —
VX rsin9< a6 a¢)b’“+r<sinea¢ 87’>9+r<37’ ae>e¢’

,Of 1 0 of 1 9*f
2 _ _ —_ 2
Vi = 7“287’ (T 3r>+r28in980(1 089>+r28in29(9¢2'

Exercise 1.4: Cylindrical coordinate: p=+/2?+ 22, ¢ = tan! <ﬂ> r3=2 Express

1

gradient, curl, divergence and Laplaian in this coordinate.

Home Work 1.7: Parabolic cylindrical coordinate: z;=07 and xngzg"Q ,r3=z2. Express

gradient, curl, divergence and Laplacian in this coordinate.
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Home Work 1.8: Elliptic cylindrical coordinate: x;=a cosh pcosv and xo=asinh psinv,

r3=z Express gradient, curl, divergence and Laplacian in this coordinate.

IX. SEPARATION OF VARIABLES OF LAPLACE OPERATOR

Here we want to show how to obtain three ordinary second order differential equations
from the separation of variables of Laplace equation at different curvilinear coordinates.
First let us do it at spherical coordinate. Here ® is a function and its Laplacian at spherical
coordinate is

V2o = %g (7“28—(1)) + ;2 (sin@a—q)) + ;82—(1) =
r2or or r2sin 6 00 00 r2sin? § O¢p?

Now we assume ® can be written as the follows: ®=R(r)P(0)W(¢). This is bold as-
sumption, nevertheless let us try! We first obtain

19 T23_R —i——l 92 sin@a—P + ! alll =0
Rr2 Or or Pr?sin 6 06 00 Wr2sin?6 0¢2

Multiplying 72 sin? # and it becomes

sin® @ & ( 28R) N sinf 9 ( (9P) 1 9*W

Roao\" o) P a0 ) twase

=0.

Observe the above equation we find that the first terms are independent on ¢ but the last

term is only dependent on ¢. Therefore we have

1 d*W 2

Wder
The reason to choose the negative number is because otherwise one won't obtain periodic
function of ¢. Sequently we obtain

sin29£ 2OR +sin92 ,90_P 20
R or \' or P oo \"ee) T T

Now we divide the equation by sin? #:

10 (LO0RY 1 0/(. 0P\ m
Ror\' or)  Psnooo \""" 00 ) sinZo

The first term is independent on € but the other two terms are only dependent on 6, so that

1d ( ,dR
E%(“%)—k
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Here k is arbitrary number. At the end of this process we have
1 0 oP m?
——— |sinf— | — ——=P+ kP =0.
Sin 6 90 (Sm 89) sn?g T

To make our equation more elegant we choose the variable y=cosf, %L=—(1 — p?)Y/2L.

v e du
Lod (. dP
sinodo \"M a0

oo

The solution of this equation is Legendre functions. Next we try to do similar thing at

cylindrical coordinate. The Laplacian at cylindrical coordinate is
10 [ 0P 100 %P
o (7)o *
Assume the separation of variable works: ® = R(p)W (¢)Z(z) Then we have
1 0 ( OR 1 oW 10*Z
%%@%)tmww+ﬂﬁ

19%2Z _ 1.2

The last term is only dependent on z and other terms are independent of z so that 55 =

The reason to choose positive number is because z(z) must vanish when z — +o00. So that

ig % + ! aQW + k2 =0
Rp dp P op Wp? 0¢? S
Multiplying p? one obtains
0 OR 1 0*W
PO (DR s LW
Rop \" Op W 0¢?
Now the first two terms are independent of ¢ and the last one only depends on ¢ so %6;7”2/ =

—m?. The reason to choose negative is because W (¢) must be periodic function. Now we

0 OR m2
— | p— k*pR— —R = 0.
Pop (p ap) a p

To make the equation more elegant we choose the new variable: x=kp. The equation

have

becomes

9, OR ) km?
“%%m(mﬁwm>+k”R‘%FR‘“

2
ox ox x
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Namely we have

2
d ( dR)—l—xR——R—O

T \Udx
The solution of this equation is called Bessel function.
Both of Legendre functions and Bessel functions are both well studied in this summer
course. Next lecture we will first study the general theory of ordinary differential equation.
Home Work 1.9: Please operate the same procedure of separation of variable for the

Laplace equation at elliptic cylindrical coordinate.

X. APPENDIX: DIVERGENCE IN CURVILINEAR COORDINATES:
GENERAL CASE

The next task is how to write down the gradient, curl and divergence in term of arbitrary

coordinate. The crucial pint is the basis vectors here are dependent on the position. Assume

8(_); . 8:1:’” N

= ¢, =Tk,
o aqlaqfe ok
Note that .
aq" 8q3 8q

It is easy to see Ffj:F?i.

Then the differential of a vector in curvilinear coordinate becomes

OF a(Fjb) 0P b,

oq’ 8q oq’ oq’
k
— _ Ry ——b; + FITkb, = aiJrFﬂr’g by..
oq’ aq

Therefore




So we need evaluate Ffj This is a little bit tricky. Remember that g;; = b; - l;j. Hence

8G;  Ob; —  Oby - oo oo .
&]é:aqk'bj'i"a_q;'bi:Fz‘kbm'bj"'rjkbm'bi:Fikgmj"‘rjkgmi-

Similarly we have

agk] ag%k m
an = Fk‘zgm] + F]zgmk 8q F j 9mk + Fk]gmz
One has
0gi;  Ogr; Ok .
s — - = 21" G-
8qk + aql aq] ki9j
So one has
1. .(0G; OGr;i  OGir 1~
Zanj i J ) = Z5% (2T G Ire..
2g (aqk + aqz aq] 2 ( kzg] ) ki
Therefore

d¢t ¢  0¢

1.

2

1 _, (0g; 07; 1_,.(0g; 1._,0q;
= gt iﬂ—l— gil _ gl 994t :_gzzi{

2 oq oq’ 2 oq 27 O0q¢

The determinant of g;; is expressed as

e —

)

(ag]l d9a 3@;@')

,§~] = g’L] Z gz]Aw = AZ]

ZJ

Here A% is the cofactor. Remember g is the inverse of g;;. Therefore

g AV
g = .
det Gij
Hence one has
105 _
= =g-.
g agij
So we have
1_,0g: 1 0g
o¢  250¢°
Therefore




