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This lecture introduce the basic elements of ordinary differential equation.

I. HOMOGENEOUS SECOND ORDER EQUATION

In physics the main object one has to deal with is essentially differential equations.

Usually they are the second order differential equations. Here we first study homogeneous

case. The general form of homogeneous second order ordinary differential equation reads as

d2y

dx2
+ f(x)

dy

dx
+ g(x)y = 0.

For a second order ordinary differential equation one needs two initial conditions to specify

the solution. In other words, there should be two independent solutions y1(x) and y2(x). In

general c1y1(x) + c2y2(x) is the general form of the solution and two initial conditions will

determine the values of c1 and c2.

Example 2.1: Please find the general solution of d2y
dx2
− 2b dy

dx
+ ky = 0.

Solution:

Assume y = eizx then

(−z2 − 2ibz + k)eizx = 0 =⇒ z = ib± (k − b2)1/2.

Such that y=e−bxe
√
k−b2x and y=e−bxe−

√
k−b2x. Therefore the solution is

y(x) = c1e
−bxei

√
k−b2x + c2e

−bxe−i
√
k−b2x

The value of c1 and c2 is decided by two initial conditions. When one solution is known,

how to obtain another independent one? For example, in Example 2.1 when k = b2, the

two solutions become one, one needs to know the another independent solution. Here is the

standard way:
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Wornskian:

The Wornskian is defined as

W (y1, y2) = y1y
′
2 − y2y′1.

Interesting it has the following property.

1

W (x)

dW (x)

dx
=

1

W (x)
(y1y

′′
2 − y2y′′1)

=
1

W (x)
(y1[−f(x)y′2 − g(x)y2]− y2[−f(x)y′1 − g(x)y1]) =

f(x)W (x)

W (x)
= f(x),

W (x) = W (x0) exp

(
−
∫ x

x0

f(ξ)dξ

)
.

Then we have

d

dx

(
y2
y1

)
=

y1y
′
2 − y′1y2
y21

=
W

y21
.

y2(x) = y1(x)

∫ x W (ξ)

y21(ξ)
dξ.

The following example is typical case.

Example 2.2: y′′ − 4y′ + 4y = 0 has one solution e2x. please find another solution.

Solution:

f(x)=4.

W (x) = W (0) exp

(∫ x

0

dξ4dξ

)
= W0e

4x.

y2(x) = e2x
∫ x W0e

4ξ

(e2ξ)2
dξ = e2xW0

∫ x

dξ = W0xe
2x.

Another method is to assume y2(x)=u(x)y1(x) and sometime it is relatively easy to obtain

u(x) instead of y2. Since y′′2 +fy′2 +gy2 = 0 =⇒ u(y′′1 +fy′1 +gy1)+u′′y1 +u′(2y′1 +fy1) = 0.

Since y1 is also solution therefore we have

u′′y1 + u′(2y′1 + fy1) = 0.

That is
u′′(ξ)

u′(ξ)
= −2

y′1(ξ)

y1(ξ)
− f(ξ).
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Integrate over ξ to eta we have

lnu′(η) = −2 ln y1(η)−
∫ η

f(ξ)dξ.

That is u′(η) = 1
y21(η)

e−
∫ η f(ξ)dξ. Next we integrate over η to x and obtain,

u(x) =

∫ x 1

y21(η)
e−

∫ η f(ξ)dξdη.
We reach the exact same expression. However this method can be extended to nonho-

mogeneous situations.

Example 2.3: (1−x2)y′′−2xy′+2y = 0 has one solution x. please find another solution.

Solution:

f(x)= −2x
1−x2 and g(x)= 2

1−x2 . So

u(x) =

∫ x 1

η2
exp

−
∫ η −2ξ

1−ξ2
dξ
dη

∫ η 2ξ

1− ξ2
dξ =

∫ η [ 1

1− ξ
− 1

1 + ξ

]
dξ = ln(1− η2).

u(x) =

∫ x 1

η2
exp− ln(1−η2) dη =

∫ x 1

η2
1

1− η2
dη =

∫ x( 1

η2
1

1− η2

)
dη

=

∫ x( 1

η2
+

1

1− η2

)
dη =

∫ x( 1

η2
+

1

2

(
1

1− η
+

1

1 + η

))
dη

= −1

x
+

1

2
ln

(
1 + x

1− x

)

y2(x) = u(x)y1(x) = −1 +
x

2
ln

(
1 + x

1− x

)
Exercise 2.1: Please find the general solution of x2y′′ − 2xy′ + 2y = 0.

Home Work 2.1: Please find the general solution of (1− x2)y′′ − xy′ + y = 0.

Home Work 2.2: Please find the general solution of xy′′ − (2x+ 1)y′ + (x+ 1)y = 0.

II. POWER SERIES SOLUTION

When x = x0 which is not singularity of f(x) and g(x) one can expand the solution as

the series of (x− x0)n and derive the relations of the coefficients.
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Example 2.4: Solve the Hermite equation: d2y
dx2
− 2x dy

dx
+ 2αy = 0.

Solution:

y =
∞∑
n=0

anx
n.

y′ =
∞∑
n=0

(n+ 1)an+1x
n.

y′′ =
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n.

Insert them into the equation one has

(2a2 + 2αa0)x
0 +

∞∑
n=1

[(n+ 1)(n+ 2)an+2 − 2nan + 2αan]xn = 0.

Therefore one has

a2 = −αa0. an+2 = 2an
n− α

(n+ 1)(n+ 2)
.

Hence for even n = 2k:

a2k = (−2)k
α(α− 2)....(α− 2k + 2)

2k!
a0.

For odd n = 2k + 1:

a2k+1 = (−2)k
α(α− 2)....(α− 2k + 1)

(2k + 1)!
a1.

Therefore we find two independent solutions. If α = 2p, p is an integer then a2p+2 = 0. The

solution with even term becomes polynomial. It is called H2p(x) Hermite polynomial.

Homework 2.3: Please find the power series solution of Airy function: y′′ + xy = 0.

Homework 2.4: Please find the power series solution of Airy function:

(1 + x2)y′′ + 2xy′ − 2y = 0.

Method of Frobenius: When some singular points of f(x) and/or g(x) occur then the

ordinary power series method fails. When (x − x0)f(x) and (x − x0)
2g(x) are analytic

functions then x0 is called regular singularity. In this case one may choose alternative one.

namely one choose

y(x) = (x− x0)p
∞∑
n=0

an(x− x0)n.
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Here p can be positive or negative, integer or non- integer even complex number is allowed.

This is called “method of Frobenius”.

Example 2.5:Applying method of Frobenius to obtain the solution valid for x > 1 for

the following equation:

(x2 − x)
d2y

dx2
+

(
2x− 1

2

)
dy

dx
+

1

4
y = 0

Solution:

y =
∞∑
n=0

anx
n+p.

y′ =
∞∑
n=0

(n+ p)anx
n+p−1.

y′′ =
∞∑
n=0

(n+ p− 1)(n+ p)anx
n+p−2.

Insert them one has

∞∑
n=0

(n+ p)(n+ p− 1)anx
n+p − (n+ p)(n+ p− 1)anx

n+p−1 + 2(n+ p)anx
n+p

−1

2
(n+ p)anx

n+p−1 +
1

4
anx

n+p = 0.

(
−p(p− 1) +

1

2
p

)
xp−1 +

∞∑
n=0

[(n+ p)(n+ p− 1)an − (n+ p+ 1)(n+ p)an+1

+ 2(n+ p)an −
1

2
(n+ p+ 1)an+1 +

1

4
an]xn+p = 0

.

The coefficient of the first term must be zero. It is called indicial equation. From it we

know p = 0 or p = 1
2
. As p = 0

an+1 =
2n+ 1

2(n+ 1)
an =

(2n+ 1)!!

2n+1(n+ 1)!
a0.
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For p = 1/2

an+1 =
n+ 1

n+ 3/2
an =

2n+1(n+ 1)!

(2n+ 3)!!
a0.

Hence there are two independent solutions

y1 = a0

∞∑
n=0

(2n− 1)!!

2nn!
xn.

y2 =
√
xa0

∞∑
n=0

2nn!

(2n+ 1)!!
xn.

Home Work 2.5: Please find the two solutions of 2x2y′′ + x(2x + 1)y′ − y = 0 by

method of Frobenius.

When the roots of indicial equation has repeated roots or two root differing by an integer

then the method of Frobenius fails to give two independent solutions. In this case, the

second solution owns this form:

y2 = y1 lnx+
∞∑
n=0

anx
n+p.

The reason of choosing such a ansatz is because lnx approaches infinity slower than any

x−p, p > 0. It can be easily realized by the fact limx→0
lnx
x−p

= limx→0
1/x

(−p)x−p−1 → 0.

Example 2.6:Applying method of Frobenius to obtain the solution valid for x > 1 for

the following equation:

(1− x2)d
2y

dx2
− 2x

dy

dx
= 0

Solution:

Change the variable w = x− 1. The equation becomes

(w + 2)w
d2y

dw2
+ 2(w + 1)

dy

dw
= 0.

Assume y =
∑∞

n=0 anw
n.

∞∑
n=0

(n+p)(n+p−1)anw
n+p+2(n+p)(n+p−1)anw

n+p−1+2(n+p)anw
n+p+2(n+p)anw

n+p−1 = 0
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The lowest term is wp−1:

[2p(p− 1) + 2p]a0w
p−1

+
∞∑
n=0

[(n+ p)(n+ p− 1)an + 2(n+ p+ 1)(n+ p)an+1 + 2(n+ p)an + 2(n+ p+ 1)an+1]w
n+p = 0.

The solution is p = 0. And an+1 = an
−n

2(n+1)
. However this solution

∑∞
n=0 anw

n = a0 is a

trivial solution. The second solution now is assumed as

y2 = y1 lnw + wp
∞∑
n=0

anw
n.

Take y1 = 1 Insert to equation one has(
−w + 2

w
+ 2

w + 1

w

)
+
∞∑
n=0

[(n+ p)(n+ p+ 1)an + 2(n+ p+ 1)2an+1]w
n+p = 0.

It becomes

1 + 2a1 +
∞∑
n=1

[n(n+ 1)an + 2(n+ 1)2an+1]w
n = 0

So n(n+ 1)an = −2(n+ 1)2an+1 which means a1 = −1
2

besides we have

an = −n− 1

2n
an−1 = (−1)n−1

1

n2n−1
a1 =

(−1)n

2nn
.

Therefore the second solution is

y2(w) = lnw +
∞∑
n=1

(−1)n
(w

2

)n 1

n

= lnw + ln
(

1 +
w

2

)
= ln

(
x− 1

x+ 1

)
.

Home Work 2.6: Please find the two solutions of x2y′′ + xy′ +
(
x2 − 1

4

)
y = 0.

Asymptotic method:

What if we want to have solution valid for large value x? We can change variable u = 1/x.

A solution valid in a neighborhood of u = 0 is a solution valid about the “point at infinity”.

Example 2.7: To obtain the solution at the point at infinity of the following equation:

d2y

dx2
+

1

x

dy

dx
−
(

1 +
m2

x2

)
y = 0
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. Solution:

For large x the terms with 1/x and 1/x2 become very small. The equation simplifies to

d2y∞
dx2

− y∞ = 0.

It is trivial to see y∞ = e±x. now let us define y = v(x)e±x The equation becomes

v′′ +

(
1

x
± 2

)
v′ +

1

x

(
±− m2

x

)
v = 0.

Now change variable to u = 1/x. Then

dv

dx
=

dv

du

du

dx
= −u2 dv

du
,

d2v

dx2
=

d

du

(
−u2 dv

du

)
du

dx
= u4

d2v

du2
+ 2u3

dv

du
.

Hence the equation becomes

u3
d2v

du2
+ (u2 ∓ 2u)

dv

du
+ (±1−m2u)v = 0.

Insert v(u)=
∑∞

n=0 anu
n+p. We have

∞∑
n=0

[(n+p)(n+p−1)anu
n+p+1+(n+p)anu

n+p+1∓2(n+p)anu
n+p±anun+p−m2anu

n+p+1 = 0.

The lowest term is up. Its coefficient is (∓2p± 1)a0. So p = 1/2. Consequently we have

ak+1 = ∓4m2 − (2k + 1)2

8(k + 1)
ak.

They are the two solutions.

Home Work 2.7: Please discuss the nature of the point x=∞ for (1 − x2)y′′ − 2xy′ +

p(p+ 1)y = 0.

III. STURM-LIOUVILLE THEORY

In many physical systems the following forms of differential equations emerge.

d

dx

(
f(x)

dy

dx

)
− g(x)y + λw(x)y = 0.
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Here w(x) ≥ 0 on the range [a, b]. The solution y(x) satisfies the following boundary

conditions:

a1y(x = a) + b1y
′(x = a) = 0, a2y(x = b) + b2y

′(x = b) = 0.

ai=0 is called Neunmann conditions. bi=0 is called Dirichlet conditions.

There is a set of function yn(x) which is the solution of the above equation with λ = λn.

Those functions are called eigenfunctions and λn are called eigenvalues. For the eigenfunc-

tions with different eigenvalues we can prove that they are orthogonal. Let us start from

the following:

d

dx

(
f(x)

dym
dx

)
− g(x)ym + λmw(x)ym = 0.

d

dx

(
f(x)

dyn
dx

)
− g(x)yn + λnw(x)yn = 0.

yn
d

dx

(
f(x)

dym
dx

)
− ym

d

dx

(
f(x)

dyn
dx

)
+ (λm − λn)wymyn = 0.∫ b

a

yn
d

dx

(
f(x)

dym
dx

)
− ym

d

dx

(
f(x)

dyn
dx

)
dx = (λn − λm)

∫ b

a

w(x)ymyndx

Remember that∫ b

a

yn
d

dx

(
f(x)

dym
dx

)
dx = ynf(x)

dym
dx
|ba −

∫ b

a

f(x)
dyn
dx

dym
dx

dx

Therefore when n 6= m and λm 6= λn then∫ b

a

w(x)ym(x)yn(x)dx = 0.

Hence we have∫ b

a

yn
d

dx

(
f(x)

dym
dx

)
− ym

d

dx

(
f(x)

dyn
dx

)
dx

= yn(b)f(b)
dym(b)

dx
− yn(a)f(a)

dym(a)

dx
−
∫ b

a

f(x)
dyn
dx

dym
dx

dx

− ym(b)f(b)
dyn(b)

dx
+ ym(a)f(a)

dyn(a)

dx
+

∫ b

a

f(x)
dym
dx

dyn
dx

dx

= yn(b)f(b)
−a2
b2

ym(b)− yn(a)f(a)
−a1
b1

ym(a)− ym(b)f(b)
−a2
b2

yn(b) + ym(a)f(a)
−a1
b1

yn(a)

= 0
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Any well-behaved function f(x) defined in [a, b] can be expanded in a series of eigenfunctions:

f(x) =
∞∑
n=0

anyn(x).

here

an =

∫ b
a
f(x)yn(x)w(x)dx∫ b

a
w(x)yn(x)yn(x)dx

.

Home Work 2.8 When f(x), g(x) and w(x) are all real and w(x) ≥ 0. Please prove that

the eigenvalue λn is real.

IV. NONHOMOGENEOUS SECOND ORDER ORDINARY DIFFERENTIAL

EQUATION

From this section we start to study the non-homogeneous case:

d2y

dx2
+ f(x)

dy

dx
+ g(x)y = h(x).

In general if one find a solution of the above the equation yp(x) which is called ”particular

solution”, the the combination of yp and yc which is the solution of d2y
dx2

+f(x) dy
dx

+ g(x)y = 0

is also a solution. It is natural because to determine the solution one needs two initial

conditions and consequently we need two free parameters. Therefore

y(x) = yp(x) + c1yc,1 + c2yc,2.

We have discuss the method of acquiring yc, so we will focus on the method of acquiring

the particular solution here. To assume y(x)=u1(x)y1(x) + u2(x)y2(x) here y1(x) and y2

are the two independent solutions of d2y
dx2

+ f(x) dy
dx

+ g(x)y = 0. Furthermore we request :

u′1y1 + u′2y2 = 0. Then we have

u1(y
′′
1 + fy′1 + gy1) + u2(y

′′
2 + fy′2 + gy2) + u1y

′
1 + u′2y

′
2 = h(x).

It actually becomes

u′1y
′
1 + u′2y

′
2 = h(x), u′1y1 + u′2y2 = 0.

It causes

u′1 =
−y2h(x)

W (y1, y2)
, u′2 =

−y1h(x)

W (y1, y2)
.



11

Therefore

y(x) = y1(x)

∫ x −y2(ξ)h(ξ)

W (y1(ξ), y2(ξ))
dξ + y2(x)

∫ x −y1(ξ)h(ξ)

W (y1(ξ), y2(ξ))
dξ.

Home Work 2.9: Find the general solution of the following equation:

y′′ + 2y = cscx.

Home Work 2.10: Find the general solution of the following equation:

(x2 − 1)y′′ − 2xy′ + 2y = (x2 − 1)2.

V. GREEN FUNCTIONS

A powerful way to obtain the particular solution of the nonhomogeneous ordinary differ-

ential equation is to apply the Green functions. Green functions are defined as the solutions

of the following equation:(
d2

dx2
+ f(x)

d

dx
+ g(x)

)
G(x, x′) = −4πδ(x− x′).

For different initial conditions there will be different forms of the Green functions. If the

initial condition is specified then one can apply it because the following expression is auto-

matically the solution we look for.

y(x) =

∫
G(x, x′)h(x′)dx′.

Example 2.8: Please apply Green function to solve mdv
dt

+ αv = F (t). v = 0 as t=±∞.

Solution:

First we need to obtain the Green function G(t, t′) satisfying mdG
dt

+ αG = δ(t − t′). For

t 6= t′ the delta function is zero and the equation is mdG(t,t′)
dt

+ αG(t, t′) = 0. Which has

the form G(t, t′)=A exp
(
− α
m
t
)
. This form approaches zero as t → +∞ but blows up as
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t→ −∞. Since v = 0 when t→ −∞ so we have G(t, t′) = 0 when t < t′. The next step is

to integrate the differential equation from t′ − ε to t′ + ε.∫ t′+ε

t′−ε

(
m
dG(t, t′)

dt
+ αG(t, t′)

)
dt = mG|t′+εt′−ε + α

∫ t′+ε

t′−ε
Gdt = 1.

Remember G(t′ − ε, t′)=0. Since |
∫ t′+ε
t′−ε G(t)dt| ≤ max|G|(2ε)→ 0. So we have

m
[
A exp

(
− α
m
t′
)
− 0
]

= 1.

A= 1
m

exp
(
α
m
t′
)
. At the end

G(t, t′) = 0, ift ≤ t′

G(t, t′) =
1

m
exp

(
− α
m

(t− t′)
)
, ift > t′.

So that

v(t) =

∫ ∞
−∞

G(t, t′)F (t′)dt′ =

∫ t

∞
G(t, t′)F (t′)dt′.

Home Work 2.11: If y(x=0)=y(x=L)=0. Please find the green function as the solution

of d2y
dx2

+ k2y = δ(x− x′).

Another way to obtain the Green function is to apply Strum-Liouville theory. Since the

Green function should satisfy

d

dx

(
f(x)

dG

dx

)
− g(x)G+ λw(x)G = −4πδ(x− x′).

Here we expand it with the eigenfunctions

G(x, x′) =
n=∞∑
n=0

γn(x′)yn(x).

Remember that
d

dx

(
f(x)

dyn
dx

)
− g(x)yn + λnw(x)yn = 0.

So from
∞∑
n=0

γn(x′)
d

dx

(
f(x)

dyn
dx

)
− g(x)yn + λw(x)yn = −4πδ(x− x′).

we have

γn(x′)[−λnw(x)yn(x) + λw(x)yn(x)] = −4πδ(x− x′).
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Note multiply ym(x) then integrate over x the above equation from a to b

∞∑
n=0

(λ− λn)γn(x′)

∫ b

a

w(x)yn(x)ym(x)dx = −4π

∫ b

a

δ(x− x′)ym(x)dx.

∞∑
n=0

(λ− λn)γn(x′)δnm = −4πym(x′).

Therefore

γm(x′) =
4πym(x′)

λm − λ
,

G(x, x′) =
∞∑
n=0

4πyn(x′)yn(x)

λn − λ
.

Example 2.9: If y(x=0)=y(x=L)=0. Please find the green function as the solution of

d2y
dx2

+ k2y = δ(x− x′). Please use Sturm-Liouville theory.

Solution:

d2yn
dx2

+ λny = 0.

To satisfy the boundary conditions we obtain

yn(x) = cn sin
(nπx
L

)
.

To extract cn we note that∫ L

0

yn(x)yn(x)dx = 1. =⇒ c2n

∫ L

0

sin2
(nπx
L

)
dx = 1.

cn =

√
2

L
.

Hence

G(x, x′) =
2

L

∞∑
n=1

sin
(
nπx
L

)
sin
(
nπx′

L

)
k2 −

(
nπ
L

)2 .

Example 2.10: Poisson Equation : ∇2Φ=−ρ(x)/ε0 with boundary condition Φ(~x) =

0 at the boundary. Apply Delta function to solve it.

Solution:

Here we define ∇2G(~x, ~x′) = −4πδ(~x− ~x′). From∫
V

(Φ(x)∇2G(x, x′)−G(x, x′)∇2Φ(x))dV =

∫
s

(Φ(x)∇G(x, x′)−G(x, x′)∇Φ9x)) · n̂dS.
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∫
V

[
Φ(x)[−4πδ3(~x− ~x′)−G(x, x′)

(
−ρ(x)

ε0

)]
dV =

∫
S

(Φ(x)∇G(x, x′)−G(x, x′)∇Φ(x))·n̂dS.

−Φ(~x′) +
1

4πε0

∫
V

G(~x, ~x′)ρ(x)dV =
1

4π

∫
S

(Φ(x)∇G(x, x′)−G(x, x′)∇Φ(x)) · n̂dS.

Φ(~x) vanishes on the boundary so we choose GD(~x, ~x′) = 0 on the boundary and obtain

Φ(~x′) =
1

4πε0

∫
V

GD(~x, ~x′)ρ(~x)dV.

Home Work 2.12 If ∇Φ · n̂ is specified on the boundary, please solve Poisson equation.


