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This lecture introduce the basic elements of complex analysis.

I. COMPLEX PLANE

A complex number can be viewed as a point or position vector in a two-dimensional

Cartesian coordinate system called the complex plane or Argand diagram, named after

Jean-Robert Argand. The numbers are conventionally plotted using the real part as the

horizontal component, and imaginary part as vertical. Namely we have

z = x+ iy = r(cos θ + i sin θ) = reiθ.

here we apply this relation eiθ = cos θ+ i sin θ derived from Taylor expansion. Naturally we

have the following relations:

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
.

Remember the definition of the hyperbolic functions:

cosh θ =
eθ + e−θ

2
, sinh θ =

eθ − e−θ

2
.

Thus we have

cos(iθ) = cosh θ, sin(iθ) = i sinh θ, cosh(iθ) = cos θ, sinh(iθ) = i sin θ.

Since ei2π = 1 therefore one finds that z = reıθ = rei(θ+2nπ). with integer n. If we looks for

the m− th root of this number:

z1/n = r1/neiθ/mei2nπ/m.

So there are m distinct roots of any nonzero number. The absolute value of a complex

number: |z| =
√
x2 + y2 = r is the length of the corresponding vector. Consequently we

have the following identities:

|z1 + z2| ≤ |z1|+ |z2|, |z1 − z2| ≥ ||z1| − |z2||.
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The complex conjugate of a complex number is z∗ = x− iy = re−iθ. The inverse of complex

number is 1/z = x−iy
x2+y2

= 1
r
· e−iθ. Naturally we have z∗z = r2 ≥ 0.

Example 3.1: Please show that cosnθ =
∑n/2

k=0
n!

2k!(n−2k)!
(−1)k cosn−2k θ sin2k θ. Here n

is even.

Solution:

(
eiθ
)n

= einθ = cosnθ + i sinnθ = (cos θ + i sin θ)n =
n∑
j=0

n!

j!(n− j)!
(i)j sinj θ cosn−j θ

=

n/2∑
k=0

n!

2k!(n− 2k)!
(−1)k sin2k θ cosn−2k θ

+ i

(n/2)−1∑
k=0

n!

(2k + 1)!(n− 2k − 1)!
(−1)k sin2k+1 θ cosn−2k−1 θ

So that

cosnθ =

n/2∑
k=0

n!

2k!(n− 2k)!
(−1)k cosn−2k θ sin2k θ.

Home Work 3.1: Please show that

(a) sin−1 z=−i ln[iz +
√

1− z2]. (b)cosh−1 z=ln[z +
√
z2 − 1]. (c) tanh−1 z = 1

2
ln
[

1+z
1−z

]
.

II. COMPLEX FUNCTIONS AS MAPPINGS

A complex function f(z) takes the number z=x + iy and generates another complex

number w=u + iv. This is a mechanism to setup a a correspondence between two points

in the complex plane, therefore it is naturally to think a complex function as a mapping

which maps complex plane to itself.

Example 3.2: Describe the mappings (a) w = 1
z
. (b) w = ln z.

Solution:

(a) w = 1/z. z = reiθ, w = 1
r
e−iθ. Another way to see is w = u + iv. u = x

x2+y2
, v = −y

x2+y2
.

(b) w = ln z = ln r + iθ. or w = u+ iv, u = 1
2

ln(x2 + y2), v = tan−1 y
x
.
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A complex function is continuous at a when any z satisfying |z − a| ≤ δ such that

|f(z)− f(a)| ≤ ε for any positive ε. Roughly speaking the nearby point around of z = a is

mapped to the neighborhood of f(a). A simply way to prove it is to prove |f(z)−f(a)| → 0

as |z − a| ≤ ρ→ 0.

Example 3.2 Prove that f(z) = 1/(z + c) is continuous except at z=-c.

Solution:

If |z − a| ≤ ρ. Then

|f(z)− f(a)| = | 1

z + c
− 1

a+ c
| = | a− z

(z + c)(a+ c)
| = |a− z|
|z + c||a+ c|

≤ ρ

|a+ c||(z − a) + (a+ c)|
≤ ρ

|a+ c|||a+ c| − ρ|
.

Therefore as long as |a+ c| 6= 0, then ρ→ 0, |f(z)− f(a)| → 0.

Example 3.3: Prove that sin z is continuous at every point except at z =∞.

Solution: z=x+ iy, a=ξ + iη. |z − a| = ρ ≤ r.

| sin z − sin a| = 2| cos
z + a

2
sin

z − a
2
|.

Here we apply

| cos z| = |e
iz + e−iz|

2
=
|eixe−y + e−ixey|

2
≤ |e

ixe−y|+ |e−ixey|
2

= cosh y.

Hence

| sin z − sin a| ≤ 2 cosh

(
y + η

2

)
| sin z − a

2
| ≤ 2 cosh

(
y +

ρ

2

)
| sin z − a

2
|.

One has used the fact of η ≤ y + ρ since (x − ξ)2 + (y − η)2 = ρ2, that is (y − η)2 =

ρ2 − (x− ξ)2 ≤ ρ2. Now z=a+ ρeiθ. Therefore

sin

(
z − a

2

)
= sin

(
ρ cos θ + iρ sin θ

2

)
= sin

(
ρ cos θ

2

)
cos

(
iρ sin θ

2

)
+ cos

(
ρ cos θ

2

)
sin

(
iρ sin θ

2

)
= sin

(
ρ cos θ

2

)
cosh

(
ρ sin θ

2

)
+ i cos

(
ρ cos θ

2

)
sinh

(
ρ sin θ

2

)
.
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From |x+ iy| ≤ |x|+ |y| such that

| sin
(
z − a

2

)
| ≤ | sin

(
ρ cos θ

2

)
|| cosh

(
ρ sin θ

2

)
|+ | cos

(
ρ cos θ

2

)
|| sinh

(
ρ sin θ

2

)
|.

We have

| cosh

(
ρ sin θ

2

)
| = cosh

(
ρ sin θ

2

)
≤ cosh

(ρ
2

)
.

Since −1 ≤ sin θ ≤ 1 and cosh a ≥ cosh b > 0 if |a| ≥ |b|. On the other hand we also have

| sinh

(
ρ sin θ

2

)
| = sinh

(
|ρ sin θ

2
|
)
≤ sinh

(ρ
2

)
.

This is because | sinhx| = sinh |x| and sinh a ≥ sinh b.0 if a > b > 0. So we have

| sin
(
z − a

2

)
| ≤ cosh

(ρ
2

)
sin

(
ρ cos θ

2

)
+ sinh

(ρ
2

)
cos

(
ρ cos θ

2

)
=⇒ | sin z − sin a| ≤ 2 cosh

(
y +

ρ

2

)
cosh

(ρ
2

)
sin

(
ρ cos θ

2

)
+ 2 cosh

(
y +

ρ

2

)
sinh

(ρ
2

)
cos

(
ρ cos θ

2

)
=⇒ 2 cosh y sin

(
ρ cos θ

2

)
→ 0.

when ρ→ 0 if y 6=∞. Most of elementary functions are continuous ones. However the root

and logarithms are exceptions. Let us look both cases.

Example 3.4: f(z) = z1/3, please discuss its continuity.

Solution: Here we fist define the angle θ to be 0 ≤ θ ≤ 2π. Now let us consider the point

above real axis: z1=reiε here ε is a very small positive number. Nearby there is another point

z2=rei(2π−ε). It is clear that the distance between z1 and z2 can be made as small as one

wishes. Now let us investigate w1 = f(z1) = (r)1/3eiε/3 and w2 = f(z2) = (r)1/3e−iεei2π/3.

Now we find that

|w1 − w2| = r1/3|1− e−2iεei2π/3| = (r)1/3

√
2− 2 cos

(
2π

3
− 2ε

)

≥ (r)1/3

√
2− 2 cos

(
2π

3

)
= (r)1/3.

Therefore we know f(z) naively cannot be continuous function. However it will be very

unnatural for such elementary function to be discontinuous function. So we introduce the
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devise called Branch cut.

Let us cut the complex plane along the real axis from 0 to +∞. Now z2 is no longer near

z1 because we ”glue” the first plane with the second one which is also cut along [0,+∞].

There will be z3=rei2πeiε. Previously we identify z3 to be z1. Now we treat them as separate

points. Similarly we can find z4=rei(4π−ε). z2 and z4 are also treated as separate points.

Furthermore we ”stick” the second ”sheet” with the third one. Then z5=rei4πeiε is not

near z1 9at the first ”sheet”) and z3 (at the second sheet). However z6=rei(6π−ε) is in the

neighborhood of z1 since we ”stick” the third ”sheet” to the first ”sheet”.

With such a devise we can claim f(z)=z1/3 is continuous function. It is easy to see by

writing the explicit values of wi=f(zi):

w1 = (r)1/3eiε/3 w2 = (r)1/3e−iεei2π/3, w3 = (r)1/3eiε/3ei2π/3 w4 = (r)1/3e−iεei4π/3,

w5 = (r)1/3eiε/3ei4π/3 w6 = (r)1/3e−iεei6π/3 = (r)1/3e−iε,

Hence we notice w6 is near w1, w2 is near w3 and w4 is near w5. Remember z1 is near z6, z2

is near z3 and z4 is near z5. Consequently indeed f(z)=z1/3 is continuous.

Example 3.5:f(z) = ln z, please discuss its continuity.

Solution:

z=reiθ here 0 ≤ θ ≤ 2π. w=f(z)=ln r + iθ.

Note that zm=z · ei2mπ here m is an integer. It is obvious z=zm but

wm=f(zm)=ln r + i(θ + mπ). Therefore naively this is even not a function. How-

ever with the devise of branch cut we can define it as a continuous function.

Let us make a branch cut along the real axis [0,∞] and ”stick” to the second ”sheet”

also along the same line. Then zm will be located at the m-th sheet. By this way f(z) is a

well-defined function.

Next we can show that this function is continuous function. Suppose there are two points

z = reθ and a = r′eiθ
′
. z is near a and|z − a| ≤ ρ. Because two pints are in the same sheet,

θ − θ′=φ. Now we have u=ln z and v=ln a. Then |u− v| =
√

(ln r − ln r′)2 + φ2.
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From |z−a| ≤ |z|+ |a| we have r′ ≤ r+ρ so ln
(
r′

r

)
≤ ln

(
1 + ρ

r

)
. Besides we have ρ ≥ rφ

so φ ≤ ρ
r
. Thus

|u− v| ≤
[
ln

[
1 +

(ρ
r

)2
]

+
(ρ
r

)2
]1/2

→ 0

as ρ → 0. Sometimes we may need more branch cuts. Actually it is not unique to choose

the branch cuts.

Example 3.6: Discuss the branch cut of f(z)=
√

1 + z2.

Solution:

f(z)=
√

(z + i)(z − i). If we choose the branch cuts to run through its branch point upward

along the imaginary axis, then we express any point z in the complex plane as

z = i+ ρ1e
iφ1 = −i+ ρeiφ2 . − 3π

2
≤ φ1,2 ≤

π

2
,

Then the branch cut will be [+i,+i∞] and [−i,+i∞]. Besides

w = f(z) =
√
ρ1ρ2e

i(φ1+φ2)/2.

Naively one may think the continuity of this function will be lost along the imaginary axis.

The situation is more complex. Choose two points: z1 = ε+ia and z2 = −ε+ia. ε is an arbi-

trary small number. When a > 1 then for z1 we have φ1=−3π
2

+η1 and φ2=−3π
2

+η2 here η1,2

are arbitrary small angles. Then w1 = f(z1) =
√
ρ1ρ2e

−i3π/2ei(η1+η2)/2=i
√
ρ1ρ2e

i(η1+η2)/2. For

z2 we have φ1=π
2
−η1 and φ2=π

2
−η2. w2 = f(z2) =

√
ρ1ρ2e

iπ/2e−i(η1+η2)/2=i
√
ρ1ρ2e

−i(η1+η2)/2.

So w1 is near w2. The function is continuous there.

On the other hand, if −1 ≤ a ≤ 1 then for z1 we have φ1=−π
2
− η1 and φ2=−3π

2
+ η2 here

η1,2 are arbitrary small angles. Then w1=f(z1)=
√
ρ1ρ2e

−iπei(−η1+η2)/2=−√ρ1ρ2e
i(−η1+η2)/2.

For z2 we have φ1=−π
2

+ η1 and φ2=π
2
− η2. w2 = f(z2) =

√
ρ1ρ2e

i(η1−η2)/2. It is clear the

function is discontinuous there.

Last when a ≤ −1, then for z1 we have φ1=−π
2
−η1 and φ2=−π

2
−η2 here η1,2 are arbitrary

small angles. Then w1 = f(z1) =
√
ρ1ρ2e

−iπ/2e−i(η1+η2)/2=−i√ρ1ρ2e
−i(η1+η2)/2. For z2 we

have φ1=−π
2

+ η1 and φ2=−π
2

+ η2. w2 = f(z2) =
√
ρ1ρ2e

−iπ/2ei(η1+η2)/2=−i√ρ1ρ2e
i(η1+η2)/2.

So w1 is near w2. The function is continuous there.
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Thus the discontinuity only occurs in [−i,+i].

Exercise 3.1: If 0 ≤ φ1,2 ≤ 2π, please discuss its branch cuts and the discontinuity of

the function.

Home Work 3.2: Describe how to construct Riemann surfaces to make the followings

mapping as continuous:

(a)f(z)=
(
z+1
z−1

)1/3
. (b)f(z)=

√
z + 1 ln z. (c) f(z)=(1 +

√
z)1/2.

III. STEREOGRAPHIC PROJECTION

Sometimes we need pay special attention to he point at infinity. The best way to study

it is by the stereographic projection. Imagine there is a sphere: S=x2
1 + x2

2 + (x3 − 1
2
)2 = 1

4
.

We notice the point N=(0,0,1) is the north pole. S=(0,0,0) is the south pole. We can set

up a mapping between x1−x2 plane and S. Assume there is a point A=(a, b, 0) in the x1-x2

plane. The line NA intersects S at the point B. B=
(

2a
a2+b2+1

, 2b
a2+b2+1

, a
2+b2−1
a2+b2+1

)
. Besides we

notice S which is at S and NS intersects S at S.

Now we can identify x1 − x2 plane as complex plane and z = a + ib. Therefore each point

in the complex plane corresponds to one point at S. Interestingly one notices that when

|z| → ∞, the corresponding point at S is N . This is very convenient way to ”imagine” the

point at infinity in the complex plane.

Home Work 3.3: Please find the spherical image of the circle |z − a| = ρ in the complex

plane.

IV. CAUCHY THEOREM,TAYLOR SERIES,LAURENT SERIES

How to define a differential of a complex function f(z)=u(x, y) + iv(x, y) (z=x + iy)?

The straightforward answer is to take the following definition:

df

dz
= lim

a→0

f(z + a)− f(z)

a
.

Here a=ax+iay is an arbitrary small complex number. To make sure by this way one always

obtains the same result no matter which path one chooses, one finds that a complex function
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is differentiable if and only if
∂u

∂x
=
∂v

∂y
,
∂v

∂x
= −∂u

∂y
.

This relation is called Cauchy −RiemannRelation.

Exercise 3.2 Prove that a complex function is differentiable if and only if it satisfies Cauchy-

Riemann relation.

Solution:

First we prove that Cauchy-Riemann relation is necessary condition for differentiability. We

can choose the dz = dx

df

dz
=

f(x+ dx+ iy)− f(x, y)

dx

=
u(x+ dx, y) + iv(x+ dx, y)− u(x, y)− iv(x, y)

dx
=
∂u

∂x
+ i

∂v

∂x
.

On the other hand we can choose dz=idy

df

dz
=

f(x+ iy + idy)− f(x, y)

dx

=
u(x, y + dy) + iv(x, y + dy)− u(x, y)− iv(x, y)

idy
=

1

i

∂u

∂y
+
∂v

∂y
.

Comparing the two results we know it is necessary for f to satisfy Cauchy-Riemann relation

to be differentiable. Next let us prove any function satisfy Cauchy-Riemann relation must

be differentiable. We notice that ax + iay = r(cos θ + i sin θ). Then

lim
r→0

u(x+ ax, y + ay) + iv(x+ ax, y + ay)− u(x, y)− iv(x, y)

ax + iay

= e−iθ
(
∂u

∂x
cos θ +

∂u

∂y
sin θ + i

∂v

∂x
cos θ + i

∂v

∂y
sin θ

)

This is because r is canceled and 1
cos θ+i sin θ

= e−iθ. So that

=
∂u

∂x
cos2 θ +

∂u

∂y
sin θ cos θ + i

∂v

∂x
cos2 θ + i

∂v

∂y
sin θ cos θ

− i
∂u

∂x
cos θ sin θ − i∂u

∂y
sin2 θ +

∂v

∂x
cos θ sin θ +

∂v

∂y
sin2 θ
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Applying Cauchy-Riemann relation it becomes

=
∂u

∂x
cos2 θ +

∂u

∂y
sin θ cos θ − i∂u

∂y
cos2 θ + i

∂u

∂x
sin θ cos θ

− i
∂u

∂x
cos θ sin θ − i∂u

∂y
sin2 θ − ∂u

∂y
cos θ sin θ +

∂u

∂x
sin2 θ

=
∂u

∂x
(cos2 θ + i sin θ cos θ − i cos θ sin θ + sin2 θ)

+
∂u

∂y
(sin θ cos θ − i cos2 θ − i sin2 θ − cos θ sin θ)

=
∂u

∂x
− i∂u

∂y

Hence we find the above expression is independent of θ which means taking differential in

any direction will reach the same result. Hence f(z) is differentiable.

Home work 3.4: If f(z)) is analytic function then ∂f
∂z∗

=0.

Analytic Complex Functions

A complex function which is differentiable at z = a and within a neighborhood of z = a is

said to be analytic at z = a. Here we introduce the most important theorem in complex

analysis.

Cauchy Theorem:

If f(z) is analytic in and on C then ∮
C

f(z)dz = 0.

Example 3.7: Prove the Cauchy theorem.

Solution:∫ z2
z1
f(z)dz =

∫ z2
z1

(u+ iv)(dx+ idy) =
∫ z2
z1

(udx− vdy) + i(udy+ vdx). Set ~A = (u,−v, 0) and

~B = (v, u, 0). ∇× ~A · n̂ = −∂u
∂y
− ∂v

∂x
and ∇× ~B · n̂ = ∂u

∂x
− ∂v

∂y
. Thus we have∮

C

f(z)dz =

∮
C

~A(x, y)·d~l+i
∮
C

~B(x, y)·d~l =

∫
S

(
−∂u
∂y
− ∂v

∂x

)
dxdy+i

∫
S

(
∂u

∂x
− ∂v

∂y

)
dxdy = 0

There are many applications of Cauchy theorem. One of them is Cauchy formula:

Cauchy Formula

If z = a lies within C and f(z) is analytic in and on C, one has∮
f(z)

z − a
dz = 2πif(a).



10

Otherwise, the integral is zero.

Proof: Let Γ is a circle with the radius ρ with z = a as the center.

Making a path C ′=C +B1 +B2 + Γ with B1 the path connecting C and Γ, B2 a path very

close to B1 with the opposite direction. From Cauchy Theorem, since F (z) = f(z)
z−a is analytic

on and in C ′, such that

0 =

∮
C′

f(z)

z − a
dz =

(∮
C

+

∮
Γ,Clockwise

+

∫
B1

+

∫
B2

)
f(z)

z − a
dz

Since
∫
B1

+
∫
B2

= 0 one has∮
C

f(z)

z − a
dz =

∮
Γ

f(z)

z − a
dz =

∫ 2π

0

f(a+ ρeiθ)

ρeiθ
ρeiθidθ = i

∫ 2π

0

f(a+ ρeiθ)dθ.

Taking the limit ρ→ 0∮
C

f(z)

z − a
dz = lim

ρ→0
i

∫ 2π

0

f(a+ ρeiθ)dθ = 2πif(a).

Home Work 3.5: Evaluate
∮
|z|=1

cos3 z
z
dz. Applying Cauchy formula one can approve the

following important result:

Exercise 3.3: Apply induction to prove that∮
f(z)

(z − a)n
dz =

2πi

(n− 1)!
f (n−1)(a).

Solution:

Assume
∮ f(z)

(z−a)n
dz = 2πi

(n−1)!
f (n−1)(a) now we need prove

∮ f(z)
(z−a)n+1dz = 2πi

(n)!
f (n)(a). It should

proceed as

f (n)(a) = lim
h→0

f (n−1)(a+ h)− f (n−1)(a)

h

= lim
h→0

(n− 1)!

2πih

(∮
f(z)

(z − a− h)n
dz −

∮
f(z)

(z − a)n
dz

)

Since

1

(z − a− h)n
− 1

(z − a)n
=

1

(z − a)n

(
1(

1− h
z−a

)n − 1

)

=
1

(z − a)n

[(
1 +

∞∑
k=1

(
h

z − a

)k)n

− 1

]
.

=
nh

(z − a)n+1
+O(h2).
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Hence

f (n)(a) = lim
h→0

(n− 1)!

2πih

∮
nhf(z)

(z − a)n+1
dz +O(h)

=
n(n− 1)!

2πi

∮
f(z)

(z − a)n+1
dz =

n!

2πi

∮
f(z)

(z − a)n+1
dz.

Since we have proved the case of n = 1, therefore we have proved for the case of arbitrary

integer n.

Home Work 3.6: Legendre polynomials are defined as Pn(x)= 1
2nn!

dn

dxn
(x2 − 1)n. Please

show that

Pn(z) =
1

2n
1

2πi

∮
(t2 − 1)n

(t− z)n+1
dt.

Furthermore if the contour is chosen to be a circle of radius
√
z2 − 1 centered at t=z, Please

show that

Pn(z) =
1

π

∫ π

0

(z +
√
z2 − 1 cosφ)ndφ.

From Cauchy integral formula one can prove many interesting facts. They are left for

students to prove.

Home Work 3.7: (Cauchy’s inequality): If f(z) is analytic and bound inside and on

C;|z − z0| ≤ r and |f(z)| < M on C . Please show that |f (n)(z = z0)| ≤ n!M
rn

.

Home Work 3.8: (Liouville’s theorem ) If f(z) is analytic in the entire complex plane

and is bounded (i.e. |f(z)| < M for some constant M). Please prove that f(z) must be a

constant.

Home Work 3.9: (Fundamental theorem of algebra) Please prove that every polyno-

mial equation of degree n ≥ 1 with complex coefficients has at least one root.

Home Work 3.10:(Maximum modulus theorem) Let f(z) be analytic on a closed re-

gion R : |z − z0| ≤ ρ with boundary C : |z − z0| = ρ and let M be the maximum value

assumed by |f(z)| in R. Then, if f(z) is not identically equal to a constant, the maximum

value M of |f(z)| occurs on the boundary C. In addition, at all points on the interior of R,

|f(z)| < M .
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V. TAYLOR SERIES AND LAURENT SERIES

Taylor Series:

If f(z) is analytic in a region |z − a| ≤ ρ. Then

f(z) =
n=∞∑
n=0

(z − a)n

n!

dnf(z)

dzn
|z=a.

The series is uniformly convergent within |z − a| ≤ ρ.

Proof:

f(z) =
1

2πi

∮
Γ

ξ

ξ − z
dξ =

1

2πi

∮
Γ

f(ξ)

ξ − a

(
1

1− z−a
ξ−a

)
dξ =

1

2πi

∮
Γ

f(ξ)

ξ − a

n=∞∑
n=0

(
z − a
ξ − a

)n
dξ

=
1

2πi

n=∞∑
n=0

(z − a)n
∮

Γ

f(ξ)

(ξ − a)n+1

∑
n=0

dξ =
n=∞∑
n=0

(z − a)n

n!

dnf(z)

dzn
|z=a.

Laurent Series:

If f(z) is analytic in an annular region ρ1 < |z − a| < ρ2. Then

f(z) =
n=∞∑
n=−∞

cn(z − a)n. cn =
1

2πi

∮
C

f(ξ)

(ξ − a)n+1
dξ

Exercise 3.4: Prove Laurent series. C=C1 + C2 + Γ+cross cuts.∮
C

f(ξ)

ξ − z
dξ =

∮
C2

f(ξ)

ξ − z
dξ+

∮
Γ,clockwise

f(ξ)

ξ − z
dξ+

∮
C1,clockwise

f(ξ)

ξ − z
dξ+

∮
crosscuts

f(ξ)

ξ − z
dξ = 0.

∮
Γ

f(ξ)

ξ − z
dξ =

∮
C2

f(ξ)

ξ − z
dξ −

∮
C1

f(ξ)

ξ − z
dξ.

For C1:|z − a| > |ξ − a|.

1

ξ − z
=
−1

z − a
1(

1− ξ−a
z−a

) =
−1

z − a

∞∑
n=0

(
ξ − a
z − a

)n
.

For C2:|z − a| < |ξ − a|.

1

ξ − z
=

1

ξ − a
1(

1− z−a
ξ−a

) =
1

ξ − a

∞∑
n=0

(
z − a
ξ − a

)n
.
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Therefore ∮
C1

f(ξ)

ξ − z
dξ =

∞∑
n=0

−1

(z − a)n+1

∮
C1

f(ξ)(ξ − a)ndξ.∮
C2

f(ξ)

ξ − z
dξ =

∞∑
n=0

(z − a)n
∮
C2

f(ξ)

(ξ − a)n+1
dξ.

f(z) =
1

2πi

∮
Γ

f(ξ)

ξ − z
dξ =

n=∞∑
n=−∞

cn(z − a)n.

cn =
1

2πi

∮
C

f(ξ)

(ξ − a)n+1
dξ.

Home Work 3.11: Determine the Taylor or Laurent series for each of the following func-

tions in the neighborhood of the point specified.

(a) cos z
z−1

at z = 1. (b) ln z
z−1

at z = 1 (c) tan−1 z at z = 0. (d) ez

z2+1
at z = 0.

VI. 2-D HARMONIC FUNCTIONS

The real and imaginary parts of an analytic function f(z)=u + iv satisfies Laplace’s

equation in two dimensions.

∂u

∂x
=

∂v

∂y
,
∂u

∂y
= −∂v

∂x
,

∂2u

∂x2
=

∂2v

∂x∂y
=

∂

∂y

(
−∂u
∂y

)
→ ∂2u

∂x2
+
∂2u

∂y2
= ∇2u = 0.

∂2v

∂x2
= − ∂2u

∂x∂y
= − ∂

∂y

(
∂v

∂y

)
→ ∂2v

∂x2
+
∂2v

∂y2
= ∇2v = 0.

Therefore we can apply result of previous discussion to the 2-D harmonic real functions. For

example for the proof we know

f(z0) =
1

2π

∫ 2π

0

f(z0 + reiθ)dθ.

Taking the real part of both side we have

u(z0) =
1

2π

∫ 2π

0

u(z0 + reiθ)dθ.

This is very interesting result. It tells you that the values of the boundary of a harmonic

function determine the value of the function at center. We can generalize this result to the
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value of any point inside the region. It is called Poisson’s formula.

Poisson’s formula

If u(z = x+ iy) is a real harmonic function in |z| ≤ R. The transformation

z = S(ζ) =
R(Rζ + a)

R + a∗ζ
, ζ =

R(z − a)

R2 − a∗z
.

It maps |ζ| ≤ 1 to |z| ≤ R and ζ = 0 to z = a. a is a complex number inside |z| ≤ R.

Exercise 3.5 Please show that the imagine of |ζ|=1 is |z|=R.

Here z=reθ and ζ=ρeiφ. Apply the mean property of harmonic function we have

u(a) =
1

2π

∫
ρ=1

u(S(ζ))dφ.

For the points at |ζ|=1, dz=ireiθdθ=izdθ

dφ = −idζ
ζ
, dζ =

R

R2 − a∗z
dz +

R(z − a)a∗

(R2 − a∗z)2
dz,

dζ

ζ
=

1

z − a
dz +

a∗

R2 − a∗z
dz =

(
z

z − a
+

a∗z

R2 − a∗z

)
dz.

dφ = −i
(

1

z − a
+

a∗

R2 − a∗z

)
dz =

(
z

z − a
+

a∗z

R2 − a∗z

)
dθ

For the points at |z|=R, zz∗=R2. Hence(
z

z − a
+

a∗z

R2 − a∗z

)
=

(
z

z − a
+

a∗z

zz∗ − a∗z

)
=

(
z

z − a
+

a∗

z∗ − a∗

)
=
R2 − |a|2

|z − a|2
.

At the end we have

u(a) =
1

2π

∫
|z|=R

R2 − |a|2

|z − a|2
u(z)dθ.

In polar coordinate we have

u(reiξ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2rR cos(ξ − θ) + r2
u(Reiθ)dθ.

So far we assume that u is harmonic in the closed disk |z| ≤ R. Actually the result is

still valid if u is only harmonic in the open disk |z| < R and continuous at the boundary

|z|=R. The proof is simple. Assume u(z) is harmonic in |z| < R and continuous at |z| = R.

Suppose 0 < α < 1 then u(αz) is harmonic in |z| ≤ R so that

u(αa) =
1

2π

∫
|z|=R

R2 − |a|2

|z − a|2
u(αz)dθ.

Now we let α approaches 1. Since u(z) is uniformly continuous on |z| ≤ R it is true that

u(αz)→ u(z) uniformly for |z| = R. So the above result holds even u(z) is not harmonic at
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|z|=R.

Exercise 3.6 Please use the mean property of harmonic function to prove∫ π
0

ln sin θdθ=−π ln 2..

Exercise 3.7 Please prove
∫ π

0
ln |1− eiη|dθ=0. η is an arbitrary constant.

Jensen’s Formula:

If f(z) is an analytic function then ln |f(z)| is harmonic except at the zeros of f(z). Therefore

if f(z) is analytic and has no zeros in |z| ≤ R, then

ln |f(0)| = 1

2π

∫ 2π

0

ln |f(Reiθ)|dθ,

This is called Jensen’s formula. Actually this result is still applicable even f(z) has zeros at

|z| = R. For example, if there is one zero z1=Reiη such that f(z1)=0. Then we construct

g(z)= f(z)
z−z1 . Then we have

ln |g(0)| = 1

2π

∫ 2π

0

ln |g(Reiθ)|dθ.

Since ln |g(0)|=ln |f(0)| − lnR and

1

2π

∫ 2π

0

ln |g(Reiθ)|dθ

=
1

2π

∫ 2π

0

ln |f(Reiθ)|dθ − 1

2π

∫ 2π

0

ln |Reiθ −Reiη|dθ

=
1

2π

∫ 2π

0

ln |f(Reiθ)|dθ − 1

2π

∫ 2π

0

ln |eiθ −Reiη|dθ − lnR.

From Exercise 3.7 we know
∫ π

0
ln |1− eiη|dθ=0. Hence∫ π

0

ln |eiθ − eiθ0 |dθ =

∫ π

0

(ln |eiθ|+ ln |1− ei(θ−θ0)|)dθ = 0.

So that
1

2π

∫ 2π

0

ln |g(Reiθ)|dθ =
1

2π

∫ 2π

0

ln |f(Reiθ)|dθ − lnR.

At the end we have

ln |f(0)| = 1

2π

∫ 2π

0

ln |f(Reiθ)|dθ.

Home Work 3.12: If f(z) has zeros z=z1, z2, z3, ...zn in |z| < ρ. Note that f(0) 6= 0.

Please show that

ln |f(0)| = −
n∑
i=1

ln

(
ρ

|zi|

)
+

1

2π

∫ 2π

0

ln |f(ρeiθ)|dθ.
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If f(z) is analytic and g(z) is also analytic, we know f(g(z)) is also analytic. If the

boundary condition of Laplace equation can be mapped to simpler one by f(z), and with

the simpler boundary condition one obtain the solution which is real part(or imaginary)

part of an analytic function g(z), then our solution is the real(or imaginary) of f−1(g(z)).

To find the suitable mapping needs some skill. One important fact about the mapping is

the following:

Conformal mapping:

If f(z) is analytic at z = a and f (1)(z) 6= 0 then f(z) is conformal mapping.

Proof:

C1=g(z) = Constant and C2=h(z) = Constant intersects at z = z0. The tangent vector at

z = z0 along C1 is dz1. The tangent vector along C2 is dz2. Under the mapping: w = f(z)

The curve C1 is mapped to C ′1=f(g(z)) = Constant and C2 is mapped to C ′2=f(h(z)).

The tangent vectors along C ′1 and C ′2 are dw1 and dw2. The angle between dz1 and dz2

is θ = arg(dz2/dz1). Similarly the angle between dw1 and dw2 is φ = arg(dw1/dw2).

Since dw1 = df
dz
|z=z0dz1 and dw2 = df

dz
|z=z0dz2. Therefore φ=arg(dw1/dw2)=arg

( df
dz
|z=z0dz1

df
dz
|z=z0dz2

)
=arg(dz2/dz1)=θ. Therefore analytic complex function regarded as a mapping then this

mapping is conformal mapping.

In particular we are interested in this form f(z)=az+b
cz+d

because this type of mapping can

map a circle or a line to another circle or line. To map the boundary condition to simple

one, this type of mapping is very useful.

Example 3.9: Apply the transformation w = f(z) = 2R2/z to find the potential outside

the metal cylinder which has radius R and electric potential V . The x-axis is at zero

potential.

Solution:

When z=reiθ, one has

w = u+ iv =
2R2

r
e−iθ, u =

2R2

r
cos θ, v = −2R2

r
sin θ.
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Now the line v = v0 in the w−plane is the imagine of the following curve:

−2R2

r
sin θ = v0, r = −−2R2

v0

sin θ.

x = r cos θ =
−2a

v0

sin θ cos θ =
−R2

v0

sin 2θ,

y = r sin θ =
−2a

v0

sin2 θ =
−R2

v0

(1− cos 2θ).

Namely

x2 +

(
y +

R2

v0

)2

=

(
R2

v0

)2

.

Therefore x2 + (y −R)2 = R2 is mapped to v = −R if we choose v0 = −R. The line y = 0

is mapped to v = 0. In the w− plane the potential is φ = −V v
R

= Re
(
−V w

iR

)
= ReΦ(w).

Now Φ(z) = iV
R

2R2

z
= 2RV

r
(sin θ+i cos θ). Taking the real part of Φ(z) we have φ = 2RV

r
sin θ.

VII. POLES AND ZEROS

If f(z) is analytic in the neighborhood of a point z = a but not at z = a then a is an

isolated singularity of f(z). There are three cases

1. |f(z)| → ∞ as z → a. It is called pole.

2. |f(z)| is bound as z → a. It is called removable.

3. The value of limz→a |f(a)| depends on the path of the process of taking limit. It is

called essential singlarity.

Home Work 3.13: Find the singularities of the following functions and determine what

kind of singularities they are. (a) ln ez

z
− sin 1

z
. (b) tanh z

z
. (c) ln(1 + z2).

Example 3.10: Explain tan
(

1
z

)
has a singularity at z = 0 which is not isolated singu-

larity.

Solution:

tanw has poles at w=nπ
2

. Therefore zn= 2
nπ

is singularity. Now we find inside |z| < ρ
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there are infinite many singularities because we find that for arbitrary small ε, as long as

m > n0 = 1
ε

then zm= 2
mπ

< 2
n0π

< 2
π
ε < ε. Those zm are in the region |z| < ε. Therefore we

show that z=0 is not an isolated singularity.

Order of pole:

If f(z) can be expressed in the form

f(z) =
n=∞∑
n=−m

cn(z − a)n.

then the pole z = a is called the pole of order m.


