

$\begin{array}{c} Constraints \\ {\rm on \ time \ variation \ of \ } G_{\rm N} \end{array}$

Geometrical Test and Perturbation

Seokcheon (sky) Lee 李碩天 Institute of Physics, Academia Sinica May. 10th. 2012 CYCU HEP & QIS seminar

Outline

- Age and Distance
- Observations (SNe, Growth)
- Constraints on G_N
- 4 Conclusion

Cosmic Distance Ladder

❖1parsec = 3.26 ly

Age and Distance

Need DE?

t0 and d0

do

Discriminate DE from MG

Background can be same

$$H^{2} - \delta H = \frac{8\pi G_{*}}{3} \rho_{m} \rightarrow \delta H \equiv \frac{8\pi G_{*}}{3} \rho_{X}$$

$$H^{2} \equiv \frac{8\pi G_{*}}{3} \left(\rho_{m} + \rho_{X}\right)$$

$$\dot{H} = -4\pi G_{*} \rho_{m} - 4\pi G_{*} \left(1 + \omega_{X}\right) \rho_{X}$$

$$-\Omega_{X} \omega_{X} = 1 + \frac{2}{3} \frac{\dot{H}}{H^{2}}$$

MG vs DE

Subhorizon scale

Matter Growth

$$\frac{d \ln \delta_m}{d \ln a} \equiv \Omega_m^{\gamma}$$

$$\gamma \equiv \gamma_0 + \gamma_a (1 - a)$$

$$\delta_m'' + \left(2 + \frac{H'}{H}\right) \delta_m' - \frac{4\pi G_{eff} \rho_m}{H^2} \delta_m = 0$$
where
$$\delta_m' \equiv \frac{d \delta_m}{d \ln a}$$

Theoretical Prediction

Quantities	ω = ω₀+ωa(1-a)		٧
	ω0	Wa	·
٨	-1	0	0.56
Quintessence	~ -1	≠ 0	~ 0.56
DGP	-0.78	0.32	11/16 (0.69)
f(R)	-0.7	positive	0.43 -0.18 (1-a)
Scalar-Tensor- Gravity	flexible	flexible	Determined from ω

Cassini-Huygens Mission

A joint NASA/ESA/ASI spacecraft mission studying the planet Saturn

$$\dot{G}/G = (-0.6 \pm 1.6) \times 10^{-12} \,\mathrm{yr}^{-1}$$

= $(-0.009 \pm 0.022) \,H_0$,

Problem in Discriminating DE from MG

SNe la : Standard Candle

(Gaztanaga et.al 2001)

$$m(z) = M_0 + 5 \log d_L + 25 + \frac{15}{4(1+\omega)} \log (1+z)$$

$$L_p \sim G^{-\gamma}$$

$$M - M_0 = \frac{15}{4} \log \left(\frac{G}{G_0} \right)$$

$$G(z) \equiv G_0(1+z)^{\frac{1}{1+\omega(z)}}$$

$$\frac{G}{G_0} \lesssim 1.08 \; ; \; \Omega_{\Lambda} \simeq 0.8 \; , \; \Omega_M \simeq 0.2$$

$$\frac{\dot{G}}{G} \simeq \left(1 - \frac{G_0}{G}\right) (\Delta t)^{-1}$$

$$\frac{\dot{G}}{G} \lesssim 12 \times 10^{-12} \ h_{70}/\text{yr} \ ; \ \Omega_{\Lambda} \simeq 0.8 \ , \ \Omega_{M} \simeq 0.2$$

SNe Ia: explode when WD reaches Chandrasekhar Mass (Mc)

SNe la

Relation btw CM and luminosity (L)

M: absolute magnitude @ $z \sim 0.5$

CYCU HEP & QIS seminar, sky

Matter Growth

TABLE I: Data of the growth rate of clustering. The correspondence of the columns is as follows: number, redshift, observed growth rate, cosmological parameters used by different authors and references.

			1=	
Index	z	$f_{obs,Ref}$	$(\Omega_{m,Ref}, \sigma_{8,Ref})$	Refs.
1	0.15	0.49 ± 0.14	(0.30, 0.90)	[16, 40, 41]
2	0.35	0.70 ± 0.18	(0.24, 0.76)	[42]
3	0.55	0.75 ± 0.18	(0.30, 1.00)	[43]
4	0.77	0.91 ± 0.36	(0.27, 0.78)	[16]
5	1.40	0.90 ± 0.24	(0.25, 0.84)	[44]
6	2.42	0.74 ± 0.24	(0.26, 0.93)	[19, 45]
7	3.00	1.46 ± 0.29	(0.30, 0.85)	[46]
8	0.22	0.60 ± 0.10	(0.27, 0.80)	[38]
9	0.41	0.70 ± 0.07	(0.27, 0.80)	[38]
10	0.60	0.73 ± 0.07	(0.27, 0.80)	[38]
11	0.78	0.70 ± 0.08	(0.27, 0.80)	[38]

Matter Growth Constraints

From current observations

For Λ CDM, $\gamma \sim 0.56$

For DGP, wo=-0.78, wa=0.32, $\gamma \sim 0.68$

For STG, we may(?) produce large γ

Most of the known models rules out by 2-σ

Conclusion

Challenges in observations

Zero Point Energy (Emerging science, 1948

What?

- Random Electromagnetic waves remain after all energy is removed
- Enormous energy density: 10²⁴ to 10⁵⁸ Joules/m³
 Theorized to indirectly cause gravity and inertia

Why?

- As an energy source?As a reactive medium?

Evidence?

- Casimir Effect
 Plank blackbody spectrum
 quantum effects

