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I. WHY YOU NEED SOMETHING MORE THAN NEWTONIAN

MECHANICS?

Why you need take this course ”Basic Mechanics” after many years of eduction of ”

Mechanics”? The simple answer is simply because it is not enough. What you have learned

is called Newtonian Mechanics. It is a great system invited by Isaac Newton. However the

core of whole system is the concept of ”force” becomes, unfortunately, obstacle to apply to

other category of physics.

The most pronounced example is theory of relativity. Not only because the concept of

”force” violates the principle of special relativity which asserts no speed can be faster than

speed of light, but also this concept closely relates with the essence of space which must be

assumed to be flat. Hence one definitely cannot apply Newtonian mechanics to Relativity.

Another example is Quantum Mechanics. It is easy to see that without introducing Hamil-

tonian it is almost impossible to learn Quantum Mechanics. Similar situations occur when

one try to learn electrodynamics and Statistics Mechanics.

Another more practical reason is as follows: sometimes one simply cannot solve the

problem of the system under constraints. To solve the equation of motion one needs know

the explicit forms of the constrain forces whose presence guarantee the constraints. Ironically

they will be known only is the solutions of the equations of motion is available! Therefore it is

necessary to develop another framework which is able to re-generate all result of Newtonian

Mechanics and to apply to the situations where Newtonian Mechanics fails.

Fortunately such a framework has been invited and as as a matter of fact, it is as old as

Newtonian Mechanics. The great rival of Isaac Newton, Gottfried Wilhelm Leibniz (1646-

1716). He argued that the essence of space and time cannot be absolute as Newton insisted,

but rather be relative. He started his ”Mechanics” from a variation principle. Namely he
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argued what makes the ”actual path” so special? It must be some some reason to distinguish

the ”actual path” from the ”possible paths”. Most natural answer is that the ”actual path”

makes some quantity depending on paths become smallest or largest. He called it ”vis

viva”. Nowadays we call it ”action”. The mathematical development has been made by

Maupertuis, Euler and Lagrangian and Hamilton, it becomes a formidable device. It is

definitely worthy of spending one semester to study it. That is the thing exact we will do

in this semester.

II. BRACHISTOCHRONE CURVE

The mathematical tool used in Lagrangian Mechanics is called ”Calculus of Variation”.

To understand this method, the best way is look at some concrete example. The most

famous example is the problem of ”Brachistochrone”.

The vertical axis is x-axis and the horizontal axis is y-axis. The initial position is A=(x =

x1, y = 0) and the final position is B=(x = 0, y = y0), Then the time for a mass point to

drop from A to B is

T [h(y)] =

∫ y0

0

dy

√√√√ 1 +
(

dh(y)
dy

)2
2g(x1 − h(y))

. (1)

here x = h(y) is the path which satisfies h(0)=x1 and h(y0)=0. This formula is derived

by the following way. Since the normal force acting on the mass point does no work since

this force is always normal to displacement. Therefore only the force is the force of gravity.

Therefore we know the energy of mechanical energy is conserved. Namely

m

2
v2 +mgx = mgx1 = constant.

Hence v(x)=
√

2g(x1 − x). In an infinitesimal duration dt the mass point walk the distance

ds and we know dt=ds
v

. Furthermore the distance ds=
√

(dx)2 + (dy)2. Therefore

T =

∫
dt =

∫
ds

v(x)
=

∫ √
(dx)2 + (dy)2

v(x)
=

∫ y0

0

dy

√
1 +

(
dy
dx

)2√
2g(x1 − x)

.

Set x = h(y) then we obtain Eq.(1). So which path will give the smallest value of T?

Euler found a very clever way to solve this kind of problem. Assume the path giving the

smallest T is h0(y). For an arbitrary function f(x) satisfying f(0)=f(y0)=0, the function
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h(y)=h0(y)+εf(y) also satisfies h(0)=x1 and h(y0)=0 If we choose one particular f(y), T

becomes a function of ε. Since the extreme value of T [ε] occurs at ε=0, i.e. h(y)=h0(y).

Therefore we know dT [ε]
dε
|ε=0=0. Now we have

T [ε] =

∫ y0

0

dyT
(
h(y),

dh(y)

dy

)
=

∫ y0

0

dy

 1 +
(

dh0(y)
dy

+ εdf(y)
dy

)2
2g[x1 − (h0(y) + εf(y))]


1/2

.

The crucial observation is that ε always appears with h and dh
dy

. Therefore to take derivative

with respect to ε one just needs take partial derivative with h and dh/dy and apply the

chain rule. Moreover what we need is the derivative with respect ε taking at ε=0. So that

we reach

dT [ε]

dε
|ε=0 =

∫ y0

0

dy

 ∂T
∂h(y)

|ε=0
∂h(y)

∂ε
+

∂T

∂
(

dh(y)
dy

) |ε=0

∂ dh
dy

∂ε

 . (2)

The next step is very simple. As we define h(y)=h0(y) + εf(y), naturally we have the

following,

∂h

∂ε
= f(y),

∂ dh
dy

∂ε
=
df(y)

dy
. (3)

Insert Eq.(3) to Eq. (2) one has

dT [ε]

dε
|ε=0 =

∫ y0

0

dy

 ∂T
∂h(y)

|ε=0f(y) +
∂T

∂
(

dh(y)
dy

) |ε=0
df

dy


=

∫ y0

0

dy

 ∂T
∂h(y)

|ε=0f(y) +
∂T

∂
(

dh(y)
dy

) |ε=0f(y)|y=y0
y=0 −

∫ y0

0

dy
d

dy

 ∂T

∂
(

dh(y)
dy

) |ε=0

 f(y)


=

∫ y0

0

dy

 ∂T
∂h(y)

|ε=0 −
d

dy

 ∂T

∂
(

dh(y)
dy

) |ε=0

 f(y) = 0.

Note that the surface terms vanish because f(0)=f(y0)=0. Since f(y) is arbitrary function,

there is no doubt that the coefficient of f(y) must be identical zero. That means we reach

the following result.

∂T
∂h(y)

|ε=0 −
d

dy

 ∂T

∂
(

dh(y)
dy

) |ε=0

 = 0. (4)

Eq.(4) is the differential equation which h0(y) must satisfy. In other words, Euler trans-

formed this complicated extreme value of path into simple differential equation! Marvelous!
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In this example we can carry out the following calculation,

∂T
∂h(y)

|ε=0 = g

 1 +
(

dh0(y)
dy

+ εdf(y)
dy

)2
[2g(x1 − (h0(y) + εf(y)))]3


1/2

|ε=0 = g

 1 +
(

dh0(y)
dy

)2
[2g(x1 − h0(y))]3


1/2

.

and

∂T
∂ dh(y)

dy

|ε=0 =

(
1 +

(
dh0(y)

dy
+ ε

df(y)

dy

)2
)−1/2

(2g(x1 − (h0(y) + εf(y)))−1/2

(
dh0
dy

+ ε
df

dy

)
|ε

=

(
1 +

(
dh0(y)

dy

)2
)−1/2

(2g(x1 − h0(y))−1/2

(
dh0
dy

)
At the end we reach the following equation.

g

 1 +
(

dh0(y)
dy

)2
[2g(x1 − h0(y))]3


1/2

=
d

dy

(1 +

(
dh0(y)

dy

)2
)−1/2

(2g(x1 − h0(y)))−1/2

(
dh0
dy

) .
From this example we have learned a very powerful way to handle problems of this kind. If

the problem is involved with more functions the method is similar. For example, if

T [x(y), z(y)] =

∫ y0

0

dyT
(
x(y), x(y),

dx

dy
,
dz

dy
, y

)
.

Then we can set x(y)=q0(y)+ε1f(y) and z(y)=p0(y)+ε2g(y) here q0(y) and p0(y) are the

functions generating the extreme value of T and f(y = 0)=f(y = y0)=g(y = 0)=g(y =

y0)=0. Then we know
∂T

∂ε1
|ε1=0,ε2=0 =

∂T

∂ε2
|ε1=0,ε2=0 = 0.

One can easily obtain the equations q0(y) and p0(y) should satisfy:

∂T
∂x(y)

|ε1=ε2=0 −
d

dy

 ∂T

∂
(

dx(y)
dy

) |ε1=ε2=0

 = 0,

∂T
∂z(y)

|ε1=ε2=0 −
d

dy

 ∂T

∂
(

dz(y)
dy

) |ε1=ε2=0

 = 0.

One can generalize Euler’s method to as many degrees of freedom as one likes as long as

those degrees of freedom are independent.
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III. HAMILTON’S PRINCIPLE

The starting point of Lagrangian Mechanics is the Hamilton’s principle. It says that the

actual path is the one generating extreme value of the action S. S is defined as

S[x(t)] =

∫ t=t1

t=t0

dtL(x(t),
dx(t)

dt
, t)dt. x(t = t0) = x0, x(t = t1) = x1.

L is a function of x(t), dx
dt

and t in general. L is called Lagrangian function. From the

previous section, we know Hamilton’s principle will derive the following equation for the

actual path x0(t):
∂L

∂x
=

d

dt

(
∂L

∂ẋ

)
.

here ẋ(t)=dx(t)
dt

. This equation should give us the same solution as the one from Newtonian

Mechanics. For free body, one is able to deduce L=1
2
mẋ2. The equation of motion is

d

dt
(mẋ(t)) = 0.

Namely one obtains v=constant. Of course it is same with the solution of Newtonian

Mechanics. It is straightforward to generalize to two and three dimensional systems. The

next thing is to pursuit the Lagrangian of the body under the influence of the external force.

Remember that in the case of conservative force the equation of motion is

m
d2x(t)

dt2
= −∂U

∂x
,

m
d2y(t)

dt2
= −∂U

∂y
,

m
d2z(t)

dt2
= −∂U

∂z
,

here U(x, y, z) is potential. It is not difficult to find that L=T −U is chosen then one desired

equation is derived.

Example 1: L=m
2

(ẋ2 + ẏ2 + ż2)−mgz. Please derive the equation of motion.

Solution: It is obvious that the equations of motion are

m
d2x(t)

dt2
= 0, m

d2y(t)

dt2
= 0, m

d2z(t)

dt2
= −mg.

Notice that in Lagrangian Mechanics it is not necessary to use Cartesian coordinate. This is

very important both for practical and conceptual reasons. Practical reason is best illustrated
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by the following example.

Example 2: Using Newtonian Mechanics and Lagrangian Mechanics to derive the equation

of motion of pendulum.

Solution: From Newtonian Mechanics:

m
d2x(t)

dt2
= −Fx,

m
d2y(t)

dt2
= Fy −mg, Fx/Fy = x/y, x2 + y2 = l2.

Set x=l sin θ,y=-l cos θ. Fx=-F sin θ, Fy=F cos θ. So we have

m

(
l
d2θ

dt2
cos θ − l dθ

dt
sin θ

)
= −F sin θ,

m

(
l
d2θ

dt2
sin θ + l

dθ

dt
cos θ

)
= F cos θ −mg,

It is easy to cancel F and obtain

ml
d2θ

dt2
= −mg sin θ.

However it is much easier to derive the equation of motion from Lagrangian Mechanics.

L =
m

2
(ẋ2 + ẏ2)−mgl(1− cos θ) =

m

2
l2θ̇2 −mgl(1− cos θ).

From
∂L

∂θ
= −mgl sin θ, ∂L

∂θ̇
= ml2θ̇.

We easily obtain the same equation of motion.

In some case it is even impossible to write solve the problem by Newtonian Mechanics

because the force of constraint is unknown. However it cause no trouble in Lagrangian

Mechanics. There is one example here.

Example 3: Obtain the equation of motion of a pendulum with the string with variant

length l(t)=l0-αt.

L =
m

2
(ẋ2 + ẏ2)−mg(l0 − αt)(1− cos θ).

Here x=(l0 − αt) sin θ and y=−(l0 − αt) cos θ and

ẋ = (l0 − αt)θ̇ cos θ − α sin θ, ẏ = (l0 − αt)θ̇ sin θ + α cos θ.
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Hence ẋ2 + ẏ2=(l0 − αt)2θ̇2 + α2 and sequently

L =
m

2
(l0 − αt)2θ̇2 +

m

2
α2 −mg(l0 − αt)(1− cos θ).

So that we have

∂L

∂θ
= mg(l0 − αt) sin θ.

∂L

∂θ̇
= m(l0 − αt)2θ̇,

d

dt

∂L

∂θ̇
= m(l0 − αt)2θ̈ − 2m(l0 − αt)αθ̇.

The equation of motion is

mg sin θ = m(l0 − αt)θ̈ − 2mαθ̇.

However I want to emphasize that in the case of nonconservative or velocity-dependent force

then one usually find no general way to construct Lagrangian. The most important example

is the Lorentz force. One can find some more simple example to see that L=T − U is not

applicable.

Example 4: Find L which derives the following equation:

mẍ+ 2βẋ+ ω2
0x = 0.

Nevertheless one is still able to construct the Lagrangian. The most important guidance is

from the symmetry. When the system owns some symmetry. its Lagrangian must also own

the same symmetry. In the next lecture we will talk about this point.


