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I. LAGRANGIAN WITH ROTATIONAL INVARIANCE

Here we want to derive the general form of the Lagrangian of a two-body system with

rotational invariance. From Galilean invariance we know the Lagrangian of a two-body

system should be

L =
m1

2
(ẋ21 + ẏ21 + ż21) +

m2

2
(ẋ22 + ẏ22 + ż22)− U(x2 − x1, y2 − y1, z2 − z1).

Now if the system is invariant under any rotation, then we can choose the following one:

x′1 = x1 cos θ+y1 sin θ, y′1 = −x1 sin θ+y1 cos θ, x′2 = x2 cos θ+y2 sin θ, y′2 = −x2 sin θ+y2 cos θ.

It is easy to see that the inverse transform is as follows,

x1 = x′1 cos θ−y′1 sin θ, y1 = x′1 sin θ+y′1 cos θ, x2 = x′2 cos θ−y′2 sin θ, y2 = x′2 sin θ+y′2 cos θ.

It is trivial to see that

m1

2
(ẋ21 + ẏ21 + ż21) +

m2

2
(ẋ22 + ẏ22 + ż22) =

m1

2
(ẋ′

2

1 + ẏ′
2

1 + ż′
2

1) +
m2

2
(ẋ′

2

2 + ẏ′
2

2 + ż′
2

2).

Therefore we need the potential to satisfy the following condition:

U(∆x′ cos θ −∆y1 sin θ,∆x sin θ + ∆y cos θ,∆z) = U(∆x′,∆y′,∆z′). (1)

Here ∆x′=x′2 − x′1 and ∆y′=y′2 − y′1. Now we can make change of variable:

U(a, b, c) = U(K cos Φ, K sin Φ, c) = V (K,Φ, c).
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Here K=
√
a2 + b2 and Φ=tan−1

(
b
a

)
. By this way one can immediately see that Eq.(1) is

actually

U(∆x′,∆y′,∆z′) = V (K =
√

∆x′2 + ∆y′2,Φ = tan−1
(

∆y′

∆x′

)
,∆z),

U(∆x′ cos θ −∆y′1 sin θ,∆x′ sin θ + ∆y′ cos θ,∆z′)

= U(K cos Φ cos θ −K sin Φ sin θ,K sin Φ sin θ +K cos Φ cos θ,∆z)

= U(K cos(Φ + θ), K sin(Φ + θ),∆z)

= V (K =
√

∆x′2 + ∆y′2,Φ + θ,∆z).

Since θ is arbitrary, we know V must be independent of Φ! That is

U(a, b, c) = V (K =
√
a2 + b2, c).

We can also choose to make rotation between x and z, y and z. The reason is

U(a, b, c)=W (
√
a2 + b2 + c2). In the other words, U(∆x′,∆y′,∆z′)=W (|~r′2 − ~r′1|). Now

we can find that the equation of motion becomes

mẍ1 = −∂W
∂ξ

x1 − x2
ξ

,mÿ1 = −∂W
∂ξ

y1 − y2
ξ

,mz̈1 = −∂W
∂ξ

z1 − z2
ξ

,

mẍ2 = −∂W
∂ξ

x2 − x1
ξ

,mÿ2 = −∂W
∂ξ

y2 − y1
ξ

,mz̈2 = −∂W
∂ξ

z2 − z1
ξ

.

Here ξ=
√
|~r′ − ~r. It is obvious that not only ~F1=−~F2 but also ~F1//~r2 − ~r1. In the other

words, the forces between the two bodies along the direction of their relative position. If

one calculate the total angular momentum:

~τ = ~r1 × ~F1 + ~r2 × ~F2

=

(
~R +

m2

m1 +m2

~r

)
× ~F1 +

(
~R− m1

m1 +m2

~r

)
× ~F2

= ~R× (~F1 + ~F2) +
m2

m1 +m2

~r × ~F1 −
m1

m1 +m2

~r × ~F2

= 0

From Newtonian Mechanics we know ~τ=d~L
dt

. Hence the angular momentum ~L is constant.

This is always true for any system with rotational invariance. However, one does not need
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the concept of force and still know the angular momentum is conserved in the rotational

invariant system. This is a very important advantage of Lagrangian Mechanics. The close

relation between the conserved observable and the symmetry of the system is manifest in

the Lagrangian. This is the topic of the next section.

II. ROTATIONAL INVARIANCE AND CONSERVATION OF ANGULAR

MOMENTUM

In this section we will prove that the angular momentum is conserved when the system

is invariant. Imagine we make a infinitesimal rotation whose rotation axis is along the

direction n̂ and the rotation angle is δφ. We adopt the notation δ~φ=|δφ|n̂. Under this

rotation a vector ~r becomes ~r′ and we can show that δ~r=~r′ − ~r=δ~φ × ~r. Note that we can

decompose ~r=~r‖ + ~r⊥. ~r‖=(~r · n̂)n̂. So that ~r⊥ · n̂=0. Under the rotation ~r‖ doesn’t receive

any change. On the contrary, ~r⊥ becomes ~r⊥ + |δφ||~r⊥|t̂. Here t̂ is the tangent vector which

is normal to ~r⊥ and n̂. Therefore we know δ~r=|δφ||~r⊥|t̂. On the other hand, we have

δ~φ× ~r = δ~φ× (~r‖ + ~r⊥) = δ~φ× ~r⊥

= |δφ||~r⊥|n̂× r̂⊥ = |δφ||~r⊥|t̂ = δ~r.

Another way to check this result is to use the spherical coordinate. Assume that one makes

a rotation along the z axis, which is, φ→ φ+ δφ.

~r = r sin θ cosφêx + r sin θ sinφêy + r cos θêz.

Assume that one makes a rotation along the z axis, which is, φ → φ + δφ. Since δφ is

infinitesimal so sin δφ ∼ δφ and cos δφ ∼ 1.

~r′ = r sin θ cos(φ+ δφ)êx + r sin θ sin(φ+ δφ)êy + r cos θêz.

= r sin θ(cosφ− sinφδφ)êx + r sin θ(sinφ+ cosφδφ)êy + r cos θêz.
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Such that

δ~r = rδφ(− sin θ sinφêx + sin θ cosφêy)

= δφêz × (r sin θ cosφêx + r sin θ sinφêy + r cos θêz)

= δ~φ× ~r.

If a system is invariant under an infinitesimal rotation then we know

δL = L(~r + δ~r, ~̇r + δ~̇r, t)− L(~r, ~̇r, t) = 0.

The next step is

δL =
3∑

i=1

(
∂L

∂ri
δri +

∂L

∂ṙi
δṙi

)
.

Apply the equation of the motion we obtain,

δL =
3∑

i=1

(
d

dt

∂L

∂ṙi
δri +

∂L

∂ṙi
δṙi

)
.

We define the momentum of the system in the following way:

pi =
∂L

∂ri
.

So we have

δL =

(
d~p

dt
· δ~r + ~p · δ~r

dt

)
=

(
d~p

dt
· δ~φ× ~r + ~p · δφ× d~r

dt

)
= δ~φ ·

(
~r × d~p

dt
+
d~r

dt
× ~p
)

= δ~φ · d
dt

(~r × ~p) = 0.

Since δ~φ is arbitrary, so we know ~r × ~p must be a constant.

III. TRANSLATION INVARIANCE AND CONSERVATION OF MOMENTUM

AND ENERGY

We have learned that some physical observable will be conserved when the system is

invariant under certain transform. This is actually a very general thing. Here we will

provide two more examples. One is translation and another one is temporal translation. If
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the system is invariant under this transform: ~r → ~r + ~a here ~a is an infinitesimal arbitrary

constant vector. Then

δL = L(~r + ~a, ~̇r, t)− L(~r, ~̇r, t) = 0.

Naturally we have

δL =
3∑

i=1

∂L

∂ri
ai =

3∑
i=1

d

dt

(
∂L

∂ṙi

)
ai =

d~p

dt
· ~a = 0.

Hence ~p is a constant. From this one learns that the momentum is conserved if the system

is translation invariant. If the system only has translation invariant in one certain direction,

then it is clear that only the momentum in that particular direction is conserved. The next

example is temporal translational invariance. Namely it means if the system remains the

same when t→ t + δt. What kind of physical observable will be conserved? We start from

the following identity:

dL

dt
=

3∑
i=1

(
∂L

∂ri
ṙi +

∂L

∂ṙi
r̈i

)
+
∂L

∂t

=
3∑

i=1

(
d

dt

(
∂L

∂ṙi

)
ṙi +

∂L

∂ṙi
r̈i

)
+
∂L

∂t

=
3∑

i=1

(
dpi
dt
ṙi + pir̈i

)
+
∂L

∂t

=
d

dt
(ṙipi) +

∂L

∂t

Therefore if ∂L
∂t

=0, we have

d

dt

(
3∑

i=1

piṙi − L

)
= 0.

Hence h=
∑3

i=1 piṙi−L will be conserved. Furthermore, if the system is under the influence

of conservative force which is independent of velocity, that is, L=T (ri)− U(ri). If so

3∑
i=1

piṙi = m

3∑
i=1

v2i = 2T.

Then we have h=2T − (T −U)=T +U . It is the sum of kinetic energy plus potential energy.

In Newtonian Mechanics, this is called ”Conservation of mechanical energy”.

Question: A particle of mass m with speed ~v leave half-space in which its potential energy
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is a constant U1 and enters another in which the potential energy is a different constant U2.

Determine change in the direction of motion of the particle.


