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I. PENDULUM IN THE ACCELERATED CAR

There is a pendulum hang at the fixed point inside a car which runs with the constant

acceleration a along the horizontal direction. Please find the equation of motion of this

pendulum in the inertial frame. The Lagrangian is written as,

L =
m

2
(ẋ2 + ẏ2)−mg(l − y).

Here x and y is the Cartesian coordinates of the inertial frame. Now we can express them

as

x = v0t+
a

2
t2 + l sin θ, y = l cos θ.

Because the motion of pendulum is under the constraint that the string length is constant

l. Hence we have,

L =
m

2
((v0 + at+ lθ̇ cos θ)2 + (−lθ̇ sin θ)2)−mgl(1− cos θ)

=
ml2

2
θ̇2 +ml(v0 + at)θ̇ cos θ −mgl(1− cos θ) +

m

2
(v0 + at)2.

The equation of motion is obtained as

d

dt

(
ml2dotθ +ml2(v0 + at) cos θ

)
= −mgl sin θ −ml(v0 + at)θ̇ sin θ.

=⇒ ml2θ̈ −m(v0 + at)lθ̇ sin θ +ma cos θ = −mgl sin θ −m(v0 + at)lθ̇ sin θ.

ml2θ̈ = −mgl sin θ −mal cos θ.

This is the solution.
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II. LAGRANGIAN OF FREE BODY IN THE NON-INERTIAL FRAME

The one advantage of Lagrangian Mechanics is that one does not need the concept of

the inertial frame at all. What one concerns is which Lagrangian can provides the correct

equation of motion in his own frame. For example, if someone observes a free body with

constant speed, then he is able to use the following Lagrangian,

L =
m

2
(ẋ2 + ẏ2 + ż2).

So what kind of Lagrangian should the observer who sits on the frame with relative acceler-

ation with the original frame use? It is very simple. One can simple carries out the change

of variables as follows,

x′ = x+ v0xt+
ax
2
t2, y′ = y + v0yt+

ay
2
t2, z′ = z + v0zt+

az
2
t2.

x′, y′, z′ are the Cartesian coordinates of the new frame. Naturally we have the following

relations,

ẋ′ = ẋ+ v0x + axt, ẏ′ = ẏ + v0y + ayt, ż′ = ż + v0z + azt,

Just insert new variables in the Lagrangian, then one has the Lagrangian in term of x′y′z′,

L =
m

2
(ẋ′

2
+ ẏ′

2
+ ż′

2
)−m(v0xẋ′ + v0yẏ′ + v0z ż′)−mt(axẋ′ + ayẏ′ + az ż′)

− m

2
((v0x + axt)

2 + (v0y + ayt)
2 + (v0z + azt)

2)

=
m

2
(ẋ′

2
+ ẏ′

2
+ ż′

2
)−mt(axẋ′ + ayẏ′ + az ż)

− d

dt

[
m((v0xx

′ + v0yy
′ + v0zz

′) +
m

6

(
(v0x + axt)

3

ax
+

(v0y + ayt)
3

ay
+

(v0z + azt)
3

az

)]

Note that Lagrangian is essentially equivalent to another one by adding a total derivative

term, so that one has,

L =
m

2
(ẋ′

2
+ ẏ′

2
+ ż′

2
)−mt(axẋ′ + ayẏ′ + az ż).

The equations of motion become

d

dt
(mẋ′ −maxt) = 0,

d

dt
(mẏ′ −mayt) = 0,

d

dt
(mż′ −mazt) = 0.

Therefore in the new frame the ”free body” is accelerating. This is of no surprise.

mẍ′ = max, mÿ′ = may, mz̈′ = maz.
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One can transform Lagrangian in another form,

L =
m

2
(ẋ′

2
+ ẏ′

2
+ ż′

2
)−mt(axẋ′ + ayẏ′ + az ż)

= =
m

2
(ẋ′

2
+ ẏ′

2
+ ż′

2
)− d

dt
(mt(axx

′ + ayy
′ + azz

′)) +m(axx
′ + ayy

′ + azz
′)

=⇒ L′ =
m

2
(ẋ′

2
+ ẏ′

2
+ ż′

2
) +m(axx

′ + ayy
′ + azz

′)

It is easy to see that the corresponding equations of motion are the same.

mẍ′ = max, mÿ′ = may, mz̈′ = maz.

III. EXAMPLE: ACCELERATED INCLINED PLANE

One cannot overemphasize the importance of judicious choice of the adequate coordinates.

Here is a good example: If a falling body with mass m2 is falling along the incline plane

which has mass m1 and the angle of incline is θ. The incline plane is on a table without

any friction. The falling body will fall along the slide, however the incline plane also moves.

Hence it is not a trivial problem in Newtonian Mechanics. Let’s try to use Lagrangian

Mechanics to solve it. The Lagrangian of the system is given as,

L =
m1

2
ȧ2 +

m2

2
[(ȧ+ ḃ cos θ)2 + (ḃ sin θ)2]−m2gb sin θ

=
m1

2
ȧ2 +

m2

2
ȧ2 +

m2

2
ḃ2 +m2ȧḃ cos θ −m2gb sin θ.

a is the distance from the origin to the edge of the plane. b is the distance from the edge of

the plane to the falling body. Therefore we have following equations of motion,

m1ä+m2ä+m2b̈ cos θ = 0,

m2b̈+m2ä cos θ = −m2g sin θ.

Multiplying the second equation by the factor cos θ then subtract the first equation one

obtains,

(m1 +m2 sin2 θ)ä = m2g sin θ cos θ.
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Hence we have

ä =
m2g sin θ cos θ

m1 +m2 sin θ
, b̈ =

(m1 +m2)g sin θ

m1 +m2 sin θ
.

IV. HAMILTON’S PRINCIPLE FOR THE COORDINATES WITH

CONSTRAINTS

Previously we argue that in order to generalize to higher-dimensional case one just make

more copies of Euler equations provide that the variables are independent with each. How-

ever sometimes one needs to deal with the situation where the coordinates are not completely

independent. For exampel one may have the following situation,

S =

∫ t1

t0

dtL(x(t), y(t), ẋ(t), ẏ, t)dt, g(x(t), y(t)) = 0.

x(t) and y(t) need to satisfy the condition g = 0. So when one make choice of paths with

fixed start and ending points,

x(t0) = x0, x(t1) = x1, y(t0) = y0, y(t1) = y1.

We can assume that

x(t) = q(t) + εf(t), y(t) = p(t) + εh(t). f(t0) = f(t1) = g(t0) = g(t1) = 0.

x=q(t) and y=p(t) are supposed to be the path generating the extreme value of S. New

difficulty emerges because f and h are not independent. So one cannot simply treat them

as independent functions. Let’s repeat the procedure from the beginning:

dS[ε]

dε
|ε = 0.

Now S is still function of ε:

dS[ε]

dε
|ε =

∫ t1

t0

dt

(
∂L

∂x
|ε=0f(t) +

∂L

∂ẋ
|ε=0ḟ(t) +

∂L

∂y
|ε=0h(t) +

∂L

∂ẏ
|ε=0ḣ(t)

)
dt

=

∫ t1

t0

dt

[(
∂L

∂x
|ε=0 −

d

dt

(
∂L

∂ẋ
|ε=0

))
f(t) +

(
∂L

∂y
|ε=0 −

d

dt

(
∂L

∂ẏ
|ε=0

))
h(t)

]
= 0 (1)

The main task here is to express h(t) by f(t) because one of them can be still free. To

achieve this goal one starts from

g(x(t) = q(t) + εf(t), y(t) = p(t) + εh(t)) = 0,=⇒ ∂g

∂x
|ε=0f(t) +

∂g

∂y
|ε=0h(t) = 0.
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So that we have the following relation,

h(t) =
− ∂g

∂x
|ε=0

∂g
∂y
|ε=0

f(t).

Insert this relation to Eq.(1) one has

dS[ε]

dε
|ε =

∫ t1

t0

dt

[(
∂L

∂x
|ε=0 −

d

dt

(
∂L

∂ẋ
|ε=0

))
f(t) + +

(
∂L

∂y
|ε=0 −

d

dt

(
∂L

∂ẏ
|ε=0

)) − ∂g
∂x
|ε=0

∂g
∂y
|ε=0

f(t)

]
= 0,

∫ t1

t0

dt

[(
∂L

∂x
|ε=0 −

d

dt

(
∂L

∂ẋ
|ε=0

))
+

(
∂L

∂y
|ε=0 −

d

dt

(
∂L

∂ẏ
|ε=0

)) − ∂g
∂x
|ε=0

∂g
∂y
|ε=0

]
f(t) = 0,

Since f(t) is still an arbitrary function such that(
∂L

∂x
|ε=0 −

d

dt

(
∂L

∂ẋ
|ε=0

))
+

(
∂L

∂y
|ε=0 −

d

dt

(
∂L

∂ẏ
|ε=0

)) − ∂g
∂x
|ε=0

∂g
∂y
|ε=0

= 0.

One can rewrite it as follows,

(
∂L
∂x
|ε=0 − d

dt

(
∂L
∂ẋ
|ε=0

))
∂g
∂x
|ε=0

=

(
∂L
∂y
|ε=0 − d

dt

(
∂L
∂ẏ
|ε=0

))
∂g
∂y
|ε=0

= −λ.

At end we have those two equations,(
∂L

∂x
|ε=0 −

d

dt

(
∂L

∂ẋ
|ε=0

))
+ λ

∂g

∂x
|ε=0 = 0,(

∂L

∂y
|ε=0 −

d

dt

(
∂L

∂ẏ
|ε=0

))
+ λ

∂g

∂y
|ε=0 = 0.

In other words, we can simple make variation on
∫

(L + λg)dt and obtain the exactly same

equations! This is very convenient and useful.


