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I. GENERALIZED MOMENTUM, HAMILTONIAN AND CONSERVATION OF

MECHANICAL ENERGY

One great advantage of Lagrangian Mechanics is the freedom of choosing the suitable

variables. Unlike Newtonian Mechanics which is essentially a vectorial theory, Lagrangian

Mechanics is a scalar theory. The action S is a scalar and the Lagrangian function is also a

scalar. As long as the path giving the extreme value of the action is same, it does not matter

which variables one chooses. In particular, when there are constraints, one can always reduce

the number of the variables such that each variables are independent with each other. The

coordinates which are not Cartesian ones are called ”Generalized coordinates”.

In previous section we have demonstrated that in the Lagrangian is invariant under

translation then the corresponding momentum is conserved. As a matter of fact, it can be

generalized to Generalized coordinate case. Assume that L(q1, q2....qk, q̇1, q̇2, ....q̇k, t) is the

Lagrangian, furthermore we have ∂L
∂qi

= 0. The equation becomes,

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
= 0.

Hence one defines the ”Generalized momentum pi=
∂L
∂q̇i

and as a result,

pi = constant if
∂L

∂qi
= 0.

In other words the generalized momentum is conserved if the Lagrangian is independent of

the corresponding generalized coordinate.

Moreover we know when ∂L
∂t

=0 one has

h =
d

dt

(
k∑
i=1

q̇i
∂L

∂q̇i
− L

)
= 0.
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h is called hamiltonian. We have proved the case of Cartesian coordinates. It is easy to

generalized to the case of generalized coordinates. Furthermore if the system is under the

influence of velocity-independent conservative force then L=T − U . Hence we have

k∑
i=1

∂T

∂q̇i
q̇i − T + U = constant

In case of Cartesian coordinate the first term is equal to 2T so hamiltonian will be equal to

T +U , mechanical energy E. However in the case of generalized case it is always so. To see

why one can write the kinetic energy T in term of the Cartesian coordinates first,

T =
N∑
a=1

3∑
l=1

ma

2
ṙ2al.

To change to the generalized coordinates we start from the following relations:

ral = ral(q1, q2....qk), a = 1....N, l = 1..3. ṙal =
k∑
i=1

∂ral

∂qi
q̇i +

∂ral
∂t

.

Therefore we have

T =
∑
a,l

ma

2

(∑
i,j

∂ral
∂qi

∂ral
∂qj

q̇iq̇j + 2
∑
i

∂ral
∂qi

∂ral
∂t

q̇i +

(
∂ral
∂t

)2
)
.

Hence we have
∂T

∂q̇c
=
∑
al

ma

k∑
i=1

∂ral
∂qi

∂ral
∂qc

q̇i +ma
∂ral
∂qc

∂ral
∂t

.

Hence
k∑
c=1

q̇c
∂T

∂q̇c
=
∑
c

∑
al

ma

k∑
i=1

∂ral
∂qi

∂ral
∂qc

q̇iq̇c +ma
∂ral
∂qc

∂ral
∂t

q̇c.

We find that only if T is equal to the first term then
∑k

c=1 q̇c
∂T
∂q̇c

=2T. In more formal language

we will say it is true only when T is degree-2 homogenous polynomial of q̇i. A homogenous

polynomial of degree N means the polynomial is able to written as

P (q1, q2.....qk) =
∑

Ca1,a2,....akq
a1
1 q

a2
2 .....q

ak
k , a1 + a2 + a3 + ....ak = N.

It is left for exercise to show that

k∑
i=1

qi
∂P

∂qi
= NP.

So if T is degree-two polynomial of q̇i surely h=E.
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II. MECHANICAL SIMILARITY

If the potential has the following scaling behaviour,

U(ri)→ U(λri) = λαU(ri).

Then we could ask whether the system can be the same if we have made such a transform

~r −→ λ~r. This question is particular transparent in Lagrangian Mechanics. As long as

L also changes to λαL then the action is just multiplied by a factor, the physics will be

the same. Hence one just needs point out the situation in which T is also transformed to

λαT . One can assume the following transform t −→ βt to do the trick. Under these two

transforms we notice that dx
dt
−→ λ

β
dx
dt

. As a result we have

T −→
(
λ

β

)2

T.

To make T is scaled by the factor λα as U does, we find that β=λ1−
α
2 . Therefore the system

is invariant if

~r −→ λ~r, t −→ λ1−
α
2 t, U(~r) −→ λαU(~r),

Under such transform one also has

~v −→ λα/2~v, E −→ λαE, ~L = ~r × ~p −→ λ1+α/2~L.

One particular application of ”Mechanical similarity” is Kepler’s third law. For any planet

in the solar system, its period τ and its orbit radius R satisfies the following relation,

τ 2

R3
= constant.

It is easy to see this particular combination τ2

R3 transforms as λ−3+2−α τ2
R3 . Hence one con-

cludes that α = −1. Indeed the potential of gravity is proportional to r−1 because the

gravity is inverse-squared force.

III. VIRIAL THEOREM

If the potential is scaled as power law, then we can derive something very useful for the

periodic motion, called virial theorem. WE start from the following identity

2T =
∑
a

~pa · ~va =
d

dt

(∑
a

~pa · ~ra

)
−
∑
a

~ra · ~̇pa.
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For a periodic motion, one can defined the periodic average of a physical observable f(t) as

f̄ =
1

τ

∫ τ

0

f(t)dt.

Any total derivative term give zero periodic average so one has

2T̄ =
¯∑

a

~ra · ~̇pa=
¯∑

a

~ a · ∇aUr.

If potential energy is a homogenous function of degree of k in the radius vector ra. Then we

have

2T̄ = kŪ .

Since T + U=E, one has

Ū =
2

k + 2
E, T̄ =

k

k + 2
E.

When k=-1, such as in the case of gravity, then Ū = 2E and T̄ = −E, here E < 0. When

k = −2 then one notice that E must be zero. It sounds strange. However, remember virial

theorem is only applicable in the periodic motion. Therefore it just means when the force

is proportional to r−3, only when E = 0 the orbit is closed.


