
Mechanics: Lagrangian Mechanics

Chung Wen Kao

Department of Physics, Chung-Yuan Christian University, Chung-Li 32023, Taiwan

(Dated: October 16, 2012)

This lecture was given on Oct 15th.

I. 2-DIMENSIONAL MOTION OF CENTRAL FORCE FIELD

Here we deal with the problem of the motion of two-body system with the central force.

The Lagrangian of such a system can be written as

L =
m1

2
~̇r21 +

m2

2
~̇r22 − U(|~r1 − ~r2|).

This is a system of six degrees of freedom. U only depends on |~r1 − ~r2| is because of the

symmetry, Galilean invariance and rotational invariance. Previously mentioned that one

can apply this coordinates:

~R =
m1~r1 +m2~r2
m1 +m2

, ~r = ~r1 − ~r2.

and transform the Lagrangian into

L =
m1 +m2

2
~̇R2 +

µ

2
~̇r2 − U(|~r|).

The Lagrangian of ~R and ~r is separated. It is easy to see the motion of ~R is trivial. Hence

we choose our origin to be the position of ~R. In other words, we just focus on the motion of

~r. So far we have reduced this six-dimensional problem into a three-dimensional problem.

Furthermore we know there is the rotational invariance for the Lagrangian: L=µ
2
~̇r2 −

U(|~r|). We know the angular momentum is conserved, that is

~r × µ~̇r = ~l = constant.

We then choose L̂ the z axis direction. Since ~r and ~v are normal to ~L, we know the motion

occurs in the x-y plane. Here we choose the polar coordinate:

L =
µ

2
~̇r2 − U(|~r|).



2

One must be aware that when one use the polar coordinate, the translation invariance is

lost. It is because the origin is unique point in the polar coordinate. In this problem, we

choose the origin to be the position of the centre mass, therefore it is fine to use the polar

coordinate. The 2-D Lagrangian now looks like,

L =
µ

2
(ṙ2 + r2θ̇2)− U(r).

The equations of motion are

µr̈ = µrθ̇2 − dU

dr
,

d

dt
(µr2θ̇) = 0.

The second one tells us that the conservation of angular momentum,

µr2θ̇ = constant = l.

The first one is equation of r. As a matter of fact, it also implies one conserved quantity.

Multiplying ṙ,

µṙr̈ = µrṙθ̇2 − dU

dr
ṙ, −→ µṙr̈ =

l2

µr3
ṙ − dU

dr
ṙ,

−→ d

dt

(µ
2
ṙ2
)

=
d

dt

(
−l2

2µr2

)
− dU

dt
,−→ d

dt

(
µ

2
ṙ2 +

l2

2µr2
+ U(r)

)
= 0.

What is this conserved quantity? Remember here we have ∂L
∂t

=0, L = T − U and T is

degree-2 homogenous polynomial of ṙ and θ̇. Therefore we know the mechanical energy is

conserved. It is not difficult to show that indeed the conserved quantity is the mechanical

energy E,
µ

2
ṙ2 +

l2

2µr2
+ U(r) = E.

It is similar to the case of 1-dimensional motion we deal in the previous section. Namely we

have

dt =
dr√

2
µ

(
E − U(r)− l2

2µr2

) .
One can integrate t(r). However this is a 2-D motion, we are more interested in the orbit of

the motion, namely r(θ). To obtain the equation of the orbit we can apply the conservation

of momentum and have,

dt = dθ
dt

dθ
=
dθ

θ̇
=

dr√
2
µ

(
E − U(r)− l2

2µr2

) .
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Hence we reach,

dθ =
θ̇dr√

2
µ

(
E − U(r)− l2

2µr2

) =

l
µr2
dr√

2
µ

(
E − U(r)− l2

2µr2

)
At end we can calculate the orbit of any central force potential U(r),

θ =

∫ l
µr2
dr√

2
µ

(
E − U(r)− l2

2µr2

) .

II. KEPLER’S PROBLEM

Historic importance of the Kepler’s problem cannot be emphasized. When U(r)=−α
r
,

what is the orbit? The answer is actually dependent on the value of E and l. Since

it is a 2-dimensional motion, therefore the orbit is completely determined by these two

conserved quantities. One can apply the technique learned from the last section with a

tiny modification. We need change the potential U by the effective potential Ueff=U(r) +

l2

2µr2
. One can easy to see when dU

dr
(r0)=0 with r0=

l2

αµ
with E=Ueff (r0)=−α2µ

2l2
. This is the

minimum value of E. When Emin ≤ E ≤ 0, what is the orbit? To solve this problem we

just need evaluate the following integral,

θ =

∫ l
µr2
dr√

2
µ

(
E + α

r
− l2

2µr2

) =
l√
2µ

∫ dr
r2√

2
µ

(
E + α

r
− l2

2µr2

)
=

l√
2µ

∫
−du√

E + αu− l2

2µ
u2

=
−l√
2µ

∫
du√

E + µα2

2l2
− l2

2µ

[
u− µα

l2

]2
=
−l√
2µ

∫
dw√

E + µα2

2l2
− l2

2µ
w2

=
l√
2µ

√
2µ

l2
cos−1


√√√√ l2

2µ

E + µα2

2l2

w


= cos−1


√√√√ l2

2µ

E + µα2

2l2

w

 .

cos θ =

√√√√ l2

2µ

E + µα2

2l2

(
1

r
− µα

l2

)
=⇒ 1

r
=

√√√√E + µα2

2l2

l2

2µ

cos θ +
µα

l2

=⇒ l2/µα

r
= 1 +

√
1 +

2El2

α2µ
cos θ.
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This means the orbit is an ellipse.


