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I. 1-D SYMMETRIC MOLECULAR VIBRATION

For a molecule like CO2, we have a system with three particles aligning a line. The

Lagrangian of this system can be written as

L =
m1

2
ẋ2

1 +
m2

2
ẋ2

2 +
m3

2
ẋ2

3 − U(|x1 − x2|)− U(|x2 − x3|).

This system owns the translation invariance, so the C.M momentum is conserved. therefore

the motion of the centre of mass must be uniform. Hence one should be able to separate

the C.M motion from the inner motions of the molecule. We can adopt the new coordinate:

x1 = RCM +
m2 +m3

m2 +m2 +m3

x12 +
m3

m1 +m2 +m3

x23,

x2 = RCM −
m1

m2 +m2 +m3

x12 +
m3

m1 +m2 +m3

x23,

x3 = RCM −
m1 +m2

m2 +m2 +m3

x12 −
m1

m1 +m2 +m3

x23,

For many molecule, m1=m3, then it is convenient to set A= m1+m2

2m1+m2
and B= m1

2m1+m3
.

x1 = RCM + Ax12 +Bx23, x2 = RCM −Bx12 +Bx23, x3 = RCM −Bx12 − Ax23,

Now we can write down the kinetic energy T of each particle as follows,

m1

2
ẋ2

1 =
m1

2
(Ṙ2

CM + A2ẋ2
12 +B2ẋ2

23 + 2AṘCM ẋ12 + 2BṘCM ẋ23 + 2ABẋ12ẋ23)

m2

2
ẋ2

2 =
m2

2
(Ṙ2

CM +B2ẋ2
12 +B2ẋ2

23 − 2BṘCM ẋ12 + 2BṘCM ẋ23 − 2B2ẋ12ẋ23)

m3

2
ẋ2

3 =
m1

2
(Ṙ2

CM +B2ẋ2
12 + A2ẋ2

23 − 2BṘCM ẋ12 − 2AṘCM ẋ23 + 2ABẋ12ẋ23)

Since we have

m1A−m2B −m1B =
m1(m1 +m2)−m2m1 −m2

1

2m1 +m2

= 0.



2

Therefore we have

L =
m2 + 2m1

2
Ṙ2
CM +

(
m1A

2 +m2B
2 +m1B

2

2

)
ẋ2

12

+

(
m1A

2 +m2B
2 +m1B

2

2

)
ẋ2

23 + (4m1AB − 2m2B
2)ẋ12ẋ23 − U(x12)− U(x23).

Set α=
(
m1A2+m2B2+m1B2

2

)
and β=(4m1AB − 2m2B

2) then

L =
M

2
Ṙ2
CM + αẋ2

12 + αẋ2
23 + βẋ12ẋ23 − U(x12)− U(x23).

The equations of the motions are

2αẍ12 + βẍ23 = −dU(x12)

dx12

, 2αẍ23 + βẍ12 = −dU(x23)

dx23

.

The positions of the equilibrium are given as

dU(x12)

dx12

|x12=x̄ = 0,
dU(x23)

dx23

|x23=x̄ = 0.

Making Taylor expansion around the equilibrium point,

dU(x12)

dx12

=
d2U(x12)

dx2
12

|x12=x̄(x12−x̄)+O((x12−x̄)2),
dU(x23)

dx23

=
d2U(x23)

dx2
23

|x23=x̄(x23−x̄)+O((x23−x̄)2),

Set ξ=x12 − x̄ and η=x23 − x̄ and d2U(x)
dx2
|x=x̄=κ. Hence we have

2αξ̈ + βη̈ = −κξ, 2αη̈ + βξ̈ = −κη.

By adding and subtracting the two equations we reach the following equations,

(2α + β)ζ̈ = −κζ, (2α− β)σ̈ = −κσ.

here ζ=ξ + η and σ=ξ − η. The tqo equations are independent so we reach the answer,

ζ(t) = ζ(0) cos

(√
κ

2α + β

)
t+

ζ̇(0)√
κ

2α+β

sin

(√
κ

2α + β

)
t,

σ(t) = σ(0) cos

(√
κ

2α− β

)
t+

σ̇(0)√
κ

2α−β

sin

(√
κ

2α− β

)
t,

The motions of the molecule is completely determined.
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II. HOW TO FIND THE NORMAL MODES

The above method is not applicable in general. Here we bring the general method to

solve the same question. The basic idea is that we assume there are some particular modes

of the motion which owns only one frequency. This kind of mode is called normal mode. In

principle if one can find the normal modes then the general solution must be constructed

from the linear combinations of those modes. How to find those modes? The first step is to

assume that

ξ = Aeiωt, η = Beiωt.

Insert these ansatz one obtains

−2αω2A− βω2B = −κA, −2αω2B − βω2A = −κB.

One can rewrite the equations as the matrix form,−2αω2 + κ −βω2

−βω2, −2αω2 + κ

A
B

 =

0

0


Now we expect this 2 × 2 matrix cannot be inverted, otherwise A and B must be zero.

Therefore we have the following equation,

det

−2αω2 + κ −βω2

−βω2, −2αω2 + κ

 = 0.

This equation determines the values of the characteristic frequencies.

(−2αω2 + κ)2 − β2ω4 = 0 −→ ω2 =
κ

2α + β
,

κ

2α− β
.

When ω2= κ
2α+β

, one can find the corresponding mode by inserting the value of ω, βκ
2α+β

−βκ
2α+β

−βκ
2α+β

βκ
2α+β

A
B

 =

0

0

 =⇒ A = B.

On the other hand, when ω2= κ
2α−β ,we have −βκ

2α−β
−βκ

2α−β
−βκ

2α−β
−βκ

2α−β

A
B

 =

0

0

 =⇒ A = −B.
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Since the equation only determine ω, the frequency can be either ω or −ω. However, the

When ±ω+=±
√

κ
2α+β

,

ξ(t) = q∗1(t) =
1

2

(
(AR+ + iAI+)eiω+t + (AR+ − iAI+)e−iω+t

)
= AR+ cos

√
κ

2α + β
t− AI+ sin

√
κ

2α + β
t. η(t) = ξ(t).

When ±ω−=±
√

κ
2α−β ,

ξ(t) = q∗1(t) =
1

2

(
(AR− + iAI−)eiω+t + (AR− − iAI−)e−iω+t

)
= AR− cos

√
κ

2α− β
t− AI− sin

√
κ

2α− β
t. η(t) = −q1(t).

The general solutions of q1(t) and q2(t) are

ξ(t) = AR+ cos

√
κ

2α + β
t− AI+ sin

√
κ

2α + β
t

+ AR− cos

√
κ

2α− β
t− AI− sin

√
κ

2α− β
t,

η(t) = AR+ cos

√
κ

2α + β
t− AI+ sin

√
κ

2α + β
t

− AR− cos

√
κ

2α− β
t+ AI− sin

√
κ

2α− β
t,

ξ(0) = AR+ + AR−, η(0) = AR+ − AR−,

ξ̇(0) = −
√

κ

2α + β
AI+ −

√
κ

2α− β
AI−,

η̇(0) = −
√

κ

2α + β
AI+ +

√
κ

2α− β
AI−,

AR+ =
1

2
(ξ(0) + η(0)) AR− =

1

2
(ξ(0)− η(0))

AI+ = −
√

2α + β

4κ
(ξ̇(0) + η̇(0)) AI+ =

√
2α− β

4κ
(−ξ̇(0) + η̇(0)).

The whole otion of this molecule is determined by these four initial conditions.


