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Before Inflation...
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3 big problems of big bang universe

- Flathess problem
The early universe is unnaturally flat.

- Horizon problem

All of observed causally disconnected CMB photons have
the same temperature T~ 2.725K.

- Monopole problem
We have not found monopole ever.



Flatness problem

- Curvature of space A

Flat to the
end of

world???

- But, in the big bang universe,

/%\@




q Ref. Jinn-Ouk Gong, IJMPD26
Horizon prOblem (2016) no.01, 1740003
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Figure 3: (Left) conformal diagram of the universe. From the cosmic singularity (7; = 0) until
the moment of the CMB generation (7cyp) there was no time for the CMB to achieve causal
communication to have the same temperature Ty. (Right) as a sample calculation, we can see
that at that time the universe was filled with 10* — 10° causally disconnected patches.



Inflation

A solution for the 3 problems of big Bang by accelerating
the universe

The quantum fluctuation created in the inflationary
universe provides the seed of the large scale structure

Graceful exit + reheating
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Accelerating expansion

- Making a huge flat and homogeneous region while
keeping the same horizon size.

- The vacuum energy can accelerate the universe.

-

/SIS
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Slow-roll inflation

v Scalar field can make a cosmological background.

v'The potential energy of scalar field V(®) plays a role of
the vacuum energy and accelerate the universe.

v Slow-roll inflation ends naturally at ®~Mpi, and reheat the
universe through particle decay.

vV (®) gets constraints from the observation
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Slow-roll attractor
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Quantum fluctuation of inflaton

- Perturbation theory around time-dependent vacuum
expectation value ®(t)

» = ¢(t) + dp(x) h = v+ n(x)

QFT on quasi-de Sitter QFT on M4

- Scalar field is stretched by the expansion, and finally, it
approaches to an almost constant value:

H
0p(x) ~ o
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Observables of inflation

- 3-metric: 391',_7' = az(t)ezc(dij + Yij + .. .)

H
- General coordinate transformation: ¢ ~ ——4d¢

¢

- 2-point functions of { and yij in momentum space

k3 k3 g
PC(k) = on2 < CrCr > < P,(k) = o < Yrij Ve > >

__ dInP;(k)
" dlnk
. P, (k)

P (k)

ng—1 ~ Scaling dimension of 2-pt. function
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Fig. 12. Marginalized joint 68 % and 95 % CL regions for ng and ry g, from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.
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Astrophys. 594(2016) A20
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Why slow roll”?

- So far, do you have any reasons why you consider slow-
roll inflation only?

- | don’t have.

- If other mechanisms work well for inflating the universe,
why not consider them?



Kinetically driven inflation (KDI)

v'/Another huge class of inflation

v'"Non-canonical kinetic terms become relevant to inflate the
universe.

v'Not necessarily need the potential to inflate the universe.

v'By tuning functions in the models, inflation can end and
transit to the big bang universe.



Schematic of the typical KDI
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Slow-roll inflation

k-inflation
Ultra slow-roll inflation
Higgs G-inflation H G-inflation

Ghost inflation
Galileon inflation
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k-inflation

G-inflation

Ghost inflation
Galileon inflation

- No unified formulation for KDI ever.

- Research object
[ To develop a unified formulation for evaluating }

the whole behavior of KDI systematically.
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Introduction
Inflationary attractor and perturbative expansion

Quantum fluctuation
Case |: Shift symmetric KDI
Case Il: P-dependent KDI

Summary

S o
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2. Inflationary attractor and
perturbative expansion
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A model-independent framework

- We intend to derive features of KDI in a model-
iIndependent manner.

- 3 basic requirements for the theory
v The action consists of the scalar field ® and the metric
field guv only: S|¢, g..]

v'The degrees of freedom is 1 scalar mode + 2 tensor
modes only.

v"The theory has the flat Friedmann-Robertson-\Walker
(FRW) solution.



20/45

Equations of motion in general form

- Flat FRW background metric
ds® = —NZ*(t)dt* + a*(t)dz*

- Equations of motion

55 / ;

20— E(p, o, H, ---) =0 A constraint equation,
ON ~Friedmann equation
S °

0 J+3HJ P’¢ ~ Klein-Gordon eq. for

J = J(9, ¢2, H, ), background field ®(t)
P:P(¢7 ¢7 ¢7 H7 H, )

KP@ — 9P/0¢




Inflationary attractor of KDI

If Py ~0, If  varies
‘ _ ~ sufficiently slowly
J+3HJ =Ry~ 0 with respect to ®o,
J =~ CJCI,_3 — 0, E(o, qg, H, - the root solution

becomes

- Aroot solutionfor J =0and £ =0

o= 1(60) #0, Hy = Ho(60) ;

‘ (60)
[ Inflationary attractor of KDI ‘ \\ //\@/ g
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An example of KDI attractor g Amendrizriconet .

- Action and EoMs
2
S = /d‘*w\/—_g [%R -~ K($)X + X2] X

£=-KX+3X*—-3MpH” =0
J+3HJ = =KX, /\

J=¢(—K +2X) — 0 \/ \/ 6

- KDI attractor

4/ _ K(¢o)
Po = * K(¢0)7 HO—\/gMPl
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Next-to-leading solution

- KDI attractor is just a leading solution of the full solution.

- Actual motion of scalar field deviates slightly from KDI
attractor.

- How do we evaluate the deviation?

— consider isotropic and homogeneous perturbations of
background

P(t) = ¢o(t) + ¢1(t), H(t) = Ho(t) + hi(t)



An ansatz for the derivatives w.rt. ©

- We sprit the motion of system to KDI attractor and the
perturbatiops around it.

- To treat the derivatives w.r.t. ® as perturbations, we make
an ansatz:

|€| <1 {¢17 h’l) qb} — O( )7

A= Z((%n) o NOT ONLY P.

where {An} are arbitrary functions of the backgrounds
without differentiation by ¢




Equations of motion up to O(¢)

- The constraint equation

=&+ (8,(,;)0 ¢1+ (Em)yh1 =0,

E :
— _ [ 2
hy = (5,H)0 b1
- The field equation for ®1

J =Y+ (Jﬂfb)o(bl +(Jm)gh, J= {(J,q-b)o - (J,Hi)o} 1
s N

—~ P




Validity of the perturbative solution

- The evolution of KDI attractor is characterized by not the
field value but the field velocity (or the functional form of

f): 0 = f(do) #0 .

N |

\

bo

<oz |6l > 6] |
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3. Quantum fluctuation
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2"d order action of the scalar mode

- We assume the form of the 2"d order action as

Si%) = / dtd®za® [gsé2 - %(ﬁcf +\\] ,
Fs ='FS(¢) QB, q.lga H9H7 )a

gszgs(¢7 ¢27 $7 H7 Ha ) .

Scalar fluctuation with a usual scaling. ex.) Horndeski theory

- (. may be regarded as the comoving curvature
perturbation, for example.



Approximation to conformal time

- Def.) slow-roll parameters and the conformal time

Pyp— H [yp— él
6]. L H2 ) 62 L H€1 9
L fs L fsl CS
fsl — H]:s, f82 - Hfsl’ dTS = —dt
. , a
Js1 1= gs G2 1= gs1
o Hgs’ o Hgsl

/ {1—¢ —T ﬂjL[HL 931)}dT,

_GH{l—Gl (fsl gs1)}

+7%¢ %(fslfs2 - 9319322) dT;
(1-e - =g
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Mode function

- Mukhanov-Sasaki equation

Or.Cr + K¢, = 0,

33— tgsa
2 —2€1 — fs1+Gs1

Vs -

- Solution(s) using the approximation

(=L [T ypeE (=1 = 5(fu — gu)) G
SRR k3/2 F3/4

X H,Si)(—kTs) (3




Spectrum and spectral index for the
superhorizon modes

dlnPC

k3 9
Pe= o 5lGl" ns—1:=

dlnk

1/2 2
Vs 3—2v, Is H
v >0 7(—k75) 572 172 3 — 2V | const.

2

|A|2 (]- — €1 — %(fsl - gsl))
2

(_kTs)3+2vs

v, < 0 G/? 2 3 i 21/8 e
Um0 =2 =) o o

Vg = 0 g1/2 H? - 3 grOWing
X . (4

;gﬂﬁ’
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4. Case |: Shift symmetric KDI



Background evolution of shift symmetric

system
- Shift symmetry of the scalar field

¢ — ¢+ c wm—) S[augba g,uu]

- KDI attractor of shift symmetric system

fbo = ¢, = const #0, Hy = const > 0.

- Perturbation of background

——~—

¢1 + 3Hopy = (P,qb)0= 0
exactly. /\
[ él = C—;} — 0 Cx

. .
~ Ultra slow-roll motion around KDI attractor




Speed of sound

- Expansion of coefficient functions

Fo = Fso+( ) ¢1+( )Oq'b'l Fso := Fs(do, do, Ho, --+),
+ (Fo,m) ol + (fs,ﬁ)ohl For:= 3H0{ (J: S_d)) }
= Fao + 3Ho (Fo1 — Faz) 61 + Faz (13:/))0, Fu:= (7 ¢) (; j )
Gs = Goo+ (Gs3) 1+ (9s5) 61 G i gs(¢0, S
+ (Gen)y i+ (G i) P o= g {(025), - (62 |
= Guo+3Ho (o1 — Ge2) b1+ G2 (P : £,

Gz = (Gs.3), — (gsH )

- Speed of sound and Stability condition

F
2._ s
Cg : .
Fso +3Ho (Fs1 — Fs2) Q.bl + Fso (P,fb)o Fs > 0, gs > O, gs > Fs

gso + 3H0 (gsl - gs2) Qﬁl + gs2 (PV#))O



Classification by speed of sound

- Speed of sound for the shift symmetric system

2 ~ ‘/—'.30]@31{001 (Fsl _Fs2)a’_3
i gsO 3}-[Ocl (gsl — ng) CL_3

- 3 types satisfied with the stability condition

@QSOZ‘FSO>O FSZO, gs>07 QSZFS

]-“80 — 0and Goy > 0
FSO :‘gso = 0

[\




Second order products of slow-roll

parameters
- For the type (i) theories, (i) Gso = Fso > 0
€1 X fs1 X gs1 OCGJ_B, €2 > fso ™ gso ~ —3

- The conformal time

d Cs
_/Ts d_'ré(a_H) dT,
{1—e1—3(fo1—gs1)} °
1

WMEQ (fslfsQ 31932 , 3(33 _I_
T e ~4aH % 981




Sum of the shift symmetric KDI

Type (i) 3/2 0 scale-invariant const.
Type (ii) 3/5 9/5 Blue const.
Type (iii) 0 ~ 3 Blue growing
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Sum of the shift symmetric KDI

The shift symmetric system within our generic framework
cannot create the observed spectrum.

— We need to introduce other sources for the scalar
fluctuation, or, break the shift symmetry to create the

spectral tilt consistent to the observational value
ns—1~-0.04.
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5. Case lI: P-dependent KDI
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Background evolution of ®-dependent

system

- KDI attractor and EoM
b0 = f(do), Hy= Hy(dp),
&4_ 3Hogr = (13:/5)0 :

If 1é1] < |(Pg)ol

. (Pg)o
["512 313} /\f(cbo)

/ X
~Slow-roll motion around KDI attractor le




3 conditions for slow-roll like motion

1. “Slow-roll” condition for ®1: |<51| < |(Pg)ol

Dy = f(Pgg)o
? " 3Hy(Pg)o’

ng| <1 {61, b1, Ag} = 0(6),
N (o
A‘,;J(aw)“‘“’
2. Leading >> sub-leading: |¢o| > |¢1]

P

it (o~ (Tes),}

3. Quasi-de Sitter attractor

~_J Iy 351, (28
61_—H_§ 0,40 — 940 E O€¢77¢

JHo 4
~ —H—g(), 1| < 1



A condition for the graceful exit

- THE END OF INFLATION: |e1| ~ 1

fHo,¢0 fHO,¢o Continuation of the
{Iell ~ ‘ HZ <1 whleal = oz |- & condition
Inflation Graceful exit

- To end up with the graceful exit, we have to tune Ho as
vinflating the universe enough

v'changing its value rapidly and stopping the acceleration
vescaping from the KDI attractor



Other constraints

- Stability condition

- Conditions for ignoring the second order products of slow-
roll parameters

- Observational constraints to ns, r, fNL etc.

*

Highly model-dependent

We could satisfy all of the constraints by tuning the ®-dependent functions
in the action

- [ e




Sum of ®-dependent KDI

Requirements Equations Conditions up to O(g)
Slow-roll condition | | ; ~ J(P.ge)o
<L (P = ’ , <1
KDI attractor - - (Pg)o
. = : , 1
>> perturbation | 1901 > 19|t = T (7mes), ) o
Quasi-de Sitter H . JHog,
expansion 2 <1 ‘=" HZ jer] <1
H
1 JHo g, : : :
at late time

Others Highly model-dependent




6. Summary

- We have performed a model-independent analysis of KDI
within a generic framework, which includes many of
previous models.

- The shift symmetric KDI is described as the perturbation
behaves as ultra slow-roll inflation around the exact de
Sitter attractor, but they cannot create the observed
guantum fluctuation.

- The P-dependent KDI is described as the perturbation
“slow-rolls” around the quasi-de Sitter attractor. They take
4 essential conditions to inflate the universe and end in
the graceful exit. We could construct viable models by
tuning the ®-dependent functions in the models.



