GENERIC ANALYSIS OF KINETICALLY DRIVEN INFLATION Rio Saitou (LeCosPA, NTU) HEP-Seminar @ CYCU 2018/03/06 Based on arXiv:1710.04941 ### Before Inflation... # 3 big problems of big bang universe - Flatness problem The early universe is unnaturally flat. - Horizon problem All of observed causally disconnected CMB photons have the same temperature T~ 2.725K. - Monopole problem We have not found monopole ever. # Flatness problem Curvature of space But, in the big bang universe, ## Horizon problem Ref. Jinn-Ouk Gong, IJMPD26 (2016) no.01, 1740003 Causally disconnected CMB photon Figure 3: (Left) conformal diagram of the universe. From the cosmic singularity ($\tau_i = 0$) until the moment of the CMB generation ($\tau_{\rm CMB}$) there was no time for the CMB to achieve causal communication to have the same temperature T_0 . (Right) as a sample calculation, we can see that at that time the universe was filled with $10^4 - 10^5$ causally disconnected patches. #### Inflation - ✓ A solution for the 3 problems of big Bang by accelerating the universe - √The quantum fluctuation created in the inflationary universe provides the seed of the large scale structure - √Graceful exit + reheating # Accelerating expansion - Making a huge flat and homogeneous region while keeping the same horizon size. - The vacuum energy can accelerate the universe. #### Slow-roll inflation - ✓ Scalar field can make a cosmological background. - √The potential energy of scalar field V(Φ) plays a role of the vacuum energy and accelerate the universe. - ✓Slow-roll inflation ends naturally at Φ~MPI, and reheat the universe through particle decay. - √V(Φ) gets constraints from the observation #### Slow-roll attractor #### Quantum fluctuation of inflaton Perturbation theory around time-dependent vacuum expectation value Φ(t) $$\phi = \phi(t) + \delta\phi(x)$$ $h = v + \eta(x)$ QFT on quasi-de Sitter Scalar field is stretched by the expansion, and finally, it approaches to an almost constant value: $$\delta\phi(x)\sim rac{H}{2\pi}$$ #### Observables of inflation - 3-metric: ${}^3g_{ij}=a^2(t){ m e}^{2\zeta}(\delta_{ij}+\gamma_{ij}+\cdots)$ - General coordinate transformation: $\zeta \sim -\frac{n}{\dot{\phi}}\delta\phi$ - 2-point functions of ζ and γij in momentum space Fig. 12. Marginalized joint 68 % and 95 % CL regions for n_s and $r_{0.002}$ from *Planck* in combination with other data sets, compared to the theoretical predictions of selected inflationary models. ©Planck Collaboration Astron. Astrophys. 594(2016) A20 # Why slow roll? - So far, do you have any reasons why you consider slowroll inflation only? - I don't have. - If other mechanisms work well for inflating the universe, why not consider them? # Kinetically driven inflation (KDI) - ✓ Another huge class of inflation - ✓ Non-canonical kinetic terms become relevant to inflate the universe. - ✓ Not necessarily need the potential to inflate the universe. - ✓ By tuning functions in the models, inflation can end and transit to the big bang universe. # Schematic of the typical KDI . . . No unified formulation for KDI ever. Research object To develop a unified formulation for evaluating the whole behavior of KDI systematically. - 1. Introduction - 2. Inflationary attractor and perturbative expansion - 3. Quantum fluctuation - 4. Case I: Shift symmetric KDI - 5. Case II: Ф-dependent KDI - 6. Summary # 2. Inflationary attractor and perturbative expansion # A model-independent framework - We intend to derive features of KDI in a modelindependent manner. - 3 basic requirements for the theory - The action consists of the scalar field Φ and the metric field $g_{\mu\nu}$ only: $S[\phi,\,g_{\mu\nu}]$ - √The degrees of freedom is 1 scalar mode + 2 tensor modes only. - √The theory has the flat Friedmann-Robertson-Walker (FRW) solution. # Equations of motion in general form Flat FRW background metric $$ds^{2} = -N^{2}(t)dt^{2} + a^{2}(t)d\vec{x}^{2}$$ Equations of motion $$\frac{\delta S}{\delta N} = 0 \rightarrow$$ $$\frac{\delta S}{\delta \phi} = 0 \rightarrow$$ $$\frac{\delta S}{\delta N} = 0 o \qquad \mathcal{E}(\phi, \dot{\phi}, H, \cdots) = 0$$ A constraint equation, ~Friedmann equation $$\frac{\delta S}{\delta \phi} = 0 \rightarrow \dot{J} + 3HJ = P_{,\phi}$$ $$J=J(\phi,\,\dot{\phi},\,H,\,\cdots),$$ $$P = P(\phi, \dot{\phi}, \ddot{\phi}, H, \dot{H}, \cdots)$$ $$P_{,\phi} = \partial P/\partial \phi$$ $$P_{,\phi} = \partial P / \partial \phi$$ ~ Klein-Gordon eq. for background field Φ(t) # Inflationary attractor of KDI • If $$P_{,\phi}\simeq 0$$, $\dot{J}+3HJ=P_{,\phi}\simeq \mathbf{0}$ $$J\simeq c_Ja^{-3}\to 0, \qquad \mathcal{E}(\phi,\,\dot{\phi},\,H,\,\cdot)$$ If Ho varies sufficiently slowly with respect to Φo, the root solution becomes a quaside Sitter attractor. • A root solution for J=0 and $\mathcal{E}=0$ $$\dot{\phi}_0 = f(\phi_0) \neq 0, \quad H_0 = H_0(\phi_0)$$ Inflationary attractor of KDI # An example of KDI attractor C. Armendariz-Picon et. al. PLB458 (1999) 209 Action and EoMs $$S = \int d^4x \sqrt{-g} \left[\frac{M_{\text{Pl}}^2}{2} R - K(\phi) X + X^2 \right]$$ $$\mathcal{E} = -KX + 3X^2 - 3M_{\text{Pl}}^2 H^2 = 0$$ $$\dot{J} + 3HJ = -K_{,\phi} X,$$ $$J = \dot{\phi}(-K + 2X) \longrightarrow \mathbf{0}$$ KDI attractor $$\dot{\phi}_0 = \pm \sqrt{K(\phi_0)}, \quad H_0 = \frac{K(\phi_0)}{\sqrt{3}M_{\rm Pl}}$$ # Next-to-leading solution - KDI attractor is just a leading solution of the full solution. - Actual motion of scalar field deviates slightly from KDI attractor. - How do we evaluate the deviation? - → consider isotropic and homogeneous perturbations of background $$\phi(t) = \phi_0(t) + \phi_1(t), \quad H(t) = H_0(t) + h_1(t)$$ #### An ansatz for the derivatives w.r.t. Φ We sprit the motion of system to KDI attractor and the perturbations around it. $$\dot{J} + 3HJ = P_{,\phi}$$ $$J_0 = 0$$ $$\dot{J}_1 + 3H_0J_1 = P_{,\phi}$$ To treat the derivatives w.r.t. Φ as perturbations, we make an ansatz: $$|\xi| \ll 1 \qquad \{\phi_1, \, h_1, \, A_{,\phi}\} = O(\xi),$$ $$A = \sum_{n=0}^{\infty} \left(\frac{\partial^n}{\partial \phi^n}\right) A_n, \qquad \text{NOT ONLY P.}$$ where $\{A_n\}$ are arbitrary functions of the backgrounds without differentiation by ϕ . # Equations of motion up to $O(\xi)$ The constraint equation $$\mathcal{E} = \mathcal{E}_0 + \left(\mathcal{E}_{,\dot{\phi}}\right)_0 \dot{\phi}_1 + \left(\mathcal{E}_{,H}\right)_0 h_1 = 0,$$ $$h_1 = -\left(\frac{\mathcal{E}_{,\dot{\phi}}}{\mathcal{E}_{,H}}\right)_0 \dot{\phi}_1$$ The field equation for Φ1 $$J = \mathcal{J}_0 + \left(J_{,\dot{\phi}}\right)_0 \dot{\phi}_1 + \left(J_{,H}\right)_0 h_1, \quad J = \left\{ \left(J_{,\dot{\phi}}\right)_0 - \left(J_{,H} \frac{\mathcal{E}_{,\dot{\phi}}}{\mathcal{E}_{,H}}\right)_0 \right\} \dot{\phi}_1$$ $$\ddot{\phi}_1 + 3H_0\dot{\phi}_1 = \left(\widetilde{P_{,\phi}}\right)_0,$$ $\widetilde{P_{,\phi}} := \frac{P_{,\phi}}{\left(J_{,\dot{\phi}}\right)_0 - \left(J_{,H}\frac{\mathcal{E}_{,\dot{\phi}}}{\mathcal{E}_{,H}}\right)_0}.$ # Validity of the perturbative solution • The evolution of KDI attractor is characterized by not the field value but the field velocity (or the functional form of $\dot{\phi}_0 = f(\phi_0) \neq 0$. #### 3. Quantum fluctuation #### 2nd order action of the scalar mode We assume the form of the 2nd order action as $$S_2^{(S)} = \int dt d^3x a^3 \left[\mathcal{G}_s \dot{\zeta}^2 - \frac{\mathcal{F}_s}{a^2} (\vec{\nabla} \zeta)^2 + \cdots \right] ,$$ $$\mathcal{F}_s = \mathcal{F}_s(\phi, \dot{\phi}, \ddot{\phi}, H, \dot{H}, \cdots),$$ $$\mathcal{G}_s = \mathcal{G}_s(\phi, \dot{\phi}, \ddot{\phi}, H, \dot{H}, \cdots) .$$ Scalar fluctuation with a usual scaling. ex.) Horndeski theory • ζ may be regarded as the comoving curvature perturbation, for example. # Approximation to conformal time Def.) slow-roll parameters and the conformal time $$\epsilon_{1} := -\frac{\dot{H}}{H^{2}}, \quad \epsilon_{2} := \frac{\dot{\epsilon}_{1}}{H\epsilon_{1}},$$ $$f_{s1} := \frac{\dot{\mathcal{F}}_{s}}{H\mathcal{F}_{s}}, \quad f_{s2} := \frac{\dot{f}_{s1}}{Hf_{s1}}, \qquad d\tau_{s} := \frac{c_{s}}{a}dt$$ $$g_{s1} := \frac{\dot{\mathcal{G}}_{s}}{H\mathcal{G}_{s}}, \quad g_{s2} := \frac{\dot{g}_{s1}}{Hg_{s1}},$$ Integration of dτ_s and the approximation we employ: $$\begin{aligned} \tau_s &= -\int^{\tau_s} \frac{\frac{d}{d\tau_s'} \left(\frac{c_s}{aH}\right)}{\left\{1 - \epsilon_1 - \frac{1}{2}(f_{s1} - g_{s1})\right\}} d\tau_s' \\ &= -\frac{c_s}{aH} \frac{1}{\left\{1 - \epsilon_1 - \frac{1}{2}(f_{s1} - g_{s1})\right\}} \\ &+ \int^{\tau_s} \frac{\epsilon_1 \epsilon_2 + \frac{1}{2}(f_{s1} f_{s2} - g_{s1} g_{s2})}{\left\{1 - \epsilon_1 - \frac{1}{2}(f_{s1} - g_{s1})\right\}^2} d\tau_s' \end{aligned}$$ #### Mode function Mukhanov-Sasaki equation $$\partial_{\tau_s}^2 \zeta_k - \frac{2\nu_s - 1}{\tau_s} \partial_{\tau_s} \zeta_k + k^2 \zeta_k = 0,$$ $$\nu_s := \frac{3 - \epsilon_1 + g_{s1}}{2 - 2\epsilon_1 - f_{s1} + g_{s1}}.$$ Solution(s) using the approximation $$\zeta_{k} = \frac{1}{2} \sqrt{\frac{\pi}{2}} (-k\tau_{s})^{3/2} \frac{H\left(1 - \epsilon_{1} - \frac{1}{2}(f_{s1} - g_{s1})\right) \mathcal{G}_{s}^{1/4}}{k^{3/2} \mathcal{F}_{s}^{3/4}} \times H_{\nu_{s}}^{(1)}(-k\tau_{s}) \tag{3}$$ # Spectrum and spectral index for the superhorizon modes $$P_{\zeta} := \frac{k^3}{2\pi^2} |\zeta_k|^2 \qquad n_s - 1 := \frac{d \ln P_{\zeta}}{d \ln k}$$ | | P_{ζ} | $n_s - 1$ | $ \zeta $ | |-------------|---|------------|-----------| | $\nu_s > 0$ | $\frac{\gamma_s}{2}(-k\tau_s)^{3-2\nu_s} \frac{\mathcal{G}_s^{1/2}}{\mathcal{F}_s^{3/2}} \frac{H^2}{4\pi^2}$ | $3-2\nu_s$ | const. | | $\nu_s < 0$ | $ \frac{ A ^2 \left(1 - \epsilon_1 - \frac{1}{2} (f_{s1} - g_{s1})\right)^2}{2} (-k\tau_s)^{3 + 2\nu_s} \times \frac{\mathcal{G}_s^{1/2}}{\mathcal{F}_s^{3/2}} \frac{H^2}{4\pi^2}, $ | $3+2\nu_s$ | growing | | $\nu_s = 0$ | $ \frac{\left(1 - \epsilon_1 - \frac{1}{2}(f_{s1} - g_{s1})\right)^2}{\pi} (-k\tau_s)^3 \left\{\ln(-k\tau_s)\right\}^2 \times \frac{\mathcal{G}_s^{1/2}}{\mathcal{F}_s^{3/2}} \frac{H^2}{4\pi^2}, \tag{4} $ | $\simeq 3$ | growing | # 4. Case I: Shift symmetric KDI # Background evolution of shift symmetric system Shift symmetry of the scalar field $$\phi \to \phi + c \implies S[\partial_{\mu}\phi, g_{\mu\nu}]$$ KDI attractor of shift symmetric system $$\dot{\phi}_0 = c_* = \text{const} \neq 0, \quad H_0 = \text{const} > 0.$$ Perturbation of background $$\ddot{\phi}_1 + 3H_0\dot{\phi}_1 = \left(\widetilde{P_{,\phi}}\right)_0 = 0$$ exactly. $$\dot{\phi}_1 \simeq rac{c_1}{a^3} \left] ightarrow \mathbf{0}$$ ~ Ultra slow-roll motion around KDI attractor # Speed of sound Expansion of coefficient functions $$\begin{split} \mathcal{F}_{s} &= \mathcal{F}_{s0} + \left(\mathcal{F}_{s,\dot{\phi}}\right)_{0} \dot{\phi}_{1} + \left(\mathcal{F}_{s,\ddot{\phi}}\right)_{0} \ddot{\phi}_{1} \\ &+ \left(\mathcal{F}_{s,H}\right)_{0} h_{1} + \left(\mathcal{F}_{s,\dot{\phi}}\right)_{0} \dot{\phi}_{1} \\ &= \mathcal{F}_{s0} + 3H_{0} \left(\mathcal{F}_{s1} - \mathcal{F}_{s2}\right) \dot{\phi}_{1} + \mathcal{F}_{s2} \left(\widetilde{P_{,\phi}}\right)_{0}, \\ \mathcal{G}_{s} &= \mathcal{G}_{s0} + \left(\mathcal{G}_{s,\dot{\phi}}\right)_{0} \dot{\phi}_{1} + \left(\mathcal{G}_{s,\dot{\phi}}\right)_{0} \ddot{\phi}_{1} \\ &+ \left(\mathcal{G}_{s,H}\right)_{0} h_{1} + \left(\mathcal{G}_{s,\dot{\phi}}\right)_{0} \dot{\phi}_{1} \\ &= \mathcal{G}_{s0} + 3H_{0} \left(\mathcal{G}_{s1} - \mathcal{G}_{s2}\right) \dot{\phi}_{1} + \mathcal{G}_{s2} \left(\widetilde{P_{,\phi}}\right)_{0}, \\ \mathcal{G}_{s2} &:= \left(\mathcal{G}_{s,\ddot{\phi}}\right)_{0} - \left(\mathcal{G}_{s,\dot{\phi}}\right)_{0} - \left(\mathcal{G}_{s,\dot{\phi}}\frac{\mathcal{E}_{,\dot{\phi}}}{\mathcal{E}_{,H}}\right)_{0}, \\ \mathcal{G}_{s2} &:= \left(\mathcal{G}_{s,\dot{\phi}}\right)_{0} - \left(\mathcal{G}_{s,\dot{\phi}}\frac{\mathcal{E}_{,\dot{\phi}}}{\mathcal{E}_{,H}}\right)_{0}, \\ \mathcal{G}_{s2} &:= \left(\mathcal{G}_{s,\dot{\phi}}\right)_{0} - \left(\mathcal{G}_{s,\dot{\phi}}\frac{\mathcal{E}_{,\dot{\phi}}}{\mathcal{E}_{,H}}\right)_{0}. \end{split}$$ Speed of sound and Stability condition $$c_s^2 := \frac{\mathcal{F}_s}{\mathcal{G}_s}$$ $$= \frac{\mathcal{F}_{s0} + 3H_0 \left(\mathcal{F}_{s1} - \mathcal{F}_{s2}\right) \dot{\phi}_1 + \mathcal{F}_{s2} \left(\widetilde{P}_{,\phi}\right)_0}{\mathcal{G}_{s0} + 3H_0 \left(\mathcal{G}_{s1} - \mathcal{G}_{s2}\right) \dot{\phi}_1 + \mathcal{G}_{s2} \left(\widetilde{P}_{,\phi}\right)_0}$$ $$\mathcal{F}_s \ge 0, \quad \mathcal{G}_s > 0, \quad \mathcal{G}_s \ge \mathcal{F}_s$$ $\mathcal{F}_s \geq 0$, $\mathcal{G}_s > 0$, $\mathcal{G}_s \geq \mathcal{F}_s$ # Classification by speed of sound Speed of sound for the shift symmetric system 3 types satisfied with the stability condition (i) $$\mathcal{G}_{s0} \ge \mathcal{F}_{s0} > 0$$ (ii) $\mathcal{F}_{s0} = 0$ and $\mathcal{G}_{s0} > 0$ (iii) $\mathcal{F}_{s0} = \mathcal{G}_{s0} = 0$ # Second order products of slow-roll parameters • For the type (i) theories, (i) $\mathcal{G}_{s0} \geq \mathcal{F}_{s0} > 0$ (i) $$\mathcal{G}_{s0} \geq \mathcal{F}_{s0} > 0$$ $$\epsilon_1 \propto f_{s1} \propto g_{s1} \propto a^{-3}, \quad \epsilon_2 \simeq f_{s2} \simeq g_{s2} \simeq -3$$ $$\epsilon_2 \simeq f_{s2} \simeq g_{s2} \simeq -3$$ The conformal time $$\tau_{s} = -\int^{\tau_{s}} \frac{\frac{d}{d\tau'_{s}} \left(\frac{c_{s}}{aH}\right)}{\left\{1 - \epsilon_{1} - \frac{1}{2}(f_{s1} - g_{s1})\right\}} d\tau'_{s}$$ $$= -\frac{c_{s}}{aH} \frac{1}{\left\{1 - \epsilon_{1} - \frac{1}{2}(f_{s1} - g_{s1})\right\}}$$ $$+ \int^{c\tau_s} \frac{\epsilon_1 \epsilon_2 + \frac{1}{2} (f_{s1} f_{s2} - g_{s1} g_{s2})}{\left\{1 - \epsilon_1 - \frac{1}{2} (f_{s1} - g_{s1})\right\}^2} d\tau_s' \simeq \frac{3c_s}{4aH} \left\{\epsilon_1 + \frac{1}{2} (f_{s1} - g_{s1})\right\}$$ # Sum of the shift symmetric KDI | | $ u_s$ | $n_s - 1$ | spectrum | $ \zeta $ | |------------|--------|------------|-----------------|-----------| | Type (i) | 3/2 | 0 | scale-invariant | const. | | Type (ii) | 3/5 | 9/5 | Blue | const. | | Type (iii) | 0 | $\simeq 3$ | Blue | growing | | Others | | | | Unstable | # Sum of the shift symmetric KDI The shift symmetric system within our generic framework cannot create the observed red spectrum. \rightarrow We need to introduce other sources for the scalar fluctuation, or, *break the shift symmetry* to create the spectral tilt consistent to the observational value $n_s-1\sim -0.04$. Others Unstable # 5. Case II: Ф-dependent KDI # Background evolution of Φ-dependent system KDI attractor and EoM $$\dot{\phi}_0 = f(\phi_0), \quad H_0 = H_0(\phi_0),$$ $\ddot{\phi}_1 + 3H_0\dot{\phi}_1 = (\widetilde{P}_{,\phi})_0.$ • If $|\ddot{\phi_1}| \ll |(\widetilde{P_{,\phi}})_0|$, $$\dot{\phi}_1 \simeq \frac{(\widetilde{P_{,\phi}})_0}{3H_0}$$ ~Slow-roll motion around KDI attractor #### 3 conditions for slow-roll like motion 1. "Slow-roll" condition for Φ1: $|\ddot{\phi_1}| \ll |(\dot{P}_{,\phi})_0|$ $$\eta_{\phi} := \frac{f(P_{,\phi\phi})_0}{3H_0(P_{,\phi})_0}, \quad |\eta_{\phi}| \ll 1$$ $$\{\phi_1, h_1, A_{,\phi}\} = O(\xi),$$ $$A = \sum_{n=0}^{\infty} \left(\frac{\partial^n}{\partial \phi^n}\right) A_n,$$ 2. Leading >> sub-leading: $|\dot{\phi}_0|\gg |\dot{\phi}_1|$ $$\epsilon_{\phi} := \frac{(P_{,\phi})_0}{3fH_0\left\{ (J_{,\dot{\phi}})_0 - \left(J_{,H} \frac{\mathcal{E}_{,\dot{\phi}}}{\mathcal{E}_{,H}}\right)_0 \right\}}, \quad |\epsilon_{\phi}| \ll 1$$ Quasi-de Sitter attractor $$\epsilon_1 \simeq -\frac{f}{H_0^2} \left\{ H_{0,\phi_0} - 3H_0 \left(\frac{\mathcal{E}_{,\dot{\phi}}}{\mathcal{E}_{,H}} \right)_0 \epsilon_{\phi} \eta_{\phi} \right\}$$ $$\simeq -\frac{f H_{0,\phi_0}}{H_0^2}, \quad |\epsilon_1| \ll 1$$ # A condition for the graceful exit • THE END OF INFLATION: $|\epsilon_1| \sim 1$ $$\left|\epsilon_1\right|\simeq \left|\frac{fH_{0,\phi_0}}{H_0^2}\right|\ll 1 \Longrightarrow \left|\epsilon_1\right|\simeq \left|\frac{fH_{0,\phi_0}}{H_0^2}\right|\sim 1 \quad \text{\&} \quad \begin{array}{c} \text{Continuation of the condition} \\ \text{Graceful exit} \end{array}$$ - To end up with the graceful exit, we have to tune Ho as - ✓ inflating the universe enough - changing its value rapidly and stopping the acceleration - ✓ escaping from the KDI attractor #### Other constraints - Stability condition - Conditions for ignoring the second order products of slowroll parameters - Observational constraints to ns, r, fNL etc. Highly model-dependent We could satisfy all of the constraints by tuning the Φ -dependent functions in the action $$S = \int d^4x \sqrt{-g} \left[\frac{M_{\rm Pl}^2}{2} R - K(\phi) X + X^2 \right]$$ # Sum of Φ-dependent KDI | Requirements | Equations | Conditions up to O(ξ) | | |-------------------------------|---|---|--| | Slow-roll condition for Φ1 | $ \ddot{\phi_1} \ll (\widetilde{P_{,\phi}})_0 $ | $ \eta_{\phi} := \frac{f(P_{,\phi\phi})_0}{3H_0(P_{,\phi})_0}, \eta_{\phi} \ll 1 $ | | | KDI attractor >> perturbation | $ \dot{\phi}_0 \gg \dot{\phi}_1 $ | $\epsilon_{\phi} := \frac{(P_{,\phi})_0}{3fH_0\left\{ (J_{,\dot{\phi}})_0 - \left(J_{,H} \frac{\mathcal{E}_{,\dot{\phi}}}{\mathcal{E}_{,H}} \right)_0 \right\}}, \epsilon_{\phi} \ll 1$ | | | Quasi-de Sitter expansion | $-\frac{\dot{H}}{H^2} \ll 1$ | $\epsilon_1 \simeq -\frac{fH_{0,\phi_0}}{H_0^2}, \epsilon_1 \ll 1$ | | | Graceful exit | $- rac{\dot{H}}{H^2}\sim 1$ at late time | $\left rac{fH_{0,\phi_0}}{H_0^2} ight \sim 1~$ & its continuation | | | Others | Highly model-dependent | | | # 6. Summary - We have performed a model-independent analysis of KDI within a generic framework, which includes many of previous models. - The shift symmetric KDI is described as the perturbation behaves as ultra slow-roll inflation around the exact de Sitter attractor, but they cannot create the observed quantum fluctuation. - The Φ-dependent KDI is described as the perturbation "slow-rolls" around the quasi-de Sitter attractor. They take 4 essential conditions to inflate the universe and end in the graceful exit. We could construct viable models by tuning the Φ-dependent functions in the models.