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Quantum fluctuation of vacuum field and Brownian 
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Model using a test particle method and sudden 
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Classical Brownian Motion

• The irregular motion of  a  body arises 
when it is immersed in a homogeneous 
fluid made up of much lighter particles. 

• System and environment
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〈η(t)〉 = 0

〈η(t)η(t′)〉 = 2ξKBTδ(t − t′)

m
d

dt
v + ξv = η(t)

Langevin equation:

Newtonian equation:

m
d

dt
v = F

✴When the noise comes from quantum 
fluctuations, we call it quantum Brownian 
motion. 
✴One major interest is the effect due to 
color noise.
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Quantum vacuum and Casimir effect

• Classical vacuum: Nothing

• Quantum vacuum: Zero-point field, vacuum 
fluctuation.

• Casimir effect: energy shift in vacuum. No 
particle creation. 

• The sign of Casimir force is still puzzling.

Casimir effect

Monday, June 15, 2009



Dynamical Casimir effect: moving mirror

A perturbed perfectly reflecting mirror in 
vacuum will change the configuration of 
zero point field and produce particles.

E2D,4D ∝ v
′′

For example, an oscillating surface will 
radiate fewer than 10^-4 photons per 
oscillation per area. Thus it is a tiny 
effect under normal condition.

**
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* A charged test particle coupling to the 
quantum electromagnetic vacuum with boundary

introduce Yu-Ford’s model

z

Mirror

ẑ
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that a particular anticorrelation between the main measuring
part and the switching tails plays an essential role in the
measuring process. Section IV is to clarify the origin of the
anticorrelation effect found in the preceding section and we
confirm that it indeed comes from the interplay between the
measuring part and the switching tails. In Sec. V, the case in
which the measuring time is short enough !shorter than 2z /c,
the time scale for the mutual communication between the
particle and the mirror" is considered. Section VI is for sum-
mary and several discussions.

II. SUDDEN SWITCHING AND SMOOTH SWITCHING

A. Case of sudden switching

Let us first recall the analysis of the sudden switching
case discussed in Ref. #2$.

A flat, infinitely spreading mirror of perfect reflectivity is
installed at z=0 and the quantum vacuum of the electromag-
netic field is considered inside the half space z!0. Then we
consider the measurement of the quantum fluctuations of the
vacuum by using a classical charged particle with mass m
and charge e as a probe. When the velocity of the particle is
much smaller than the light velocity c, one can assume that
the particle couples solely with the electric field E! !x! , t". Then
the equation of motion for the particle is given by

m
dv!
dt

= eE! !x!,t" . !1"

Furthermore, when the position of the particle does not
change so much within the time scale in question, Eq. !1"
along with the initial condition v!!0"=v!0 is approximately
solved to

v!!"" % v!0 +
e

m
&

0

"

E! !x!,t"dt . !2"

Let us note at this stage that there are two time scales char-
acterizing the present situation. One is the measuring time ",
characterizing how long the test particle probes the vacuum
fluctuations. The other is z /c, the time scale for the signal of
the light velocity c to travel between the probe particle !lo-
cated at z=z" and the plate !at z=0". !Since we set c=1 in
this paper, we often use z to indicate this time scale z /c as
well as the distance between the particle and the plate."

Now, based on Eq. !2", the velocity dispersions of the
particle, '#vi

2( !i=x ,y ,z", can be represented by the renor-
malized two-point correlation functions 'Ei!x! , t!"Ei!x! , t""(R.
#Here the suffix “R” is for “renormalized” and we also note
'Ei!x! , t"(R=0.$ Then '#vi

2( are given by

'#vi
2( =

e2

m2&
0

"

dt!&
0

"

dt"'Ei!x!,t!"Ei!x!,t""(R !3"

with #4$

'Ez!x!,t!"Ez!x!,t""(R =
1

$2

1
#T2 − !2z"2$2 , !4"

'Ex!x!,t!"Ex!x!,t""(R = 'Ey!x!,t!"Ey!x!,t""(R = −
1

$2

T2 + 4z2

#T2 − !2z"2$3 ,

!5"

where Tª t!− t". !We set c=%=1 hereafter throughout the
paper."

Now the explicit computation of Eq. !3" along with Eqs.
!4" and !5" results in #2$

'#vz
2( !

e2

32$2m2

"

z3 ln)2z + "

2z − "
*2

, !6"

'#vx
2( = '#vy

2( !
e2

$2m2+ "

64z3 ln)2z + "

2z − "
*2

−
"2

8z2!"2 − 4z2", ,

!7"

irrespective of whether "!2z or "&2z. Here we note that a
regularization using the generalized principal value #5$ is
employed in Ref. #2$ to get these results when "!2z. We
introduce a special equality symbol “!” #e.g., in Eqs. !6" and
!7"$ and an estimation symbol “!” #e.g., in Eqs. !8" and !9"
below$ to remind us that a regularization should be employed
to get the result when the integral is a multi-pole integral.
Indeed the kernel 'Ei!x! , t!"Ei!x! , t""(R possesses a double pole
and a triple pole for i=z and i=x ,y, respectively, at T=2z.
Thus a regularization should be employed when "!2z.

Now the results Eqs. !6" and !7" yield the asymptotic
late-time behavior

'#vz
2( -

e2

4$2m2z2 + O„!z/""2… , !8"

'#vx
2( = '#vy

2( - −
e2

3$2m2"2 + O„!z/""2… . !9"

Equation !8" indicates that '#vz
2( remains finite even in the

late-time limit, " /z→'. It would mean that an energy of the
order of 1

2m'#vz
2( is gained during this process.

Reference #2$ interpreted this asymptotic behavior of
'#vz

2( in Eq. !8" as a transient effect caused by some energy
change due to the “sudden switching.” Indeed, the formula
Eq. !3" corresponds to the measuring process with sudden
switching in which the measuring device is abruptly
switched on and switched off at the time 0 and ", respec-
tively. From the viewpoint of the switching function, this
measuring process is represented by a step function

(!t" = 1 !for 0 & t & ""

= 0 !otherwise" . !10"

It consists of the measuring part of the duration " and infi-
nitely steep switching tails. If the behavior could be inter-
preted as the transient effect during the switching process,
then it is expected to see more or less similar behavior even
when a different switching process is chosen other than sud-
den switching. Let us study this point next.
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irrespective of whether "!2z or "&2z. Here we note that a
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employed in Ref. #2$ to get these results when "!2z. We
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Equation !8" indicates that '#vz
2( remains finite even in the

late-time limit, " /z→'. It would mean that an energy of the
order of 1

2m'#vz
2( is gained during this process.

Reference #2$ interpreted this asymptotic behavior of
'#vz

2( in Eq. !8" as a transient effect caused by some energy
change due to the “sudden switching.” Indeed, the formula
Eq. !3" corresponds to the measuring process with sudden
switching in which the measuring device is abruptly
switched on and switched off at the time 0 and ", respec-
tively. From the viewpoint of the switching function, this
measuring process is represented by a step function

(!t" = 1 !for 0 & t & ""

= 0 !otherwise" . !10"

It consists of the measuring part of the duration " and infi-
nitely steep switching tails. If the behavior could be inter-
preted as the transient effect during the switching process,
then it is expected to see more or less similar behavior even
when a different switching process is chosen other than sud-
den switching. Let us study this point next.
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For sudden switching, the velocity dispersions are

These velocity dispersion in late time limit 
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*The z-component is a constant and was interpreted 
as a transient effect due to sudden switching!

The E field two point function is
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• Why constant? There is no frictional force! 
Usually fluctuations grow when there is no 
dissipation!

Color noise and Anti-correlation

Active (intrinsic) fluctuation 
and 

Passive (induced) fluctuation

• Why negative? These are fluctuation!
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Our concerns

Is it the intrinsic property of the new 
vacuum or just a transient effect? 

A sudden switching model is not realistic 
when we discuss the effect of quantum 
fluctuation.

We thought that a smooth switching would 
give us some more insight to clear this up.
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Model with switching function

B. Case of smooth switching

We now replace !!t" #Eq. !10"$ with the Lorentzian func-
tion as a typical smooth switching function. The Lorentzian
function with the characteristic time scale " is

f"!t" =
1
#

"2

t2 + "2 , !11"

normalized as

%
−$

$

f"!t"dt = " .

Instead of Eq. !3", velocity dispersions are given by

&%vi
2' =

e2

m2%
−$

$

dt!%
−$

$

dt" f"!t!"f"!t""&Ei!x!,t!"Ei!x!,t""'R.

!12"

The function f"!t" represents solely smooth switching tails
without any flat measuring part. In this case, the model is
characterized by two time scales, i.e., the switching-duration
time " and the traveling time z of the light signal from the
test particle to the plate.

If the asymptotic behavior #Eq. !8"$ is due to the transient
effect caused by energy input during the switching process,
then a similar kind of behavior is expected for Eq. !12". It
turns out, however, these integrals are shown to be

&%vz
2' !

e2

16#2m2"2

1

(1 +
z2

"2)2 , !13"

&%vx
2' = &%vy

2' ! −
e2

16#2m2"2

1 −
z2

"2

(1 +
z2

"2)3 . !14"

Thus we see that !i" the short time behavior of &%vi
2' !"

&2z" is the same,

&%vz
2' * !&%vx

2' = &%vy
2'" *

e2

16#2m2z2

"2

z2 + O„!"/z"4… ,

!15"

for both the step-function case and the Lorentzian switching
case. !ii" However, the long time behavior !"'2z" of the z
component is quite different. For the Lorentzian switching
case, it turns out that

&%vz
2' +

e2

16#2m2"2 + O„!z/""4… , !16"

&%vx
2' = &%vy

2' + −
e2

16#2m2"2 + O„!z/""4… . !17"

Thus the late-time behavior of &%vz
2' in the Lorentzian

switching case is quite different from the step-function case
#Eq. !8"$; as " /z→$, the former goes away while the latter

remains finite independently of ". The qualitatively different
late-time behavior of &%vz

2' shown in Eq. !8" and Eq. !16" is
quite puzzling. The former depends on z, an intrinsic scale of
the system, and remains even at late time, while the latter
does not depend on z and goes away at late time.

It can be said that both the switching functions studied so
far are not realistic enough. On the one hand, a sudden
switching could have virtually picked up the contribution
from the highly fluctuating vacuum, which might have been
forbidden by the uncertainty principle. On the other hand, the
pure Lorentzian switching model we have just investigated
lacks a plateau of the measuring part, which is not realistic
either. In a proper measurement, the measuring time scale "
should be large enough compared to z, the intrinsic scale of
the system, so that the measuring function is regarded as
nearly flat except for the switching ends.

We shall introduce a switching function which blends
smoothly the step function and the Lorentzian tails of arbi-
trary duration in the arbitrary ratio. In the next few sections,
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*e.g. Lorentzian function
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*Switching function            satisfy the equation
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lacks a plateau of the measuring part, which is not realistic
either. In a proper measurement, the measuring time scale "
should be large enough compared to z, the intrinsic scale of
the system, so that the measuring function is regarded as
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we shall construct such a generalized model and investigate
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*The velocity dispersion becomes
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Smooth switching 
When a smooth switching function is 
considered, the velocity dispersion tends to 
decay away in late time. It doesn’t matter 
whether a compactified switching function is 
used or not. For example, the case of 
Lorentzian function leads to the dispersion

〈∆v2
z〉 ≈

e2

16π2m2τ2

1. It is sensitive to switching function.
2. However it is not a realistic measuring 
function. There is no stable measuring period.
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We now replace !!t" #Eq. !10"$ with the Lorentzian func-
tion as a typical smooth switching function. The Lorentzian
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The function f"!t" represents solely smooth switching tails
without any flat measuring part. In this case, the model is
characterized by two time scales, i.e., the switching-duration
time " and the traveling time z of the light signal from the
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from the highly fluctuating vacuum, which might have been
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pure Lorentzian switching model we have just investigated
lacks a plateau of the measuring part, which is not realistic
either. In a proper measurement, the measuring time scale "
should be large enough compared to z, the intrinsic scale of
the system, so that the measuring function is regarded as
nearly flat except for the switching ends.

We shall introduce a switching function which blends
smoothly the step function and the Lorentzian tails of arbi-
trary duration in the arbitrary ratio. In the next few sections,
we shall construct such a generalized model and investigate
it in detail.
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smoothness of the matching !C1 class" is enough for our
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The term !!vz
2"MS, coming from the MS regions along

with the S1 and S2 regions, is estimated as follows. Noting
that 0'F#($%) /2, it follows

!!vz
2"MS = O#1$

2e2

"2)m2#2(
0

1/" 1

#(2 − $2
2$2d( . #27$

We note that the integral above is a singular one since $2
%1 /", which can be treated with the help of Eq. #B1$. It is
notable that, in the above computation for !!vz

2"MS, the can-
cellation has occurred as is shown in the upper bound of the
integral region. Tracing back the origin of this cancellation,
we can see from the general argument in Appendix A that it
comes from the S2 region, which describes the correlation
between the pre- and the post-measuring switching tails.
Thus this cancellation phenomenon caused by the correlation
between the pre- and the post-measuring switching tails
seems to be quite universal and is probably worth while pur-
suing further.

The integral can be estimated as
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2"MS = O#1$
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When $1+1, it is further modified as
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As mentioned at the end of the previous section, the regular-
ization procedure removes the first term on the right-hand
side #RHS$, yielding
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2"MS + − O#1$
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Gathering Eqs. #25$, #26$, and #30$ together, and changing
back to the variables #1, #2, and z, we get an estimation for
the total velocity dispersion in z direction
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Thus, under the condition #1,2z, we derive the behavior
of the velocity dispersion !!vz

2" as a function of the three
parameters #1, #2, and z:

#i$ When #2+2z+#1, !!vz
2"+!!vz

2"M.
#ii$ When #2+2z+#1, !!vz

2"+ 3
2 !!vz

2"M.

#iii$ When 2z+#1+#2 and #2 /#1=O(##1 /2z$2),

!!vz
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2"S.

#iv$ When 2z+#1+#2 and #2 /#1,#1
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When the time scale #2 of the switching tails is much
shorter than the time scale 2z, the velocity dispersion !!vz

2"
reduces to the result of the sudden switching case given in
Ref. ,2- ,case #i$-. As the time scale #2 increases up to around
the time scale 2z, however, !!vz

2" becomes around 3 /2 times
of !!vz

2"M ,case #ii$-. It means that the contribution from the
switching tails, !!vz

2"S, is almost of the same order as the
contribution from the measuring part, !!vz

2"M. Hence the
condition for the switching to be regarded as the “sudden
switching” is #2+2z, i.e., the switching time scale is much
smaller than the scale characterizing the system configura-
tion.

Next, as the switching time #2 increases the velocity dis-
persion decreases, reducing to the Lorentzian switching case
,Eq. #11$- at around #2%O(##1 /2z$2)#1 ,case #iii$-. This oc-
curs mainly due to the cancellation of the M term by the
negative contribution from the MS term, which is actually
the correlation between the switching part and the main mea-
suring part.

Finally, case #iv$ shows the possible total negative disper-
sion when the switching time is really large. However, we
should also note that the time scales cannot be arbitrarily
large on account of the assumption that the position of the
particle does not change so much during the whole process
of probing the vacuum ,see below Eq. #1$-. The latter condi-
tion can be characterized by

./!!vz
2"/!T % z , #32$

where !T is the time scale of the whole probing process. For
case #iv$, we set !T=#2 to get

#2

#1
% &3)2m2z2

2e2 '1/3
. #33$

To get an idea, let us set m to be the electron mass. Then
#2 /#1%12.7#z /-e$2/3, where -e is the Compton length of the
electron #%10−10 cm$. This inequality is likely to be satisfied
when the system configuration is so arranged. Here we point
out that this anticorrelation effect can possibly be used to
control the total quantum fluctuations in applications.

IV. ANTICORRELATION DUE TO SWITCHING
PROCESSES

It has been found in the preceding section that !!vz
2"MS

becomes negative after the regularization, which plays a key
role in the whole process of vacuum measurement. Since the
quantity !!vz

2"MS is the combination of contributions from
the MS, S1, and S2 regions #see Appendix A$, it is desirable
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The term !!vz
2"MS, coming from the MS regions along

with the S1 and S2 regions, is estimated as follows. Noting
that 0'F#($%) /2, it follows

!!vz
2"MS = O#1$

2e2

"2)m2#2(
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We note that the integral above is a singular one since $2
%1 /", which can be treated with the help of Eq. #B1$. It is
notable that, in the above computation for !!vz

2"MS, the can-
cellation has occurred as is shown in the upper bound of the
integral region. Tracing back the origin of this cancellation,
we can see from the general argument in Appendix A that it
comes from the S2 region, which describes the correlation
between the pre- and the post-measuring switching tails.
Thus this cancellation phenomenon caused by the correlation
between the pre- and the post-measuring switching tails
seems to be quite universal and is probably worth while pur-
suing further.

The integral can be estimated as
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When $1+1, it is further modified as
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As mentioned at the end of the previous section, the regular-
ization procedure removes the first term on the right-hand
side #RHS$, yielding
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Gathering Eqs. #25$, #26$, and #30$ together, and changing
back to the variables #1, #2, and z, we get an estimation for
the total velocity dispersion in z direction
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Thus, under the condition #1,2z, we derive the behavior
of the velocity dispersion !!vz

2" as a function of the three
parameters #1, #2, and z:

#i$ When #2+2z+#1, !!vz
2"+!!vz

2"M.
#ii$ When #2+2z+#1, !!vz

2"+ 3
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#iii$ When 2z+#1+#2 and #2 /#1=O(##1 /2z$2),
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#iv$ When 2z+#1+#2 and #2 /#1,#1
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When the time scale #2 of the switching tails is much
shorter than the time scale 2z, the velocity dispersion !!vz

2"
reduces to the result of the sudden switching case given in
Ref. ,2- ,case #i$-. As the time scale #2 increases up to around
the time scale 2z, however, !!vz

2" becomes around 3 /2 times
of !!vz

2"M ,case #ii$-. It means that the contribution from the
switching tails, !!vz

2"S, is almost of the same order as the
contribution from the measuring part, !!vz

2"M. Hence the
condition for the switching to be regarded as the “sudden
switching” is #2+2z, i.e., the switching time scale is much
smaller than the scale characterizing the system configura-
tion.

Next, as the switching time #2 increases the velocity dis-
persion decreases, reducing to the Lorentzian switching case
,Eq. #11$- at around #2%O(##1 /2z$2)#1 ,case #iii$-. This oc-
curs mainly due to the cancellation of the M term by the
negative contribution from the MS term, which is actually
the correlation between the switching part and the main mea-
suring part.

Finally, case #iv$ shows the possible total negative disper-
sion when the switching time is really large. However, we
should also note that the time scales cannot be arbitrarily
large on account of the assumption that the position of the
particle does not change so much during the whole process
of probing the vacuum ,see below Eq. #1$-. The latter condi-
tion can be characterized by

./!!vz
2"/!T % z , #32$

where !T is the time scale of the whole probing process. For
case #iv$, we set !T=#2 to get

#2

#1
% &3)2m2z2

2e2 '1/3
. #33$

To get an idea, let us set m to be the electron mass. Then
#2 /#1%12.7#z /-e$2/3, where -e is the Compton length of the
electron #%10−10 cm$. This inequality is likely to be satisfied
when the system configuration is so arranged. Here we point
out that this anticorrelation effect can possibly be used to
control the total quantum fluctuations in applications.

IV. ANTICORRELATION DUE TO SWITCHING
PROCESSES

It has been found in the preceding section that !!vz
2"MS

becomes negative after the regularization, which plays a key
role in the whole process of vacuum measurement. Since the
quantity !!vz

2"MS is the combination of contributions from
the MS, S1, and S2 regions #see Appendix A$, it is desirable
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The term !!vz
2"MS, coming from the MS regions along

with the S1 and S2 regions, is estimated as follows. Noting
that 0'F#($%) /2, it follows

!!vz
2"MS = O#1$
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We note that the integral above is a singular one since $2
%1 /", which can be treated with the help of Eq. #B1$. It is
notable that, in the above computation for !!vz

2"MS, the can-
cellation has occurred as is shown in the upper bound of the
integral region. Tracing back the origin of this cancellation,
we can see from the general argument in Appendix A that it
comes from the S2 region, which describes the correlation
between the pre- and the post-measuring switching tails.
Thus this cancellation phenomenon caused by the correlation
between the pre- and the post-measuring switching tails
seems to be quite universal and is probably worth while pur-
suing further.

The integral can be estimated as
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When $1+1, it is further modified as
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As mentioned at the end of the previous section, the regular-
ization procedure removes the first term on the right-hand
side #RHS$, yielding

!!vz
2"MS + − O#1$
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3)m2#2 % − O#"$1
2$!!vz
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Gathering Eqs. #25$, #26$, and #30$ together, and changing
back to the variables #1, #2, and z, we get an estimation for
the total velocity dispersion in z direction

!!vz
2" = !!vz

2"M + !!vz
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Thus, under the condition #1,2z, we derive the behavior
of the velocity dispersion !!vz

2" as a function of the three
parameters #1, #2, and z:

#i$ When #2+2z+#1, !!vz
2"+!!vz

2"M.
#ii$ When #2+2z+#1, !!vz

2"+ 3
2 !!vz

2"M.

#iii$ When 2z+#1+#2 and #2 /#1=O(##1 /2z$2),

!!vz
2" + !!vz

2"S.

#iv$ When 2z+#1+#2 and #2 /#1,#1
2 / #2z$2,
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2" + − O„# #2
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When the time scale #2 of the switching tails is much
shorter than the time scale 2z, the velocity dispersion !!vz

2"
reduces to the result of the sudden switching case given in
Ref. ,2- ,case #i$-. As the time scale #2 increases up to around
the time scale 2z, however, !!vz

2" becomes around 3 /2 times
of !!vz

2"M ,case #ii$-. It means that the contribution from the
switching tails, !!vz

2"S, is almost of the same order as the
contribution from the measuring part, !!vz

2"M. Hence the
condition for the switching to be regarded as the “sudden
switching” is #2+2z, i.e., the switching time scale is much
smaller than the scale characterizing the system configura-
tion.

Next, as the switching time #2 increases the velocity dis-
persion decreases, reducing to the Lorentzian switching case
,Eq. #11$- at around #2%O(##1 /2z$2)#1 ,case #iii$-. This oc-
curs mainly due to the cancellation of the M term by the
negative contribution from the MS term, which is actually
the correlation between the switching part and the main mea-
suring part.

Finally, case #iv$ shows the possible total negative disper-
sion when the switching time is really large. However, we
should also note that the time scales cannot be arbitrarily
large on account of the assumption that the position of the
particle does not change so much during the whole process
of probing the vacuum ,see below Eq. #1$-. The latter condi-
tion can be characterized by

./!!vz
2"/!T % z , #32$

where !T is the time scale of the whole probing process. For
case #iv$, we set !T=#2 to get

#2

#1
% &3)2m2z2

2e2 '1/3
. #33$

To get an idea, let us set m to be the electron mass. Then
#2 /#1%12.7#z /-e$2/3, where -e is the Compton length of the
electron #%10−10 cm$. This inequality is likely to be satisfied
when the system configuration is so arranged. Here we point
out that this anticorrelation effect can possibly be used to
control the total quantum fluctuations in applications.

IV. ANTICORRELATION DUE TO SWITCHING
PROCESSES

It has been found in the preceding section that !!vz
2"MS

becomes negative after the regularization, which plays a key
role in the whole process of vacuum measurement. Since the
quantity !!vz

2"MS is the combination of contributions from
the MS, S1, and S2 regions #see Appendix A$, it is desirable
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The term !!vz
2"MS, coming from the MS regions along

with the S1 and S2 regions, is estimated as follows. Noting
that 0'F#($%) /2, it follows

!!vz
2"MS = O#1$
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#(2 − $2
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We note that the integral above is a singular one since $2
%1 /", which can be treated with the help of Eq. #B1$. It is
notable that, in the above computation for !!vz

2"MS, the can-
cellation has occurred as is shown in the upper bound of the
integral region. Tracing back the origin of this cancellation,
we can see from the general argument in Appendix A that it
comes from the S2 region, which describes the correlation
between the pre- and the post-measuring switching tails.
Thus this cancellation phenomenon caused by the correlation
between the pre- and the post-measuring switching tails
seems to be quite universal and is probably worth while pur-
suing further.

The integral can be estimated as
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When $1+1, it is further modified as
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As mentioned at the end of the previous section, the regular-
ization procedure removes the first term on the right-hand
side #RHS$, yielding
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2"MS + − O#1$
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2$!!vz
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Gathering Eqs. #25$, #26$, and #30$ together, and changing
back to the variables #1, #2, and z, we get an estimation for
the total velocity dispersion in z direction

!!vz
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Thus, under the condition #1,2z, we derive the behavior
of the velocity dispersion !!vz

2" as a function of the three
parameters #1, #2, and z:

#i$ When #2+2z+#1, !!vz
2"+!!vz

2"M.
#ii$ When #2+2z+#1, !!vz

2"+ 3
2 !!vz

2"M.

#iii$ When 2z+#1+#2 and #2 /#1=O(##1 /2z$2),

!!vz
2" + !!vz
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#iv$ When 2z+#1+#2 and #2 /#1,#1
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When the time scale #2 of the switching tails is much
shorter than the time scale 2z, the velocity dispersion !!vz

2"
reduces to the result of the sudden switching case given in
Ref. ,2- ,case #i$-. As the time scale #2 increases up to around
the time scale 2z, however, !!vz

2" becomes around 3 /2 times
of !!vz

2"M ,case #ii$-. It means that the contribution from the
switching tails, !!vz

2"S, is almost of the same order as the
contribution from the measuring part, !!vz

2"M. Hence the
condition for the switching to be regarded as the “sudden
switching” is #2+2z, i.e., the switching time scale is much
smaller than the scale characterizing the system configura-
tion.

Next, as the switching time #2 increases the velocity dis-
persion decreases, reducing to the Lorentzian switching case
,Eq. #11$- at around #2%O(##1 /2z$2)#1 ,case #iii$-. This oc-
curs mainly due to the cancellation of the M term by the
negative contribution from the MS term, which is actually
the correlation between the switching part and the main mea-
suring part.

Finally, case #iv$ shows the possible total negative disper-
sion when the switching time is really large. However, we
should also note that the time scales cannot be arbitrarily
large on account of the assumption that the position of the
particle does not change so much during the whole process
of probing the vacuum ,see below Eq. #1$-. The latter condi-
tion can be characterized by

./!!vz
2"/!T % z , #32$

where !T is the time scale of the whole probing process. For
case #iv$, we set !T=#2 to get

#2

#1
% &3)2m2z2

2e2 '1/3
. #33$

To get an idea, let us set m to be the electron mass. Then
#2 /#1%12.7#z /-e$2/3, where -e is the Compton length of the
electron #%10−10 cm$. This inequality is likely to be satisfied
when the system configuration is so arranged. Here we point
out that this anticorrelation effect can possibly be used to
control the total quantum fluctuations in applications.

IV. ANTICORRELATION DUE TO SWITCHING
PROCESSES

It has been found in the preceding section that !!vz
2"MS

becomes negative after the regularization, which plays a key
role in the whole process of vacuum measurement. Since the
quantity !!vz

2"MS is the combination of contributions from
the MS, S1, and S2 regions #see Appendix A$, it is desirable
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The term !!vz
2"MS, coming from the MS regions along

with the S1 and S2 regions, is estimated as follows. Noting
that 0'F#($%) /2, it follows
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2"MS = O#1$
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We note that the integral above is a singular one since $2
%1 /", which can be treated with the help of Eq. #B1$. It is
notable that, in the above computation for !!vz

2"MS, the can-
cellation has occurred as is shown in the upper bound of the
integral region. Tracing back the origin of this cancellation,
we can see from the general argument in Appendix A that it
comes from the S2 region, which describes the correlation
between the pre- and the post-measuring switching tails.
Thus this cancellation phenomenon caused by the correlation
between the pre- and the post-measuring switching tails
seems to be quite universal and is probably worth while pur-
suing further.

The integral can be estimated as
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When $1+1, it is further modified as
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As mentioned at the end of the previous section, the regular-
ization procedure removes the first term on the right-hand
side #RHS$, yielding
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Gathering Eqs. #25$, #26$, and #30$ together, and changing
back to the variables #1, #2, and z, we get an estimation for
the total velocity dispersion in z direction
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Thus, under the condition #1,2z, we derive the behavior
of the velocity dispersion !!vz

2" as a function of the three
parameters #1, #2, and z:

#i$ When #2+2z+#1, !!vz
2"+!!vz

2"M.
#ii$ When #2+2z+#1, !!vz

2"+ 3
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#iii$ When 2z+#1+#2 and #2 /#1=O(##1 /2z$2),
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When the time scale #2 of the switching tails is much
shorter than the time scale 2z, the velocity dispersion !!vz

2"
reduces to the result of the sudden switching case given in
Ref. ,2- ,case #i$-. As the time scale #2 increases up to around
the time scale 2z, however, !!vz

2" becomes around 3 /2 times
of !!vz

2"M ,case #ii$-. It means that the contribution from the
switching tails, !!vz

2"S, is almost of the same order as the
contribution from the measuring part, !!vz

2"M. Hence the
condition for the switching to be regarded as the “sudden
switching” is #2+2z, i.e., the switching time scale is much
smaller than the scale characterizing the system configura-
tion.

Next, as the switching time #2 increases the velocity dis-
persion decreases, reducing to the Lorentzian switching case
,Eq. #11$- at around #2%O(##1 /2z$2)#1 ,case #iii$-. This oc-
curs mainly due to the cancellation of the M term by the
negative contribution from the MS term, which is actually
the correlation between the switching part and the main mea-
suring part.

Finally, case #iv$ shows the possible total negative disper-
sion when the switching time is really large. However, we
should also note that the time scales cannot be arbitrarily
large on account of the assumption that the position of the
particle does not change so much during the whole process
of probing the vacuum ,see below Eq. #1$-. The latter condi-
tion can be characterized by

./!!vz
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where !T is the time scale of the whole probing process. For
case #iv$, we set !T=#2 to get
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To get an idea, let us set m to be the electron mass. Then
#2 /#1%12.7#z /-e$2/3, where -e is the Compton length of the
electron #%10−10 cm$. This inequality is likely to be satisfied
when the system configuration is so arranged. Here we point
out that this anticorrelation effect can possibly be used to
control the total quantum fluctuations in applications.

IV. ANTICORRELATION DUE TO SWITCHING
PROCESSES

It has been found in the preceding section that !!vz
2"MS

becomes negative after the regularization, which plays a key
role in the whole process of vacuum measurement. Since the
quantity !!vz

2"MS is the combination of contributions from
the MS, S1, and S2 regions #see Appendix A$, it is desirable
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The term !!vz
2"MS, coming from the MS regions along

with the S1 and S2 regions, is estimated as follows. Noting
that 0'F#($%) /2, it follows
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We note that the integral above is a singular one since $2
%1 /", which can be treated with the help of Eq. #B1$. It is
notable that, in the above computation for !!vz

2"MS, the can-
cellation has occurred as is shown in the upper bound of the
integral region. Tracing back the origin of this cancellation,
we can see from the general argument in Appendix A that it
comes from the S2 region, which describes the correlation
between the pre- and the post-measuring switching tails.
Thus this cancellation phenomenon caused by the correlation
between the pre- and the post-measuring switching tails
seems to be quite universal and is probably worth while pur-
suing further.

The integral can be estimated as
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When $1+1, it is further modified as
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As mentioned at the end of the previous section, the regular-
ization procedure removes the first term on the right-hand
side #RHS$, yielding
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Gathering Eqs. #25$, #26$, and #30$ together, and changing
back to the variables #1, #2, and z, we get an estimation for
the total velocity dispersion in z direction
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2"S + !!vz

2"MS

+)1 +
)4z2#2

2

4#)2z2 + #2
2$2 − O#1$

8
3
& z

#1
'2#2

#1
*!!vz

2"M .

#31$

Thus, under the condition #1,2z, we derive the behavior
of the velocity dispersion !!vz

2" as a function of the three
parameters #1, #2, and z:

#i$ When #2+2z+#1, !!vz
2"+!!vz

2"M.
#ii$ When #2+2z+#1, !!vz

2"+ 3
2 !!vz

2"M.

#iii$ When 2z+#1+#2 and #2 /#1=O(##1 /2z$2),

!!vz
2" + !!vz

2"S.

#iv$ When 2z+#1+#2 and #2 /#1,#1
2 / #2z$2,

!!vz
2" + − O„# #2

#1$# 2z
#1 $2…!!vz

2"M

% − O#1$# 2e2

3m2)2$# #2

#1
3$ .

When the time scale #2 of the switching tails is much
shorter than the time scale 2z, the velocity dispersion !!vz

2"
reduces to the result of the sudden switching case given in
Ref. ,2- ,case #i$-. As the time scale #2 increases up to around
the time scale 2z, however, !!vz

2" becomes around 3 /2 times
of !!vz

2"M ,case #ii$-. It means that the contribution from the
switching tails, !!vz

2"S, is almost of the same order as the
contribution from the measuring part, !!vz

2"M. Hence the
condition for the switching to be regarded as the “sudden
switching” is #2+2z, i.e., the switching time scale is much
smaller than the scale characterizing the system configura-
tion.

Next, as the switching time #2 increases the velocity dis-
persion decreases, reducing to the Lorentzian switching case
,Eq. #11$- at around #2%O(##1 /2z$2)#1 ,case #iii$-. This oc-
curs mainly due to the cancellation of the M term by the
negative contribution from the MS term, which is actually
the correlation between the switching part and the main mea-
suring part.

Finally, case #iv$ shows the possible total negative disper-
sion when the switching time is really large. However, we
should also note that the time scales cannot be arbitrarily
large on account of the assumption that the position of the
particle does not change so much during the whole process
of probing the vacuum ,see below Eq. #1$-. The latter condi-
tion can be characterized by

./!!vz
2"/!T % z , #32$

where !T is the time scale of the whole probing process. For
case #iv$, we set !T=#2 to get

#2

#1
% &3)2m2z2

2e2 '1/3
. #33$

To get an idea, let us set m to be the electron mass. Then
#2 /#1%12.7#z /-e$2/3, where -e is the Compton length of the
electron #%10−10 cm$. This inequality is likely to be satisfied
when the system configuration is so arranged. Here we point
out that this anticorrelation effect can possibly be used to
control the total quantum fluctuations in applications.

IV. ANTICORRELATION DUE TO SWITCHING
PROCESSES

It has been found in the preceding section that !!vz
2"MS

becomes negative after the regularization, which plays a key
role in the whole process of vacuum measurement. Since the
quantity !!vz

2"MS is the combination of contributions from
the MS, S1, and S2 regions #see Appendix A$, it is desirable
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The interesting finding here is that           is negative!
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The term !!vz
2"MS, coming from the MS regions along

with the S1 and S2 regions, is estimated as follows. Noting
that 0'F#($%) /2, it follows

!!vz
2"MS = O#1$
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0

1/" 1

#(2 − $2
2$2d( . #27$

We note that the integral above is a singular one since $2
%1 /", which can be treated with the help of Eq. #B1$. It is
notable that, in the above computation for !!vz

2"MS, the can-
cellation has occurred as is shown in the upper bound of the
integral region. Tracing back the origin of this cancellation,
we can see from the general argument in Appendix A that it
comes from the S2 region, which describes the correlation
between the pre- and the post-measuring switching tails.
Thus this cancellation phenomenon caused by the correlation
between the pre- and the post-measuring switching tails
seems to be quite universal and is probably worth while pur-
suing further.

The integral can be estimated as
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When $1+1, it is further modified as
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As mentioned at the end of the previous section, the regular-
ization procedure removes the first term on the right-hand
side #RHS$, yielding
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Gathering Eqs. #25$, #26$, and #30$ together, and changing
back to the variables #1, #2, and z, we get an estimation for
the total velocity dispersion in z direction
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Thus, under the condition #1,2z, we derive the behavior
of the velocity dispersion !!vz

2" as a function of the three
parameters #1, #2, and z:

#i$ When #2+2z+#1, !!vz
2"+!!vz

2"M.
#ii$ When #2+2z+#1, !!vz
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When the time scale #2 of the switching tails is much
shorter than the time scale 2z, the velocity dispersion !!vz

2"
reduces to the result of the sudden switching case given in
Ref. ,2- ,case #i$-. As the time scale #2 increases up to around
the time scale 2z, however, !!vz

2" becomes around 3 /2 times
of !!vz

2"M ,case #ii$-. It means that the contribution from the
switching tails, !!vz

2"S, is almost of the same order as the
contribution from the measuring part, !!vz

2"M. Hence the
condition for the switching to be regarded as the “sudden
switching” is #2+2z, i.e., the switching time scale is much
smaller than the scale characterizing the system configura-
tion.

Next, as the switching time #2 increases the velocity dis-
persion decreases, reducing to the Lorentzian switching case
,Eq. #11$- at around #2%O(##1 /2z$2)#1 ,case #iii$-. This oc-
curs mainly due to the cancellation of the M term by the
negative contribution from the MS term, which is actually
the correlation between the switching part and the main mea-
suring part.

Finally, case #iv$ shows the possible total negative disper-
sion when the switching time is really large. However, we
should also note that the time scales cannot be arbitrarily
large on account of the assumption that the position of the
particle does not change so much during the whole process
of probing the vacuum ,see below Eq. #1$-. The latter condi-
tion can be characterized by

./!!vz
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where !T is the time scale of the whole probing process. For
case #iv$, we set !T=#2 to get
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To get an idea, let us set m to be the electron mass. Then
#2 /#1%12.7#z /-e$2/3, where -e is the Compton length of the
electron #%10−10 cm$. This inequality is likely to be satisfied
when the system configuration is so arranged. Here we point
out that this anticorrelation effect can possibly be used to
control the total quantum fluctuations in applications.

IV. ANTICORRELATION DUE TO SWITCHING
PROCESSES

It has been found in the preceding section that !!vz
2"MS

becomes negative after the regularization, which plays a key
role in the whole process of vacuum measurement. Since the
quantity !!vz

2"MS is the combination of contributions from
the MS, S1, and S2 regions #see Appendix A$, it is desirable
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After playing around three cases:
1. Main part and one tail
2. Single switching tail
3. Only switching tails

-> We conclude that the negative value is really the 
anti-correlation effect between the the switching tail 
and the main part!
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#Is it easy to produce a sudden switch procedure?

The smooth switching function discussed in the paper would
be interpreted as a mathematical description of this process
of shooting a probe from a far distance. In this situation, the
switching time scale is around z /v0 and the intrinsic time
scale determined by the system configuration is z. It is obvi-
ous that the switching time scale cannot be smaller than the
intrinsic time scale z in this case, since v0!1. This is just
one example, but it at least shows that the sudden-switching
approximation is not always valid and that we should be
more careful about the switching effect in the process of the
quantum vacuum.

In view of the above example, it might also be possible to
look at the switching function from a different angle, i.e., as
a mathematical description of what the test particle would
experience when the vacuum shifts from the Minkowski
vacuum to a Casimir-like vacuum. Based on this interpreta-
tion, it is not surprising to see !"vz

2" remain constant at late
time, depending only on z for the sudden switching case. For,
it is interpreted as the sudden energy shift due to the sudden
change of vacuum state. In the case of the pure Lorentzian
switching-function, on the other hand, the corresponding in-
terpretation is that the vacuum changes smoothly from the
asymptotic Minkowski vacuum to the Casimir-like vacuum,
going back to the asymptotic Minkowski vacuum again.
Then the test particle is never stabilized in this varying
vacuum so that the result is naturally different from the sud-
den switching case. Then the setup using Lorentz-Plateau
function in this connection would be interpreted as describ-
ing a smooth transient process from the Minkowski vacuum
to the Casimir-like vacuum. Thus it is expected that the
Lorentz-Plateau function constructed in the present paper
might be very useful to analyze the situations such as a
smooth transient from one vacuum to another.

Finally it is appropriate to make some comments on the
singular integrals and their regularization procedure. Tracing
back the origin of the singular integral, it comes from the
singularity at T=2z in the integral kernel #Eq. $23% or Eq.
$4%&. This singularity is understood as produced by the re-
flecting boundary. Due to the mirror reflections of signals
with the light velocity, the values of the electric field at the
two world points $t! ,x ,y ,z% and $t" ,x ,y ,z% are expected to
be strongly correlated when T= t!− t"=2z. These correlations
accumulate in the velocity fluctuations of the particle at z
when the measurement time # is longer than the travel time
2z for the signals. It is natural, thus, to expect that the result-
ing singular term of the form A /$ $A%0 and $→0% contain
information on the reflecting boundary. However, the stan-
dard regularization procedure #5& corresponds to discarding
such a singular term in effect. It should be clarified when this
type of regularization is valid and when not.

With the above physical interpretation of the singular in-
tegrals, another natural way of regularization should be pos-
sible. It has been assumed that the probe particle and the
reflecting boundary or the mirror are treated as classical ob-
jects. However in reality they also cannot escape quantum
fluctuations. Taking into account their quantum fluctuations,
the effective path lengths of signals are not sharply defined.
It is estimated that the quantum fluctuations of the probe
particle are more significant than those of the mirror. It is
natural to assume the effective size of the particle to be of the

order of its Compton length &c=1 /m, corresponding to set-
ting the infinitesimal parameter $ to be $=&c /#=1 /m#. Just
for an illustration, let us consider the case of an electron
$&c'10−10 cm% with #=1 'sec. Then $'10−15. It turns out
that, thus, the singular terms always dominate in the velocity
fluctuations. Since the results could be drastically influenced,
it should also be clarified whether the cutoff type of regular-
ization is valid.
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APPENDIX A: GENERAL FEATURES OF THE INTEGRAL
WITH A LORENTZ-PLATEAU SWITCHING

FUNCTION

We here analyze general properties of the integral given in
Eq. $21% or Eq. $22%.

We note that the x-y plane is divided into nine integral
regions by four border lines, x+y= (1 and y−x= (1, and
the nine regions are further classified into four classes, M, S1,
S2 and MS, as discussed after Eq. $22%. In each integral re-
gion, the y integral can be done independently of the kernel
K, leaving the x integral. Now we shall investigate each of
four types of integral regions one by one. $See Fig. 2.%

(i) M Region. The region defined by (x+y()1 and (x−y(
)1. It coincides with the sudden-switching case considered
in Ref. #2&. The integral I$M%, coming from this region, is
computed as

I$M% =
#2

2 )*−1

0

dx*
−x−1

x+1

dy + *
0

1

dx*
x−1

−x+1

dy+K$#x%

= 2#2*
0

1

dx$1 − x%K$#x% , $A1%

where the last line follows using the even function property
of K.
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y

FIG. 2. Illustration of four types of integral regions.
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Summary

• The velocity dispersion is sensitive to the switching 
effect. The criterion for sudden switching is when the 
switching time is much smaller than the intrinsic time 
scale. 

• The non-vanished z-component in the sudden 
switching approach is the fluctuation due to the 
Casimir vacuum, but is not transient effect.

• The anti-correlation between the switching tail and 
the main measuring part provides a way to manipulate 
the total fluctuation.
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Future works

We are nervous about the point particle 
model and would like to study the effect 
using a wave packet. 

The boundary condition here is also needed 
to be improved.
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Application: Cosmology

Similar situations happen in elsewhere. e.g. 
The passive cosmological perturbation.  
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