Effect of H^\pm on $B^\pm \to \tau^\pm \nu_\tau$ and $D_s^\pm \to \mu^\pm \nu_\mu$

Andrew Akeroyd

National Cheng Kung University, Tainan, Taiwan

Abstract

The recent observation of the purely leptonic decay $B^\pm \to \tau^\pm \nu_\tau$ at the B factories permits a sizeable contribution from a charged Higgs boson (H^\pm) . Such a H^\pm would also contribute to the decays $D_s^\pm \to \mu^\pm \nu_\mu$ and $D_s^\pm \to \tau^\pm \nu_\tau$, which are being measured with increasing precision at CLEO-c. We show that the branching ratios of $D_s^\pm \to \mu^\pm \nu_\mu$ and $D_s^\pm \to \tau^\pm \nu_\tau$ could be suppressed by up to 10% from the Standard Model prediction, which is larger than the anticipated precision in the measurements of these decays at forthcoming BES-III.

A.G. Akeroyd, Prog.Theo.Phys.111 (2004) 295 (hep-ph/0308260) A.G. Akeroyd and Chuan Hung Chen, hep-ph/0701078 (to appear in PRD)

Outline

- Purely leptonic decays $B^{\pm} \to l^{\pm} \nu_l$
- First observation of $B^{\pm} \to \tau^{\pm} \nu_{\tau}$ at BELLE (April 2006)
- ullet Possible large contribution from H^\pm
- Effect of H^\pm on $D_s^\pm \to \mu^\pm \nu_\mu$ and $D_s^\pm \to \tau^\pm \nu_\tau$
- ullet Prospects for probing H^{\pm} at CLEO-c and BES-III

The decays $B^\pm \to l^\pm \nu_l$

Analogies of $\pi \to l\nu_l$ and $K^\pm \to l\nu_l$

Proceed via annihilation of B^{\pm} into W^{\pm} (SM) and H^{\pm} (2HDM)

Search only possible at e^+e^- colliders

Decay rate for $B^{\pm} \rightarrow l^{\pm} \nu_l$

 W^{\pm} and H^{\pm} effectively induce the four fermion interaction:

$$(G_F/\sqrt{2})V_{ub}([\overline{u}\gamma_{\mu}(1-\gamma_5)b][\overline{l}\gamma^{\mu}(1-\gamma_5)\nu] - Y[\overline{u}(1+\gamma_5)b][\overline{l}(1-\gamma_5)\nu]$$

$$Y = \tan^2\beta (m_b m_l / m_{H^{\pm}}^2)$$

The tree-level partial width is given by:

$$\Gamma(B^{\pm} \to l^{\pm}\nu_l) = \frac{G_F^2 m_B m_l^2 f_B^2}{8\pi} |V_{ub}|^2 \left(1 - \frac{m_l^2}{m_B^2}\right)^2 \times r_H$$

In SM $r_H = 1$

Origin of m_l dependence

Angular momentum conservation requires that both l^\pm and ν have the same helicities, $l_R^- \overline{\nu}_R$ and $l_L^+ \nu_L$

- ullet W^- mediated diagram produces $l_L^- \overline{
 u}_R$
 - $ightarrow m_l$ helicity suppression from $l_L^-
 ightarrow l_R^-$

- H^- contribution produces $l_R^- \overline{\nu}_R$.
 - $ightarrow m_l$ suppression comes from Yukawa coupling

Branching Ratios in Standard Model

$$BR(B^+ \to \tau^+ \nu_\tau) : BR(B^+ \to \mu^+ \nu_\mu) : BR(B^+ \to e^+ \nu_e)$$

0.8 $m_ au^2$: m_μ^2 : m_e^2

Decay	SM Prediction	Limits	Exp
$B^+ \rightarrow e^+ \nu_e$		$\leq 1.5 imes 10^{-5}$	CLEO (1995)
$B^+ \rightarrow \mu^+ \nu_\mu$	3.9×10^{-7}	$\leq 2.1 \times 10^{-5}$	CLEO (1995)
$B^+ \to \tau^+ \nu_{\tau}$	1.6×10^{-4}	$\leq 5.7 \times 10^{-4}$	LEP (1997)

Sizeable error in SM prediction (\sim 25%) from V_{ub} and f_B

Effect of H^{\pm}

Scaling factor r_H : W.S. Hou, Phys.ReV.D48,2342 (1993)

$$r_H = [1 - m_B^2 \frac{\tan^2 \beta}{m_{H^{\pm}}^2}]^2 \equiv [1 - m_B^2 R^2]^2$$

- Destructive interference
- Sensitivity to $R = \frac{\tan \beta}{m_{H^{\pm}}}$
- R very important parameter in 2HDM and MSSM
- \bullet $\tan\beta$ and m_{H^\pm} completely define tree-level MSSM Higgs potential

Scaling factor r_H as a function of $R(=\tan\beta/m_{H^\pm})$

Two solutions for $r_H=1$ i) R=0 and ii) R=0.27

Search for $B^{\pm} \to \tau^{\pm} \nu_{\tau}$ at $e^{+}e^{-}$ B factories

First observation of purely leptonic B^{\pm} decay by BELLE:

K.Ikado et al, Phys.Rev.Lett.97:251802 (2006) (hep-ex/0604018); $450 \times 10^6~B^{\pm}$ s

$$\mathsf{BR}(B^{\pm} \to \tau^{\pm}\nu_{\tau}) = (1.79^{+0.56}_{-0.49}(stat)^{+0.46}_{-0.51}(syst)) \times 10^{-4}$$

In agreement with SM expectation $(1.6 \pm 0.4 \times 10^{-4})$ but does not preclude *large contribution* from H^{\pm}

(BABAR: BR $(B^{\pm} \to \tau^{\pm} \nu_{\tau}) < 1.8 \times 10^{-4}; 300 \times 10^{6} B^{\pm} s$)

Constraint on r_H and $aneta/m_{H^\pm}$

Main uncertainty in SM prediction for BR $(B^{\pm} \to \tau^{\pm} \nu_{\tau})$

$$\rightarrow |V_{ub}|$$
 and f_B

BELLE take:

- $|V_{ub}| = (4.39 \pm 0.33) \times 10^{-3}$ (Experiment)
- $f_B = 0.216 \pm 0.022$ GeV (Unquenched Lattice QCD)

$$r_H = 1.13 \pm 0.51$$

Constraint on r_H and plane $[\tan\beta, m_{H^\pm}]$ (0.414 ${\rm ab}^{-1})$

Prospects with 5 ab^{-1} (2012?)

Prospects with 50 ab^{-1} (2018?)

LHC probe of $[\tan\beta, m_{H^\pm}]$ via direct H^\pm production

Will easily cover region $R \sim 0.27$

Summary

- BELLE observed $B^{\pm} \to \tau^{\pm} \nu_{\tau}$ with roughly SM rate
- Large contribution from H^{\pm} still possible

$$(R = \tan \beta / m_{H^{\pm}} \sim 0.27)$$

• LHC will easily discover such a H^{\pm}

Any other observables sensitive to H^{\pm} with $R \sim 0.27$?

 H^\pm effect on the decays $D_s^\pm o \mu^\pm
u, au^\pm
u$

 H^{\pm} would also contribute to leptonic charm decays:

$$D_{(s)}^{-} \underbrace{\int_{0}^{\overline{C}} W_{-,H^{-}}^{-} \nu_{l}}_{W^{-},H^{-}}$$

$$\Gamma(D_{(s)}^{\pm} \to l^{\pm}\nu_{l}) = \frac{G_{F}^{2} m_{D_{(s)}} m_{l}^{2} f_{D_{(s)}}^{2}}{8\pi} |V_{cd(cs)}|^{2} \left(1 - \frac{m_{l}^{2}}{m_{D_{(s)}}^{2}}\right)^{2} \times r_{(s)}$$

$$r_{(s)} = [1 - m_{D_q}^2 R^2 (\frac{m_q}{m_c + m_q})]^2$$

Scaling factor r_s as a function of R for $m_s/m_c = 0.08$

Perturbation to SM rate - observable ?

Status of leptonic decays of D_s^{\pm} before 2000

 ${\sf BR}(D_s^\pm \to \mu^\pm \nu, \tau^\pm \nu)$ much larger than ${\sf BR}(B^\pm \to \tau^\pm \nu)$ Main error from f_{D_s} (V_{cs} well measured)

Decay	SM Prediction	Measurement	Exp
$D_s^{\pm} \rightarrow \mu^+ \nu_{\mu}$	5.2×10^{-3}	$5.3 \pm 0.9 \pm 1.2 imes 10^{-3}$	various (> 1995)
$D_s^{\pm} \to \tau^+ \nu_{\tau}$	5.1×10^{-2}	$6.1 \pm 1.0 \pm 0.2 \pm 1.3 \times 10^{-2}$	LEP (1997)

- CLEO-c (2003) and BES-III (2008) offer improved precision
- ullet Observing small perturbations to SM rate from H^\pm might not hopeless

CLEO-c

- Used to be a B factory $\sqrt{s} = 10.6$ GeV
- In 2003 changed to $\sqrt{s} = 3.8 \rightarrow 4.2 \text{ GeV}$
- Charm physics facility
- Will operate until April 2008
- Expects of order $10^{5-6}D_s^{\pm}$

Beijing Electron Positron Collider (BEPC/BES-III)

- Existing facility upgraded
- Due to start in 2008
- $\sqrt{s} = 3.8 \to 4.2 \text{ GeV}$
- > 4 years of operation
- ullet Expects up to 20 times CLEO-c number D_s^\pm

Leptonic decays at CLEO-c

Decay	SM BR (±30%)	Current Exp BR	CLEO-c error	BES-III error
$D^{\pm} \rightarrow e^{\pm} \nu$	8.24×10^{-9}	$< 2.4 \times 10^{-5}$		
$D^{\pm} \rightarrow \mu^{\pm} \nu$	3.50×10^{-4}	$4.40 \pm 0.66^{+0.09}_{-0.12} \times 10^{-4}$	$\sim 10\%$	~ 2%
$D^{\pm} ightarrow au^{\pm} u$	9.25×10^{-4}	$< 2.1 \times 10^{-3}$		
$D_s^{\pm} \rightarrow e^{\pm} \nu$	1.23×10^{-7}	$< 3.1 imes 10^{-4}$		
$D_s^{\pm} ightarrow \mu^{\pm} u$	5.22×10^{-3}	$6.57 \pm 0.9 \pm 0.28 \times 10^{-3}$	$\sim 10\%$	$\sim 2\%$
$D_s^{\pm} ightarrow au^{\pm} u$	5.09×10^{-2}	6.5 ± 0.8	$\sim 10\%$	$\sim 1.5\%$

Precise measurements expected within 5 years!

Contours of r_s in the plane $[R, m_{sc}]$

Deviation from SM rate larger than expected precision from BES-III

Impact of H^{\pm} on measurements of $BR(D_s^{\pm} \to \mu^{\pm} \nu, \tau^{\pm} \nu)$

- Lowers $BR(D_s^{\pm} \to \mu^{\pm} \nu, \tau^{\pm} \nu)$ by up to 10%
- Larger then anticipated BES-III error
- ullet Comparable to Lattice QCD error in calculation of f_{D_s}
- ullet Deceptively smaller measured value of decay constant f_{D_s}
- ullet If H^\pm found at LHC, $r_s < 1$ should be included when comparing Lattice calculation of f_{D_s} to experimental value for f_{D_s}

Probing H^{\pm} at CLEO-c and BES-III

Observable most sensitive to H^{\pm} :

$$\mathcal{R}_{\mu} = \frac{BR(D_s^{\pm} \to \mu^{\pm} \nu_{\mu})}{BR(D^{\pm} \to \mu^{\pm} \nu_{\mu})} \sim r_s(\frac{f_{D_s}}{f_D})^2$$

- H^{\pm} effect on BR $(D^{\pm} \to \mu^{\pm} \nu_{\mu})$ negligible
- ullet Lattice error for $f_{D_s}^2/f_D^2$ (\sim 12%) less than $f_{D_s}^2$ (\sim 30%)
- ullet CLEO-c currently measures \mathcal{R}_{μ} with \sim 20% error
- ullet BES-III expects precise measurement of \mathcal{R}_{μ}
- ullet Could favour or disfavour H^\pm with $R\sim 0.27$

\mathcal{R}_{μ} as a function of R

Conclusions

- ullet H^\pm could be contributing sizeably to $B^\pm \to au^\pm
 u_ au$
- Such a H^{\pm} would affect $D_s^{\pm} \to \mu^{\pm} \nu_{\mu}, \tau^{\pm} \nu_{\tau}$
- Suppression of BR $(D_s^{\pm} \to \mu^{\pm} \nu_{\mu}, \tau^{\pm} \nu_{\tau})$ by up to 10%
- Precise measurements possible at CLEO-c and BES-III
- ullet H^\pm would cause deceptively smaller measured value of f_{D_s}
- $\mathcal{R}_{\mu} = \frac{BR(D_s^{\pm} \to \mu^{\pm} \nu_{\mu})}{BR(D^{\pm} \to \mu^{\pm} \nu_{\mu})}$ may favour or disfavour H^{\pm}