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introduction

inflation beautifully explains what the universe looks like
today,

but it is not clear what actually drives inflation,

nor about how long it lasts, as long as inflation is over 60
e-foldings,

it implies that the scales we are interested right now may
derive from transplanckian scales in the beginning of inflation,

this observation may offer a tool to probe transplackian
physics.
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introduction

we will look into some of these issues by examining
backreactions of the matter on the gravity waves.

other than (active) quantum fluctuations of the metrics, there
is an additional (passive) component induced by quantum
fluctuations of matter,

quantum fluctuations of the matter results in fluctuations of
its energy stress tensor,

in turn, by the Einstein equation, the stress tensor fluctuations
drive (passive) metric fluctuations.
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introduction

it turns out that this induced component of the metric
fluctuations may distort the tensor mode power spectrum of
the CMB in the high frequency end,

the extent of correction depends on duration of inflation,

besides, it contains contributions from the (trans)plackain
modes of the matter field,

so it can used as a testground of ultra-high energy physics,
when combined with the future observation data from the
PLANCK or LISA-type experiments.
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configuration

consider a spatially flat de Sitter universe

ds2 = a2(η)
[
−dη2 + dx2

]
.

with η the conformal time and a(η) = −(Hη)−1, η < 0.

let gµν = γµν + hµν , where ηµν is the background de Sitter
metric, and hµν is the metric perturbation – tensor modes.

choose the transverse-tracefree (TT) gauge:

hµν ; ν = 0 , h = hµµ = 0 , hµνu
ν = 0 ,

“;” denotes covariant derivative wrpt the bkgd metric,
uν is some timelike vector.
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Only a portion of the de Sitter spacetime describes inflationary
expansion.
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(active) gravity waves

Lifshitz (1946) showed the tensor modes in a spatially flat universe
behave as massless scalars,

�sh
µ
ν = 0 .

The �s is a scalar wave operator.

gravitons are equivalent to a pair of minimally coupled
massless scalar fields.

the corresponding quantum fluctuations are so-called “active”.

the power spectrum of the active gravity wave produced
during inflation is flat.
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generation of gravity waves

on the other hand, gravity waves may be generated by a source,

�sh
µ
ν = −16πGNS

µ
ν .

here Sµ
ν is the transverse-tracefree part of the source stress tensor.

in the semiclassical theory, they may be generated by

the renormalized expectation value of its stress tensor (PRD
83, 084027).

quantum fluctuations of the matter (PRD 84, 103515).
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quantum fluctuations of the stress tensor

integrating linearized Einstein equation

�sh
µ
ν = −16πGNS

µ
ν ,

by the retarded Green’s function

�sGR(x , x ′) = −δ(x − x ′)√
−γ

,

gives the induced metric perturbation/fluctuation

hµν(x) = 16πGN

∫
d4x ′

√
−γ′ GR(x , x ′)Sµ

ν(x ′) .



introduction idea metric fluctuations numerical estimation summary

we may form the metric correlation function Kµ
ν
ρ
σ

Kµ
ν
ρ
σ(x , x ′)

= (16π)2

∫
d4y
√
−γ
∫
d4y ′

√
−γ′ GR(x , y)GR(x ′, y ′)Cµ

ν
ρ
σ(y , y ′) ,

in terms of a stress tensor correlation function Cµ
ν
ρ
σ, where

Kµ
ν
ρ
σ(x , x ′) = 〈hµν(x)hρσ(x ′)〉 − 〈hµν(x)〉〈hρσ(x ′)〉 ,

Cµ
ν
ρ
σ(x , x ′) = 〈Sµ

ν(x)Sρ
σ(x ′)〉 − 〈Sµ

ν(x)〉〈Sρ
σ(x ′)〉 .

independent of the renormalization scheme.

anomaly free for the conformal matter.
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the evolution of metric nonlocally depends on matter (history
dependent).

for a conformally invariant field

CFRW
µνρσ (x , x ′) = a−4(η)a−4(η′)CMink

µνρσ (x , x ′) .

define the power spectrum by the Fourier transform of the
equal-time correlation function,

P(k) =

∫
d3R

(2π)3
e ik·RK (η = η′,R)

it is related to the power spectrum in cosmology by
P(k) = 4πk3P(k).
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sudden switching

1st scenario: if quantum fluctuations of matter couple w/ gravity
at the onset of inflation η = η0, and then integrate forward in time
to the end of inflation at η = ηr , then we have

Ps(k) = −4H2

3π
S2k2

(
1 + k2H−2

)
, k|η0| � 1 ,

S is the expansion factor during inflation.

negative power spectra,

blue tilt P(k) ∝ k4,

grows as S2.
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exponential switching

2nd scenario: the coupling to the fluctuating stress tensor is
switched on gradually with a switching function eλη.

note that λ−1 is the approximate conformal time at which the
interaction begins.

Pe(k) = −3H3

8π
S k
(
1 + k2H−2

)
S is the expansion factor during inflation.

negative power spectra,

blue tilt P(k) ∝ k3,

grows as S1.
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as for the negative power spectra: the Wiener-Khinchine theorem
requires a non-negative spectrum for a regular correlation function.

however, for quadratic quantum operators, such as a stress tensor,
the positive definite quantity in this theorem may not exist b/c the
corresponding correlation function is highly singular.

this allows for negative power spectra. (Phys. Lett. A375, 2296.)

another example: for the flat-space EM energy density

P(k) = − k5

960π5
.
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numerical estimation - I

consider perturbations of the order of the present horizon size,
` ≈ 1061`p.

WMAP constrain these perturbations to satisfy h ≤ 10−5.

|Know | ≤ 10−10.

this limits, for exponential switching,

Se < 1040

(
1016GeV

ER

)7

it is compatible with adequate inflation S ≥ 1023 for the
flatness problem.

∵ P < 0, quantum stress tensor fluctuations during inflation
tends to produce ANTI-correlated gravity wave fluctuations.
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numerical estimation - II

consider perturbations of the order of 100 km.

LIGO constrains these perturbations to satisfy h ≤ 10−24.

|Know | ≤ 10−48.

we have a bound on S , for exponential switching,

Se < 1025

(
1013GeV

ER

)7

compatible with adequate inflation if ER ≤ 1013GeV.

∵ P < 0, stress tensor fluctuations during inflation tends to
produce anti-correlated gravity wave fluctuations.
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summary

the gravity waves are generated by quantum stress tensor
fluctuations during inflation.

this induced gravity waves tend to anti-correlated.

its power spectra are negative, nonscale-invariant.

this spectrum also depends on the duration of inflation.

the effect is in principle observable in that gravity wave modes
are no longer exactly solutions of the Lifshitz equation.

this possibility does require the contribution of modes which
were transplanckian at the beginning of inflation.

if we apply similar considerations to different inflation
models/alternative gravity theories, together with observation
data from LISA or BBO, it may improve our understanding of
inflation/transplankian physics.
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