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Motivation

µ problem:

The MSSM is a well-motivated model.
◆ Stabilization of the gauge hierarchy

◆ Cold dark matter etc...

◆ Gauge coupling unification

However, it has an unattractive feature.

Solution: Introduction of a gauge singlet field S.

I. INTRODUCTION

The Minimal Supersymmetric Standard Model (MSSM) is a leading candidate for beyond

the standard model (SM) physics. The motivation for the MSSM is extensive and includes

solutions to the gauge hierarchy problem, the quadratic divergence in the Higgs boson mass,

gauge coupling unification, and a viable dark matter candidate. In the MSSM lagrangian

the Higgsino mixing parameter, µ, is the only massive parameter that is SUSY conserving.

Its value sets the scale of the electroweak symmetry breaking in the MSSM and is thus

required to be at the electroweak (EW) or TeV scale, though a priori it could be at any

value [1].

Supersymmetric models with an additional singlet Higgs field address the fine-tuning

problem of the MSSM by promoting the µ parameter to a dynamical field whose vacuum

expectation value 〈S〉 and coupling λ determine the effective µ-parameter,

µeff = λ〈S〉. (1)

Depending on the symmetry imposed on the theory, a variety of singlet extended models

(xMSSM) may be realized. The models we focus on include the Next-to-Minimal Super-

symmetric SM (NMSSM) [2], the Nearly-Minimal Supersymmetric SM (nMSSM) [3, 4, 5],

and the U(1)′-extended MSSM (UMSSM) [6], as detailed in Table I with the respective

symmetries 1. A Secluded U(1)′-extended MSSM (sMSSM) [8, 9] contains three singlets in

addition to the standard UMSSM Higgs singlet; this model is equivalent to the nMSSM in

the limit that the additional singlet vevs are large, and the trilinear singlet coupling, λs, is

small [10]. The nMSSM and sMSSM will therefore be referred to together as the n/sMSSM.

The additional CP-even and CP-odd Higgs bosons, associated with the inclusion of the

singlet field, yield interesting experimental consequences at colliders. For recent reviews of

these models including their typical Higgs mass spectra and dominant decay modes, see

Refs. [10, 11].

To illustrate the Higgs sector of the extended models in the cases in which the lightest

Higgs is either decoupled or strongly mixed with the MSSM Higgs boson, we present in Fig.

1 the neutral Higgs mass spectra for particular points in parameter space. With sufficient

mixing, the lightest Higgs boson can evade the current LEP bound on the SM Higgs mass in

1 There have also been studies of singlet extensions in a non-supersymmetric context [7].

2

Table 1: Particle content in the Higgs sector of sMSSM

Higgs SU(3)C × SU(2)L × U(1)Y × U(1)′Q′

Hd

(
1,2,−1/2, QHd

)

Hu

(
1,2, 1/2, QHu

)

S (1, 1, 0, QS)
S1 (1, 1, 0, QS1)
S2 (1, 1, 0, QS2)
S3 (1, 1, 0, QS3)

Depending on the mass of charged Higgs bosons, the upper bound can reach above 100
GeV with maximal CP violation.

The paper is organized as follows. In Section 2, we introduce the model and define the
CP -violating phases in a reparametrization invariant way. Theoretical and experimental
constraints are studied in Section 3. We examine the effects of CP violation on the Higgs
boson masses and couplings in Section 4. In particular, the explicit CP -violating case is
presented in Subsection 4.1 and the spontaneous CP -violating case in Subsection 4.2. The
discussion about electric dipole moments (EDMs) is presented in Subsection 4.3. Finally,
we summarize the work in Section 5. Formulas of the Higgs boson masses are given in
Appendix A.

2. The model

The particle content in the Higgs sector of sMSSM comprises two Higgs doublets (Hd,Hu)
and four Higgs singlets (S, S1, S2, S3) [9]. As listed in Table 1, each field is charged under
the SU(3)C × SU(2)L × U(1)Y × U(1)′Q′ gauge symmetry. Though it is desirable to have
U(1)′ charges (Q’s) chosen to make the model anomaly free, a complete analysis of anomaly
cancellation is beyond the scope of this paper 1. Neither will we address the gauge coupling
unification issue here as it requires the knowledge of full particle spectrum in the model.
Instead, we focus exclusively on the Higgs sector. The model which we are considering is
extended so that no dimensionful parameter exists in the superpotential W:

W # −εijλSH i
dH

j
u − λSS1S2S3 , (2.1)

where λ and λS are the dimensionless couplings. Unlike the NMSSM, the U(1)′ symmetry
forbids a cubic term in the superpotential which can cause a domain wall problem if the Z3

symmetry is broken spontaneously. Once the Higgs singlet S develops a VEV, an effective
µ term is generated by µeff = λ〈S〉. Therefore, the scale of µeff is determined by the soft

1To be anomaly free, exotic chiral supermultiplets are generally required [7, 24, 25]. For our purpose,

we assume that they are heavy enough not to affect the phenomenology at the electroweak scale.
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µ2 =
m̃2

u sin2 β − m̃2
d cos2 β

cos 2β
− m2

Z

2

However, the vacuum conditions gives
From the naturalness point of view, µ is supposed to be Mpl or MGUT.

W ! −εijµHi
dH

j
u
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Singlet extended MSSMs
 Next-to-MSSM (NMSSM)

 Nearly MSSM (nMSSM)

 U(1)’ extended MSSM (UMSSM)

 Secluded U(1)’ extended MSSM (sMSSM/ S model)

■ So far, the several models have been proposed:

■ The GUTs predict an extra U(1) symmetry, and then
the extra Z’ boson exists.
■ Once we have the Z’ boson, the large Z-Z’ mixing 
could appear. It’s easy to avoid this in the sMSSM.

No dimensional parameter in the superpotential.



Secluded U(1)’ extended MSSM (sMSSM)

Superpotential:

Particle content of the Higgs sector:

2 Higgs doublets
 + 4 Higgs singlets

[J. Erler, P. Langacker, T. Li, PRD66,015002 (02)]

[T Han, P. Langacker, B. McElarah, PRD70,115006 (04)]

[J Kang, P. Langacker, T. Li, T. Liu, PRL94,061801 (05)]

Table 1: The particle content of the sMSSM Higgs sector

Higgs SU(3)C × SU(2)L × U(1)Y × U(1)′Q′

Hd

(
1,2,−1/2, QHd

)

Hu

(
1,2, 1/2, QHu

)

S (1, 1, 0, QS)
S1 (1, 1, 0, QS1)
S2 (1, 1, 0, QS2)
S3 (1, 1, 0, QS3)

The model which we are considering is extended in such a way that no dimensional
parameter exist in the superpotential W:

W # −εijλSH i
dH

j
u − λSS1S2S3, (2.1)

where λ and λS are dimensionless couplings. Unlike the NMSSM, the U(1)′ symmetry
forbids a cubic term in the superpotential which could cause a domain wall problem if
the Z3 symmetry is broken spontaneously. Once the Higgs singlet S develops a vacuum
expectation value, the effective µ term is generated by µeff = λ〈S〉. Therefore the scale of
µeff is determined by the breaking scale of S.

The Higgs potential at the tree-level is given by

V0 = VF + VD + Vsoft, (2.2)

where

VF = |λ|2{|εijΦi
dΦ

j
u|2 + |S|2(Φ†

dΦd + Φ†
uΦu)} + |λS |2(|S1S2|2 + |S2S3|2 + |S3S1|2), (2.3)

VD =
g2
2 + g2

1

8
(Φ†

dΦd − Φ†
uΦu)2 +

g2
2

2
|Φ†

dΦu|2

+
g′21
2

(
QHdΦ

†
dΦd + QHuΦ†

uΦu + QS |S|2 +
3∑

i=1

QSi |Si|2
)2

, (2.4)

Vsoft = m2
1Φ

†
dΦd + m2

2Φ
†
uΦu + m2

S |S|2 +
3∑

i=1

m2
Si
|Si|2

−(εijλAλSΦi
dΦ

j
u + λSAλSS1S2S3 + m2

SS1
SS1 + m2

SS2
SS2 + m2

S1S2
S†

1S2 + h.c.).

(2.5)

where g2, g1 and g′1 are the SU(2), U(1), and U(1)′ gauge couplings, respectively. The soft
SUSY breaking masses mSS1 and mSS2 are introduced to break the two unwanted global
U(1) symmetries. This choice is called Model I, where QS = −QS1 = −QS2 = QS3/2 and
QHd + QHu + QS = 0. The (S1, S2, S3) sector can interact with (Hd, Hu, S) sector through
the g′1 coupling, mSS1 and mSS2 .
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)
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Depending on the mass of charged Higgs bosons, the upper bound can reach above 100
GeV with maximal CP violation.

The paper is organized as follows. In Section 2, we introduce the model and define the
CP -violating phases in a reparametrization invariant way. Theoretical and experimental
constraints are studied in Section 3. We examine the effects of CP violation on the Higgs
boson masses and couplings in Section 4. In particular, the explicit CP -violating case is
presented in Subsection 4.1 and the spontaneous CP -violating case in Subsection 4.2. The
discussion about electric dipole moments (EDMs) is presented in Subsection 4.3. Finally,
we summarize the work in Section 5. Formulas of the Higgs boson masses are given in
Appendix A.

2. The model

The particle content in the Higgs sector of sMSSM comprises two Higgs doublets (Hd,Hu)
and four Higgs singlets (S, S1, S2, S3) [9]. As listed in Table 1, each field is charged under
the SU(3)C × SU(2)L × U(1)Y × U(1)′Q′ gauge symmetry. Though it is desirable to have
U(1)′ charges (Q’s) chosen to make the model anomaly free, a complete analysis of anomaly
cancellation is beyond the scope of this paper 1. Neither will we address the gauge coupling
unification issue here as it requires the knowledge of full particle spectrum in the model.
Instead, we focus exclusively on the Higgs sector. The model which we are considering is
extended so that no dimensionful parameter exists in the superpotential W:

W # −εijλSH i
dH

j
u − λSS1S2S3 , (2.1)

where λ and λS are the dimensionless couplings. Unlike the NMSSM, the U(1)′ symmetry
forbids a cubic term in the superpotential which can cause a domain wall problem if the Z3

symmetry is broken spontaneously. Once the Higgs singlet S develops a VEV, an effective
µ term is generated by µeff = λ〈S〉. Therefore, the scale of µeff is determined by the soft

1To be anomaly free, exotic chiral supermultiplets are generally required [7, 24, 25]. For our purpose,

we assume that they are heavy enough not to affect the phenomenology at the electroweak scale.
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Vsoft = m̃2
dΦ

†
dΦd + m̃2

uΦ
†
uΦu + m2

S|S|2 +
3∑

i=1

m2
Si
|Si|2

−(εijλAλSΦi
dΦ

j
u + λSAλSS1S2S3 + h.c.). (1.16)

1.5 Model I and II

In order to avoid the two unwanted global U(1) symmetries, the following two charge assign-
ments should be adopted:

QS1 = QS2 = −1

2
QS3 or QS1 = −QS2 , QS3 = 0. (1.17)

We focus on the former case only. In this case there are two possibilities as follows:

QS = ±QS1 Model I,

QS = ±QS3 Model II.
(1.18)

• Model I

QS = −QS1 = −QS2 =
1

2
QS3 ,

QHd
+ QHu + QS = 0.

(1.19)

The soft SUSY breaking terms are given by

V I
soft = m2

SS1
SS1 + m2

SS2
SS2 + m2

S1S2
S†

1S2 + h.c.. (1.20)

• Model II

QS1 = QS2 =
1

2
QS = −1

2
QS3 ,

QHd
+ QHu + QS = 0.

(1.21)

The soft SUSY breaking terms are given by

V II
soft = m2

SS3
SS3 + m2

S1S2
S†

1S2 + h.c.. (1.22)

2 Mass formulae

We parameterize the Higgs fields as

Φd = eiθ1

( 1√
2
(vd + hd + iad)

φ−
d

)
, Φu = eiθ2

(
φ+

u
1√
2
(vu + hu + iau)

)
, (2.1)

S =
eiθS

√
2

(vS + hS + iaS), Si =
eiθSi

√
2

(vSi + hSi + iaSi), (i = 1 − 3). (2.2)

4

VF = |λ|2
{

|εijΦi
dΦ

j
u|2 + |S|2(Φ†

dΦd + Φ†
uΦu)

}

+|λS |2(|S1S2|2 + |S2S3|2 + |S3S1|2),

VD =
g2
2 + g2

1

8
(Φ†

dΦd − Φ†
uΦu)2 +

g2
2

2
|Φ†

dΦu|2

+
g′2
1

2

(
QHdΦ†

dΦd + QHuΦ†
uΦu + QS |S|2 +

3∑

i=1

QSi |Si|2
)2

,

Vsoft = m̃2
dΦ

†
dΦd + m̃2

uΦ†
uΦu + m2

S |S|2 +
3∑

i=1

m2
Si

|Si|2

−(εijλAλSΦi
dΦ

j
u + λSAλS S1S2S3

−m2
SS1

SS1 −m2
SS2

SS2 −m2
S1S2

S†
1S2 + h.c.).

VF = |λ|2|εijΦ
i
dΦ

j
u|2 + |λS|2(|S1S2|2 + |S2S3|2 + |S3S1|2)

+|λS|2
(
Φ†

dΦd + Φ†
uΦu

)
− λS

(
q̃i†
L f (u)∗ũR

)
Φi

d − (λS)∗Φi†
d

(
ũ†

Rf (u)T q̃i
L

)
(1.9)

−λS
(
l̃i†Lf (e)∗ẽR + q̃i†

L f (d)∗d̃R

)
Φi

u − (λS)∗Φi†
u

(
ẽ†Rf (e)T l̃iL + d̃†

Rf (d)T q̃i
L

)

+
(
ẽ†Rf (e)T f (e)∗ẽR + d̃†

Rf (d)f (d)∗d̃R

)
Φ†

dΦd +
(
ũ†

Rf (u)T f (u)∗ũR

)
Φ†

uΦu

−
(
ũ†

Rf (u)T f (d)∗d̃R

)
Φ†

dΦu −
(
d̃†

Rf (d)T f (u)∗ũR

)
Φ†

uΦd

+εijεkl

[(
l̃j†L f (e)∗f (e)T l̃lL + q̃j†

L f (d)∗f (d)T q̃l
L

)
Φi†

d Φk
d +

(
q̃j†
L f (u)∗f (u)T q̃l

L

)
Φi†

u Φk
u

]

+
(
l̃i†Lf (e)∗ẽR + q̃i†

L f (d)∗d̃R

)(
ẽ†Rf (e)T l̃iL + d̃†

Rf (d)T q̃i
L

)

+
(
q̃i†
L f (u)∗ũR

)(
ũ†

Rf (u)T q̃i
L

)
, (1.10)

VD =
g′2
1

2

(
QHd

Φ†
dΦd + QHuΦ†

uΦu + QS|S|2 +
3∑

i=1

QSi|Si|2
)2

+
g2
1 + g2

2

8

(
Φ†

dΦd − Φ†
uΦu

)2

+
g2
2

2

(
Φ†

dΦu

)(
Φ†

uΦd

)
(1.11)

−1

2

[(
g2
2

2
+

g2
1

6

)
q̃†ALq̃AL +

g2
1

3
d̃†

ARd̃AR − 2g2
1

3
ũ†

ARũAR +

(
g2
2

2
− g2

1

2

)
l̃†ALl̃AL + g2

1 ẽ
†
ARẽAR

]
Φ†

dΦd

−1

2

[(
g2
2

2
− g2

1

6

)
q̃†ALq̃AL − g2

1

3
d̃†

ARd̃AR +
2g2

1

3
ũ†

ARũAR +

(
g2
2

2
+

g2
1

2

)
l̃†ALl̃AL − g2

1 ẽ
†
ARẽAR

]
Φ†

uΦu

+
g2
2

2

(
q̃i†
ALq̃j

AL + l̃i†ALl̃jAL

)(
Φj†

d Φi
d + Φj†

u Φi
u

)

+
g2
3

4

(
q̃I†
ALq̃JAL − d̃I†

ARd̃JAR − ũI†
ARũJAR

)(
q̃J†
BLq̃IBL − d̃J†

BRd̃IBR − ũJ†
BRũIBR

)

+
g2
2

4

(
q̃i†
ALq̃j

AL + l̃i†ALl̃jAL

)(
q̃j†
BLq̃i

Bl + l̃j†BLl̃iBl

)

−g2
3

12

(
q̃†ALq̃AL − d̃†

ARd̃AR − ũ†
ARũAR

)2

− g2
2

8

(
q̃†ALq̃AL + l̃†ALl̃AL

)2

+
g2
1

2

(
1

6
q̃†ALq̃AL +

1

3
d̃†

ARd̃AR − 2

3
ũ†

ARũAR − 1

2
l̃†ALL̃AL + ẽ†ARẽAR

)2

. (1.12)

1.4 Higgs potential

The Higgs potential at the tree-level is given by

V0 = VF + VD + Vsoft, (1.13)

where

VF = |λ|2
{
|εijΦ

i
dΦ

j
u|2 + |S|2(Φ†

dΦd + Φ†
uΦu)

}

+|λS|2(|S1S2|2 + |S2S3|2 + |S3S1|2), (1.14)

VD =
g2
2 + g2

1

8
(Φ†

dΦd − Φ†
uΦu)

2 +
g2
2

2
|Φ†

dΦu|2

+
g′2
1

2

(
QHd

Φ†
dΦd + QHuΦ†

uΦu + QS|S|2 +
3∑

i=1

QSi|Si|2
)2

, (1.15)

3

Higgs VEVs:

Tree-level Higgs potential



Vsoft = m̃2
dΦ

†
dΦd + m̃2

uΦ
†
uΦu + m2

S|S|2 +
3∑
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m2
Si
|Si|2

−(εijλAλSΦi
dΦ

j
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j
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}
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VD =
g2
2 + g2

1

8
(Φ†

dΦd − Φ†
uΦu)2 +

g2
2

2
|Φ†

dΦu|2

+
g′2
1

2

(
QHdΦ†

dΦd + QHuΦ†
uΦu + QS |S|2 +

3∑

i=1

QSi |Si|2
)2

,

Vsoft = m̃2
dΦ

†
dΦd + m̃2

uΦ†
uΦu + m2

S |S|2 +
3∑

i=1

m2
Si

|Si|2

−(εijλAλSΦi
dΦ

j
u + λSAλS S1S2S3

−m2
SS1

SS1 −m2
SS2

SS2 −m2
S1S2

S†
1S2 + h.c.).

VF = |λ|2|εijΦ
i
dΦ

j
u|2 + |λS|2(|S1S2|2 + |S2S3|2 + |S3S1|2)

+|λS|2
(
Φ†

dΦd + Φ†
uΦu

)
− λS

(
q̃i†
L f (u)∗ũR

)
Φi

d − (λS)∗Φi†
d

(
ũ†

Rf (u)T q̃i
L

)
(1.9)

−λS
(
l̃i†Lf (e)∗ẽR + q̃i†

L f (d)∗d̃R

)
Φi

u − (λS)∗Φi†
u

(
ẽ†Rf (e)T l̃iL + d̃†

Rf (d)T q̃i
L

)

+
(
ẽ†Rf (e)T f (e)∗ẽR + d̃†

Rf (d)f (d)∗d̃R

)
Φ†

dΦd +
(
ũ†

Rf (u)T f (u)∗ũR

)
Φ†

uΦu

−
(
ũ†

Rf (u)T f (d)∗d̃R

)
Φ†

dΦu −
(
d̃†

Rf (d)T f (u)∗ũR

)
Φ†

uΦd

+εijεkl

[(
l̃j†L f (e)∗f (e)T l̃lL + q̃j†

L f (d)∗f (d)T q̃l
L

)
Φi†

d Φk
d +

(
q̃j†
L f (u)∗f (u)T q̃l

L

)
Φi†

u Φk
u

]

+
(
l̃i†Lf (e)∗ẽR + q̃i†

L f (d)∗d̃R

)(
ẽ†Rf (e)T l̃iL + d̃†

Rf (d)T q̃i
L

)

+
(
q̃i†
L f (u)∗ũR

)(
ũ†

Rf (u)T q̃i
L

)
, (1.10)

VD =
g′2
1

2

(
QHd

Φ†
dΦd + QHuΦ†

uΦu + QS|S|2 +
3∑

i=1

QSi|Si|2
)2

+
g2
1 + g2

2

8

(
Φ†

dΦd − Φ†
uΦu

)2

+
g2
2

2

(
Φ†

dΦu

)(
Φ†

uΦd

)
(1.11)
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2
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g2
2

2
+

g2
1

6
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q̃†ALq̃AL +

g2
1

3
d̃†

ARd̃AR − 2g2
1

3
ũ†

ARũAR +

(
g2
2

2
− g2

1

2

)
l̃†ALl̃AL + g2

1 ẽ
†
ARẽAR

]
Φ†

dΦd

−1

2

[(
g2
2

2
− g2

1

6

)
q̃†ALq̃AL − g2

1

3
d̃†

ARd̃AR +
2g2

1

3
ũ†

ARũAR +
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2

2
+
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1

2

)
l̃†ALl̃AL − g2

1 ẽ
†
ARẽAR

]
Φ†

uΦu

+
g2
2

2

(
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AL + l̃i†ALl̃jAL

)(
Φj†

d Φi
d + Φj†

u Φi
u

)

+
g2
3

4

(
q̃I†
ALq̃JAL − d̃I†

ARd̃JAR − ũI†
ARũJAR

)(
q̃J†
BLq̃IBL − d̃J†

BRd̃IBR − ũJ†
BRũIBR

)

+
g2
2

4

(
q̃i†
ALq̃j

AL + l̃i†ALl̃jAL

)(
q̃j†
BLq̃i

Bl + l̃j†BLl̃iBl

)

−g2
3

12

(
q̃†ALq̃AL − d̃†

ARd̃AR − ũ†
ARũAR

)2

− g2
2

8

(
q̃†ALq̃AL + l̃†ALl̃AL
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+
g2
1

2

(
1

6
q̃†ALq̃AL +

1

3
d̃†

ARd̃AR − 2

3
ũ†

ARũAR − 1

2
l̃†ALL̃AL + ẽ†ARẽAR

)2

. (1.12)

1.4 Higgs potential

The Higgs potential at the tree-level is given by

V0 = VF + VD + Vsoft, (1.13)

where

VF = |λ|2
{
|εijΦ

i
dΦ

j
u|2 + |S|2(Φ†

dΦd + Φ†
uΦu)

}

+|λS|2(|S1S2|2 + |S2S3|2 + |S3S1|2), (1.14)

VD =
g2
2 + g2

1

8
(Φ†

dΦd − Φ†
uΦu)

2 +
g2
2

2
|Φ†

dΦu|2

+
g′2
1

2

(
QHd

Φ†
dΦd + QHuΦ†

uΦu + QS|S|2 +
3∑

i=1

QSi|Si|2
)2

, (1.15)
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Higgs VEVs:

complex parameters
5-4=1 physical
explicit CPV

Tree-level Higgs potential



Vacuum stability:

ϕ1 = θS + θS1 , ϕ2 = θS + θS2 , ϕ3 = θS + θ1 + θ2, ϕ4 = θS1 + θS2 + θS3

where

• Tadpole conditions

1

vd

〈
∂V0

∂hd

〉
= m2

1 +
g2
2 + g2

1

8
(v2

d − v2
u) − Rλ

vuvS

vd
+

|λ|2

2
(v2

u + v2
S) +

g′2
1

2
QHd

∆ = 0, (2.3)

1

vu

〈
∂V0

∂hu

〉
= m2

2 −
g2
2 + g2

1

8
(v2

d − v2
u) − Rλ

vdvS

vu
+

|λ|2

2
(v2

d + v2
S) +

g′2
1

2
QHu∆ = 0, (2.4)

1

vS

〈
∂V0

∂hS

〉
= m2

S + Re(m2
SS1

eiϕ1)
vS1

vS
+ Re(m2

SS2
eiϕ2)

vS2

vS
− Rλ

vdvu

vS

+
|λ|2

2
(v2

d + v2
u) +

g′2
1

2
QS∆ = 0, (2.5)

1

vS1

〈
∂V0

∂hS1

〉
= m2

S1
+ Re(m2

SS1
eiϕ1)

vS

vS1

+ Re(m2
S1S2

eiϕ5)
vS2

vS1

− RλS

vS2vS3

vS1

+
|λS|2

2
(v2

S2
+ v2

S3
) +

g′2
1

2
QS1∆ = 0, (2.6)

1

vS2

〈
∂V0

∂hS2

〉
= m2

S2
+ Re(m2

SS2
eiϕ2)

vS

vS2

+ Re(m2
S1S2

eiϕ5)
vS1

vS2

− RλS

vS1vS3

vS2

+
|λS|2

2
(v2

S1
+ v2

S3
) +

g′2
1

2
QS2∆ = 0, (2.7)

1

vS3

〈
∂V0

∂hS3

〉
= m2

S3
− RλS

vS1vS2

vS3

+
|λS|2

2
(v2

S1
+ v2

S2
) +

g′2
1

2
QS3∆ = 0, (2.8)

1

vu

〈
∂V0

∂ad

〉
=

1

vd

〈
∂V0

∂au

〉
= IλvS = 0, (2.9)

〈
∂V0

∂aS

〉
= −Im(m2

SS1
eiϕ1)vS1 − Im(m2

SS2
eiϕ2)vS2 + Iλvdvu = 0, (2.10)

〈
∂V0

∂aS1

〉
= −Im(m2

SS1
eiϕ1)vS + Im(m2

S1S2
eiϕ5)vS2 + IλSvS2vS3 = 0, (2.11)

〈
∂V0

∂aS2

〉
= −Im(m2

SS2
eiϕ2)vS − Im(m2

S1S2
eiϕ5)vS1 + IλSvS1vS3 = 0, (2.12)

〈
∂V0

∂aS3

〉
= IλSvS1vS2 = 0, (2.13)

where

ϕ1 = θS + θS1 , ϕ2 = θS + θS2 , ϕ3 = θS + θ1 + θ2, (2.14)

ϕ4 = θS1 + θS2 + θS3 , ϕ5 = −θS1 + θS2 = −ϕ1 + ϕ2, (2.15)

∆ = QHd
v2

d + QHuv
2
u + QSv2

S +
3∑

i=1

QSiv
2
Si

, (2.16)

Rλ =
Re(λAλeiϕ3)√

2
, Iλ =

Im(λAλeiϕ3)√
2

, (2.17)

RλS =
Re(λSAλSeiϕ4)√

2
, IλS =

Im(λSAλSeiϕ4)√
2

. (2.18)

5

Rλ = Re(λAλeiϕ3 )√
2

, RλS = Rm(λAλS
eiϕ4 )√

2
,

The tree-level effective potential:

vS = vSi (i = 1, 2 other VEV’s are zero), we require

−1

2
|ytyb|2v2

dv
2
uvS

(
|yb|2 −

g2
2

2

)
Rt −

1

2
|ytyb|2v2

dv
2
uvS

(
|yt|2 −

g2
2

2

)
Rb

+
1

2
|ytyb|2vdvu|AtAb|2 − |ytyb|2vdvu(RtRb + ItIb)v

2
S, (3.22)

where M2
t̃,b̃

is the stop/sbottom mass matrix, Tij = (M2
t̃
)ij and Bij = (M2

b̃
)ij, and |µ|2 =

|λ|2v2
S/2.

4 Vacuum stability

4.1 tree-level

The effective potential at the tree-level is

V0 =
1

2
m2

1v
2
d +

1

2
m2

2v
2
u +

1

2
m2

Sv2
S +

∑

i

1

2
m2

Si
v2

Si

+Re(m2
SS1

eiϕ1)vSvS1 + Re(m2
SS2

eiϕ2)vSvS2 + Re(m2
S1S2

eiϕ5)vS1vS2 ,

−RλvdvuvS − RλSvS1vS2vS3 +
g2
2 + g2

1

32
(v2

d − v2
u)

2

+
|λ|2
4

(v2
dv

2
u + v2

dv
2
S + v2

uv
2
S) +

|λS|2

4
(v2

S1
v2

S2
+ v2

S2
v2

S3
+ v2

S3
v2

S1
) +

g′2
1

8
∆2. (4.1)

In the D-flat directions, vS = vSi (i = 1, 2 other VEV’s are zero), we obtain

V0 =
1

2

(
m2

S + m2
Si

+ 2Re(m2
SSi

eiϕi)
)
v2

S. (4.2)

Thus the stability conditions of the Higgs potential are

m2
S + m2

Si
+ 2Re(m2

SSi
eiϕi) > 0, i = 1, 2. (4.3)

With tadpole conditions, the tree-level potential becomes

〈V0〉 =
1

2
RλvdvuvS +

1

2
RλSvS1vS2vS3 −

g2
2 + g2

1

32
(v2

d − v2
u)

2

− |λ|2
4

(v2
dv

2
u + v2

dv
2
S + v2

uv
2
S) − |λS|2

4
(v2

S1
v2

S2
+ v2

S2
v2

S3
+ v2

S3
v2

S1
) − g′2

1

8
∆2. (4.4)

We can eliminate Rλ by using Eq. (2.86),

〈V0〉 =
v2

8
(m2

H± sin2 2β − m2
W sin2 2β − m2

Z cos2 2β) − |λ|2
4

v2v2
S +

1

2
RλSvS1vS2vS3 ,

− |λS|2
4

(v2
S1

v2
S2

+ v2
S2

v2
S3

+ v2
S3

v2
S1

) − g′2
1

8
∆2. (4.5)

Note that 〈V0〉 < 0, the upper bound of the charged Higgs boson mass can be obtain

m2
H± < m2

W +
2|λ|2v2

S

sin2 2β
+ m2

Z cot2 2β − 4RλS

v2 sin2 2β
vS1vS2vS3

+
2|λS|2

v2 sin2 2β
(v2

S1
v2

S2
+ v2

S2
v2

S3
+ v2

S3
v2

S1
) +

g′2
1

v2 sin2 2β
∆2. (4.6)
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SCPV

(unbounded from below)

−g2
2

4
vdvu

(
|yt|2 + |yb|2 −

g2
2

2

)
(m2

q̃a
− T22)(m

2
q̃a
− B22) +

1

2
|ytyb|2vdvu|µ|4

+
1

2
|µ|2vdvu
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− m2

q̃a

(
|yt|2 + |yb|2 −
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2

2

)
(|yt|2 + |yb|2)

+|ytyb|2
(

2m2
q̃ + 2m2

t + 2m2
b − m2

W − g2
1

12
v2 cos 2β

)

+|yt|2
(
|yt|2 −

g2
2

2

)
B22 + |yb|2

(
|yb|2 −

g2
2

2

)
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]

+
|yt|2

2
vdvu

(
|yb|2 −
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2

2

)
(m2

q̃a
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|yb|2

2
vdvu

(
|yt|2 −
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2

2

)
(m2

q̃a
− T22)|Ab|2

+
1

2
|ytyb|2vdvu

(
2m2

q̃a
− 2m2

q̃ − m2
W +

g2
1

12
v2 cos 2β

)
Re(AtA

∗
b)

−1

2
|ytyb|2v2

dv
2
uvS

(
|yb|2 −
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2

2

)
Rt −

1

2
|ytyb|2v2

dv
2
uvS

(
|yt|2 −

g2
2

2

)
Rb

+
1

2
|ytyb|2vdvu|AtAb|2 − |ytyb|2vdvu(RtRb + ItIb)v

2
S, (3.23)

where M2
t̃,b̃

is the stop/sbottom mass matrix, Tij = (M2
t̃
)ij and Bij = (M2

b̃
)ij, and |µ|2 =

|λ|2v2
S/2.

4 Vacuum stability

4.1 tree-level

The effective potential at the tree-level is

〈V0〉 =
1

2
m2

1v
2
d +

1

2
m2

2v
2
u +

1

2
m2

Sv2
S +

∑

i

1

2
m2

Si
v2

Si

−Re(m2
SS1

eiϕ1)vSvS1 − Re(m2
SS2

eiϕ2)vSvS2 − Re(m2
S1S2

eiϕ12)vS1vS2 ,

−RλvdvuvS − RλSvS1vS2vS3 +
g2
2 + g2

1

32
(v2

d − v2
u)

2

+
|λ|2

4
(v2

dv
2
u + v2

dv
2
S + v2

uv
2
S) +

|λS|2
4

(v2
S1

v2
S2

+ v2
S2

v2
S3

+ v2
S3

v2
S1

) +
g′2
1

8
∆2. (4.1)

In the D-flat directions, vS = vSi (i = 1, 2 other VEV’s are zero), we obtain

〈V0〉 =
1

2

(
m2

S + m2
Si
− 2Re(m2

SSi
eiϕi)

)
v2

S. (4.2)

Thus the stability conditions of the Higgs potential are

m2
S + m2

Si
− 2Re(m2

SSi
eiϕi) > 0, i = 1, 2. (4.3)

By use of the tadpole conditions, the left-handed-side takes the form

m2
S + m2

S1
− 2Re(m2

SS1
eiϕ1)
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1
vS3

〈
∂V0

∂hS3

〉
= m2

S3
− RλS

vS1vS2

vS3

+
|λS |2

2
(v2

S1
+ v2

S2
) +

g′21
2

QS3∆ = 0, (2.15)

1
vu

〈
∂V0

∂ad

〉
=

1
vd

〈
∂V0

∂au

〉
= IλvS = 0, (2.16)

〈
∂V0

∂aS

〉
= −Im(m2

SS1
eiϕ1)vS1 − Im(m2

SS2
eiϕ2)vS2 + Iλvdvu = 0, (2.17)

〈
∂V0

∂aS1

〉
= −Im(m2

SS1
eiϕ1)vS + Im(m2

S1S2
eiϕ5)vS2 + IλSvS2vS3 = 0, (2.18)

〈
∂V0
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〉
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eiϕ2)vS − Im(m2

S1S2
eiϕ5)vS1 + IλSvS1vS3 = 0, (2.19)

〈
∂V0

∂aS3

〉
= IλSvS1vS2 = 0, (2.20)

where

∆ = QHdv
2
d + QHuv2

u + QSv2
S +

3∑

i=1

QSiv
2
Si

, (2.21)

Rλ =
Re(λAλeiϕ3)√

2
, Iλ =

Im(λAλeiϕ3)√
2

, (2.22)

RλS =
Re(λSAλSeiϕ4)√

2
, IλS =

Im(λSAλSeiϕ4)√
2

. (2.23)

2.1 One-loop corrections to the Higgs boson masses

In this subsection we calculate the one-loop corrections to the Higgs masses [3]. Here we
only consider the corrections from the 3rd-generation of quarks (t, b) and squarks (t̃1,2, b̃1,2).
The 1-loop corrections of the effective potential is given by

V1 =
NC

32π2

∑

q=t,b




∑

a=1,2

m̄4
q̃a

(
ln

m̄2
q̃a

M2
− 3

2

)
− 2m̄4

q

(
ln

m̄2
q

M2
− 3

2

)

 , (2.24)

which is regularized by DR-scheme, and M is a renormalization scale which we take a weak
scale. NC denotes the number of color, and m̄’s are the field dependent masses.

3. Theoretical constraints

Here we discuss the theoretical constraints in this model. Unlike the MSSM, the trilinear
terms can make the Higgs potential unstable.

3.1 Vacuum stability

The effective potential at the tree-level is

V0 =
1
2
m2

1v
2
d +

1
2
m2

2v
2
u +

1
2
m2

Sv2
S +

∑
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1
2
m2

Si
v2
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+Re(m2
SS1

eiϕ1)vSvS1 + Re(m2
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eiϕ2)vSvS2 + Re(m2
S1S2

eiϕ5)vS1vS2 ,

– 5 –

Here we consider the 1-loop corrections from 
top/bottom and stop/sbottom.

1
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∂V0
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〉
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− RλS
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+
|λS |2

2
(v2
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+ v2

S2
) +

g′21
2

QS3∆ = 0, (2.15)

1
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〈
∂V0

∂ad

〉
=

1
vd

〈
∂V0

∂au

〉
= IλvS = 0, (2.16)

〈
∂V0

∂aS

〉
= −Im(m2

SS1
eiϕ1)vS1 − Im(m2

SS2
eiϕ2)vS2 + Iλvdvu = 0, (2.17)

〈
∂V0

∂aS1

〉
= −Im(m2

SS1
eiϕ1)vS + Im(m2

S1S2
eiϕ5)vS2 + IλSvS2vS3 = 0, (2.18)

〈
∂V0
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〉
= −Im(m2

SS2
eiϕ2)vS − Im(m2

S1S2
eiϕ5)vS1 + IλSvS1vS3 = 0, (2.19)

〈
∂V0

∂aS3

〉
= IλSvS1vS2 = 0, (2.20)

where

∆ = QHdv
2
d + QHuv2

u + QSv2
S +

3∑

i=1

QSiv
2
Si

, (2.21)

Rλ =
Re(λAλeiϕ3)√

2
, Iλ =

Im(λAλeiϕ3)√
2

, (2.22)

RλS =
Re(λSAλSeiϕ4)√

2
, IλS =

Im(λSAλSeiϕ4)√
2

. (2.23)

2.1 One-loop corrections to the Higgs boson masses

In this subsection we calculate the one-loop corrections to the Higgs masses [3]. Here we
only consider the corrections from the 3rd-generation of quarks (t, b) and squarks (t̃1,2, b̃1,2).
The 1-loop corrections of the effective potential is given by

V1 =
NC

32π2

∑

q=t,b




∑

a=1,2

m̄4
q̃a

(
ln

m̄2
q̃a

M2
− 3

2

)
− 2m̄4

q

(
ln

m̄2
q

M2
− 3

2

)

 , (2.24)

which is regularized by DR-scheme, and M is a renormalization scale which we take a weak
scale. NC denotes the number of color, and m̄’s are the field dependent masses.

3. Theoretical constraints

Here we discuss the theoretical constraints in this model. Unlike the MSSM, the trilinear
terms can make the Higgs potential unstable.

3.1 Vacuum stability

The effective potential at the tree-level is

V0 =
1
2
m2

1v
2
d +

1
2
m2

2v
2
u +

1
2
m2

Sv2
S +

∑

i

1
2
m2

Si
v2
Si

+Re(m2
SS1

eiϕ1)vSvS1 + Re(m2
SS2

eiϕ2)vSvS2 + Re(m2
S1S2

eiϕ5)vS1vS2 ,

– 5 –

[N.B.]
The secluded sector (S1, S2, S3) is not corrected by those of particles.
∆M2

secluded = 0.

Effective potential @1-loop

where tan β ≡ vu/vd. We diagonalize the reduced 11 × 11 matrix M̃2
N numerically:

OTM̃2
NO = diag(m2

G′0 ,m2
1,m

2
2,m

2
3, m

2
4, m

2
5,m

2
6,m

2
7,m

2
8,m

2
9,m

2
10), where mi < mi+1 (i =

1 − 9) and O is an orthogonal matrix. The explicit expressions for the matrix elements in
Eq. (2.27) at the tree level are presented in Appendix A.

A complex m2
S1S2

and/or a nontrivial ϕ12 can yield nonzero mixing terms between
CP -even and CP -odd Higgs bosons:

M2
SP ∝ Im(m2

S1S2
eiϕ12) . (2.29)

This gives rise to broken CP symmetry. A detailed discussion about the CP -violating
effects on the Higgs masses and couplings will be presented in Subsections 4.1 and 4.2.
In the CP -conserving case, M2

SP = 0 and Eq. (2.27) can be decomposed into two 6 × 6
sub-matrices.

Now we consider the one-loop corrections to the Higgs boson masses. It suffices for the
current investigation to take into account the contributions of the third-generation quarks
(t, b) and squarks (t̃1,2, b̃1,2). The one-loop effective potential is given by [26]

V1 =
NC

32π2

∑

q=t,b




∑

a=1,2

m̄4
q̃a

(
ln

m̄2
q̃a

M2
− 3

2

)
− 2m̄4

q

(
ln

m̄2
q

M2
− 3

2

)

 , (2.30)

which is regularized using the DR-scheme. Here NC denotes the number of colors, m̄’s are
the background-field-dependent masses, and M is the renormalization scale. We determine
M by the condition 〈V1〉 = 0, which implies

lnM2 =
∑

q[
∑

a m4
q̃a

lnm2
q̃a

− 2m4
q lnm2

q ]∑
q[

∑
a m4

q̃a
− 2m4

q ]
− 3

2
. (2.31)

With the one-loop corrections, the tadpole conditions become

0 =
〈

∂V0

∂φ

〉
+

NC

16π2

∑

q=t,b




∑

a=1,2

m̄2
q̃a

〈
∂m̄2

q̃a

∂φ

〉 (
ln

m2
q̃a

M2
− 1

)
− 2m2

q

〈
∂m̄2

q

∂φ

〉 (
ln

m2
q

M2
− 1

)

 ,

(2.32)

where m2 = 〈m̄2〉 and φ denotes all species of the Higgs fields. The one-loop corrections of
the third-generation quarks and squarks to the Higgs boson masses have exactly the same
form as in the NMSSM. The explicit formulas can be found in Ref. [3],

2.2 The mass matrix of the charged Higgs bosons

The charged Higgs sector is the same as in the MSSM. Once the µ term in the mass formula
of the MSSM charged Higgs boson is replaced by the effective µ term, µeff = λvSeiθS/

√
2,

we can readily obtain the mass of the charged Higgs bosons in the sMSSM. Its squared
mass matrix is given by

(
φ+

d φ+
u

)
M2

±

(
φ−

d

φ−
u

)
. (2.33)
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■ In our analysis, we use the 1-loop effective potential.



Mass matrix

For CP conserving case,M2
SP = 0. ⇒M2

S ,M2
P ∈M(6,R).

M2
P ∈ M(4,R)

decoupling of the 2 NG bosons

Neutral Higgs bosons:

CP-even Higgs
CP-odd Higgs

For the CP violating case,M2
N is a 10× 10 symmetric matrix.

G0, G′0

CP -even Higgs: H1,H2,H3,H4,H5,H6

CP -odd Higgs: A1, A2, A3, A4

Table 2: Physical Higgs bosons in the sMSSM

CP -even Higgs bosons CP -odd Higgs bosons charged Higgs bosons
CPC H1,H2,H3,H4,H5,H6 A1, A2, A3, A4 H+,H−

CPV H1,H2,H3, H4,H5,H6,H7,H8,H9,H10 H+,H−

RλS =
Re(λSAλSeiϕ4)√

2
, IλS =

Im(λSAλSeiϕ4)√
2

, (2.23)

where 〈· · ·〉 is defined such that all Higgs fluctuating fields are taken to be zero. Here
all the Higgs VEVs are assumed to be nonzero. For some parameter sets, however, a
global minimum can be located at the place where some of the Higgs VEVs are zero.
Of course, such a minimum cannot be found from Eqs. (2.10)-(2.20). We will discuss
the method of minimum search in Section 3. In the current investigation, we do not
specify any SUSY breaking scenario. Hence the soft SUSY breaking masses are given by
the tadpole conditions for the CP -even Higgs fields Eqs. (2.10)-(2.15). After solving the
tadpole conditions for the CP -odd Higgs fields from Eqs. (2.16)-(2.20), we find

Iλ = IλS = 0, (2.24)

Im(m2
SS1

eiϕ1) = Im(m2
S1S2

eiϕ12)
vS2

vS
, (2.25)

Im(m2
SS2

eiϕ2) = −Im(m2
S1S2

eiϕ12)
vS1

vS
. (2.26)

The CP -violating phases must satisfy Eqs. (2.24)-(2.26) for the vacuum. As a convention,
we choose the independent physical CP -violating phase to be θphys = Arg(m2

S1S2
) + ϕ12.

2.1 The mass matrix of the neutral Higgs bosons

The squared mass matrix of the neutral Higgs bosons is a 12×12 symmetric matrix taking
the form

1
2

(
HT AT

)
M2

N

(
H

A

)
, M2

N =

(
M2

S M2
SP

(M2
SP )T M2

P

)
, (2.27)

where HT ≡ (hT
O = (hd hu hS) hT

S = (hS1 hS2 hS3)), AT ≡ (aT
O = (ad au aS) aT

S =
(aS1 aS2 aS3)). The subscripts O and S on h/a denote ‘ordinary’ and ‘secluded’, re-
spectively. In Table 2, the physical Higgs bosons in this model are listed for both the
CP -conserving (CPC) and the CP -violating (CPV) cases. After the symmetry breaking,
two neutral Nambu-Goldstone bosons G0 and G′0 appear and are absorbed by the Z and
Z ′ bosons, respectively. It is straightforward to decouple G0 from the squared mass matrix
(2.27) analytically by performing the rotation

(
ad

au

)
=

(
cos β sinβ

− sinβ cos β

)(
G0

a

)
, (2.28)
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HT ≡ (hT
O = (hd hu hS) hT

S = (hS1 hS2 hS3))

AT ≡ (aT
O = (ad au aS) aT

S = (aS1 aS2 aS3))

where



Charged Higgs boson mass

Charged Higgs mass:

■ The charged Higgs is the same as in the MSSM

= Re(m2
SS1

eiϕ1)
(vS − vS1)

2

vSvS1

+ Re(m2
SS2

eiϕ2)
vS2

vS
+ Re(m2

S1S2
eiϕ12)

vS2

vS1

+ Rλ
vdvu

vS
+ RλS

vS2vS3

vS1

− |λ|2

2
v2 − |λS|2

2
(v2

S2
+ v2

S3
) − g′2

1

2
(QS + QS1)∆, (4.4)

and for i = 2 we can readily obtain the equation if we exchange the indices 1 and 2.

m2
S + m2

S2
− 2Re(m2

SS2
eiϕ2)

= Re(m2
SS1

eiϕ1)
vS1

vS
+ Re(m2

SS2
eiϕ2)

(vS − vS2)
2

vSvS2

+ Re(m2
S1S2

eiϕ12)
vS1

vS2

+ Rλ
vdvu

vS
+ RλS

vS1vS3

vS2

− |λ|2

2
v2 − |λS|2

2
(v2

S1
+ v2

S3
) − g′2

1

2
(QS + QS2)∆, (4.5)

If we use mH± rather than Aλ, the stability bounds respectively translate into

m2
H± > m2

W − |λ|2
2

v2

− 4v2
S

v2 sin2 2β

[
Re(m2

SS1
eiϕ1)

(vS − vS1)
2

vSvS1

+ Re(m2
SS2

eiϕ2)
vS2

vS
+ Re(m2

S1S2
eiϕ12)

vS2

vS1

+RλS

vS2vS3

vS1

− |λ|2

2
v2 − |λS|2

2
(v2

S2
+ v2

S3
) − g′2

1

2
(QS + QS1)∆

]
, (4.6)

m2
H± > m2

W − |λ|2

2
v2

− 4v2
S

v2 sin2 2β

[
Re(m2

SS1
eiϕ1)

vS1

vS
+ Re(m2

SS2
eiϕ2)

(vS − vS2)
2

vSvS2

+ Re(m2
S1S2

eiϕ12)
vS1

vS2

+RλS

vS1vS3

vS2

− |λ|2

2
v2 − |λS|2

2
(v2

S1
+ v2

S3
) − g′2

1

2
(QS + QS2)∆

]
. (4.7)

With tadpole conditions, the tree-level potential becomes

〈V0〉vac =
1

2
RλvdvuvS +

1

2
RλSvS1vS2vS3 −

g2
2 + g2

1

32
(v2

d − v2
u)

2

− |λ|2
4

(v2
dv

2
u + v2

dv
2
S + v2

uv
2
S) − |λS|2

4
(v2

S1
v2

S2
+ v2

S2
v2

S3
+ v2

S3
v2

S1
) − g′2

1

8
∆2. (4.8)

We can eliminate Rλ by using Eq. (2.86),

〈V0〉vac =
v2

8
(m2

H± sin2 2β − m2
W sin2 2β − m2

Z cos2 2β) − |λ|2
4

v2v2
S +

1

2
RλSvS1vS2vS3 ,

− |λS|2
4

(v2
S1

v2
S2

+ v2
S2

v2
S3

+ v2
S3

v2
S1

) − g′2
1

8
∆2. (4.9)

Note that 〈V0〉 < 0, the upper bound of the charged Higgs boson mass can be obtain

m2
H± < m2

W +
2|λ|2v2

S

sin2 2β
+ m2

Z cot2 2β − 4RλS

v2 sin2 2β
vS1vS2vS3

+
2|λS|2

v2 sin2 2β
(v2

S1
v2

S2
+ v2

S2
v2

S3
+ v2

S3
v2

S1
) +

g′2
1

v2 sin2 2β
∆2. (4.10)
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= Re(m2
SS1

eiϕ1)
(vS − vS1)

2

vSvS1

+ Re(m2
SS2

eiϕ2)
vS2

vS
+ Re(m2

S1S2
eiϕ12)

vS2

vS1

+ Rλ
vdvu

vS
+ RλS

vS2vS3

vS1

− |λ|2

2
v2 − |λS|2

2
(v2

S2
+ v2

S3
) − g′2

1

2
(QS + QS1)∆, (4.4)

and for i = 2 we can readily obtain the equation if we exchange the indices 1 and 2.

m2
S + m2

S2
− 2Re(m2

SS2
eiϕ2)

= Re(m2
SS1

eiϕ1)
vS1

vS
+ Re(m2

SS2
eiϕ2)

(vS − vS2)
2

vSvS2

+ Re(m2
S1S2

eiϕ12)
vS1

vS2

+ Rλ
vdvu

vS
+ RλS

vS1vS3

vS2

− |λ|2

2
v2 − |λS|2

2
(v2

S1
+ v2

S3
) − g′2

1

2
(QS + QS2)∆, (4.5)

If we use mH± rather than Aλ, the stability bounds respectively translate into

m2
H± > m2

W − |λ|2
2

v2

− 4v2
S

v2 sin2 2β

[
Re(m2

SS1
eiϕ1)

(vS − vS1)
2

vSvS1

+ Re(m2
SS2

eiϕ2)
vS2

vS
+ Re(m2

S1S2
eiϕ12)

vS2

vS1

+RλS

vS2vS3

vS1

− |λ|2

2
v2 − |λS|2

2
(v2

S2
+ v2

S3
) − g′2

1

2
(QS + QS1)∆

]
, (4.6)

m2
H± > m2

W − |λ|2

2
v2

− 4v2
S

v2 sin2 2β

[
Re(m2

SS1
eiϕ1)

vS1

vS
+ Re(m2

SS2
eiϕ2)

(vS − vS2)
2

vSvS2

+ Re(m2
S1S2

eiϕ12)
vS1

vS2

+RλS

vS1vS3

vS2

− |λ|2

2
v2 − |λS|2

2
(v2

S1
+ v2

S3
) − g′2

1

2
(QS + QS2)∆

]
. (4.7)

With tadpole conditions, the tree-level potential becomes

〈V0〉vac =
1

2
RλvdvuvS +

1

2
RλSvS1vS2vS3 −

g2
2 + g2

1

32
(v2

d − v2
u)

2

− |λ|2
4

(v2
dv

2
u + v2

dv
2
S + v2

uv
2
S) − |λS|2

4
(v2

S1
v2

S2
+ v2

S2
v2

S3
+ v2

S3
v2

S1
) − g′2

1

8
∆2. (4.8)

We can eliminate Rλ by using Eq. (2.86),

〈V0〉vac =
v2

8
(m2

H± sin2 2β − m2
W sin2 2β − m2

Z cos2 2β) − |λ|2
4

v2v2
S +

1

2
RλSvS1vS2vS3

− |λS|2
4

(v2
S1

v2
S2

+ v2
S2

v2
S3

+ v2
S3

v2
S1

) − g′2
1

8
∆2. (4.9)

Note that 〈V0〉vac < 0, the upper bound of the charged Higgs boson mass can be obtain

m2
H± < m2

W +
2|λ|2v2

S

sin2 2β
+ m2

Z cot2 2β − 4RλS

v2 sin2 2β
vS1vS2vS3

+
2|λS|2

v2 sin2 2β
(v2

S1
v2

S2
+ v2

S2
v2

S3
+ v2

S3
v2

S1
) +

g′2
1

v2 sin2 2β
∆2. (4.10)
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We can eliminate Rλ by using mH± :

M(S)
SP =





0 −Im(m2
SS1

eiϕ1) −Im(m2
SS2

eiϕ2) 0
−Im(m2

SS1
eiϕ1) 0 −Im(m2

S1S2
eiϕ5) + IλSvS3 IλSvS2

−Im(m2
SS2

eiϕ2) Im(m2
S1S2

eiϕ5) + IλSvS3 0 IλSvS1

0 IλSvS2 IλSvS1 0



 .

(2.77)

By use of the tadpole conditions, we obtatin

M(D)
SP = 0 M(DS)

SP = 0, (2.78)

M(S)
SP = Im(m2

S1S2
eiϕ5)





0 −vS2
vS

vS1
vS

0
−vS2

vS
0 −1 0

vS1
vS

1 0 0
0 0 0 0



 .

(2.79)

2.2 The mass matrix of the charged Higgs bosons

The mass matrix of the charged Higgs boson is given by

(
φ+

d φ+
u

)
M2

±

(
φ−

d

φ−
u

)
, (2.80)

where

(M2
±)11 = m2

1 +
g2
2 + g2

1

8
(v2

d − v2
u) +

g2
2

4
v2

u +
|λ|2
2

v2
S +

g′2
1

2
QHd

∆, (2.81)

(M2
±)22 = m2

2 −
g2
2 + g2

1

8
(v2

d − v2
u) +

g2
2

4
v2

d +
|λ|2
2

v2
S +

g′2
1

2
QHu∆, (2.82)

(M2
±)12 =

g2
2

4
vdvu +

1

2
(Rλ − iIλ)vS − |λ|2

2
vdvu, (2.83)

(M2
±)21 =

(
(M2

±)12

)∗
. (2.84)

By use of the tadpole conditions, we obtain

M2
± =

(
g2
2

4
+

RλvS

vdvu
− |λ|2

2

)(
v2

u vdvu

vdvu v2
d

)
. (2.85)

Thus we have

m2
H± =

1

sin β cos β

〈
∂2V0

∂φ+
d ∂φ−

u

〉
= m2

W +
2Rλ

sin 2β
vS − |λ|2

2
v2. (2.86)

2.3 The masses of the Z and Z ′ bosons

1

2

(
Zµ Z ′

µ

)
M2

ZZ′

(
Zµ

Z ′
µ

)
, (2.87)

where

M2
ZZ′ =

(
1
4(g

2
2 + g2

1)v
2 g′1

2

√
g2
2 + g2

1(QHd
v2

d − QHuv
2
u)

g′1
2

√
g2
2 + g2

1(QHd
v2

d − QHuv
2
u) g′2

1 (Q2
Hd

v2
d + Q2

Hu
v2

u + Q2
Sv2

S +
∑

i Q
2
Si

v2
Si

)

)
.(2.88)

9

〈· · · 〉 ≡ evaluation at the vacuum

Upper bound of  the charged Higgs mass
After imposing the tadpole conditions in 〈V0〉, we obtain

< 0



Upper bound of  the charged Higgs mass

e.g.

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
0
4
P
_
0
4
0
8

given in advance. However, as we will see in what follows, the desired electroweak vacuum

does not always exist. For some input parameters, the location of v = 246 GeV can

be unstable and the true minimum would roll down to another point that does not give

v = 246 GeV. Redefining such a minimum as v = 246 GeV by rescaling the Higgs VEVs is

then inconsistent with the original value of tanβ that is scale independent. Therefore, we

discard such cases and keep tan β as a fixed input. Before showing the numerical results of

the minimum search, we consider theoretical and experimental constraints in the following

two subsections, respectively.

3.1 Theoretical constraints

The effective potential at the tree level is

〈V0〉 =
1

2
m2

1v
2
d +

1

2
m2

2v
2
u +

1

2
m2

Sv2
S +

∑

i

1

2
m2

Si
v2
Si

−Re(m2
SS1

eiϕ1)vSvS1 − Re(m2
SS2

eiϕ2)vSvS2 − Re(m2
S1S2

eiϕ12)vS1vS2 ,

−RλvdvuvS − RλS
vS1vS2vS3 +

g2
2 + g2

1

32
(v2

d − v2
u)2

+
|λ|2

4
(v2

dv
2
u + v2

dv
2
S + v2

uv2
S) +

|λS |2

4
(v2

S1
v2
S2

+ v2
S2

v2
S3

+ v2
S3

v2
S1

) +
g′21
8

∆2. (3.1)

In each direction of vS = vS1 and vS = vS2 with other VEVs being zero, we demand

the coefficients of the quadratic terms be positive so that the effective potential is not

unbounded from below:

m2
S + m2

Si
− 2Re(m2

SSi
eiϕi) > 0 , i = 1, 2. (3.2)

Next we consider the vacuum of the Higgs potential. From the tadpole conditions Eqs. (2.10)-

(2.20), the vacuum of the tree-level potential takes the form

〈V0〉vac =
1

2
RλvdvuvS +

1

2
RλS

vS1vS2vS3 −
g2
2 + g2

1

32
(v2

d − v2
u)2

−
|λ|2

4
(v2

dv
2
u + v2

dv
2
S + v2

uv2
S) −

|λS |2

4
(v2

S1
v2
S2

+ v2
S2

v2
S3

+ v2
S3

v2
S1

) −
g′21
8

∆2 .(3.3)

After eliminating Rλ with Eq. (2.34) and imposing 〈V0〉vac < 0, the upper bound on the

charged Higgs boson mass is obtained:

m2
H± < m2

W +
2|λ|2v2

S

sin2 2β
+ m2

Z cot2 2β −
4RλS

v2 sin2 2β
vS1vS2vS3

+
2|λS |2

v2 sin2 2β
(v2

S1
v2
S2

+ v2
S2

v2
S3

+ v2
S3

v2
S1

) +
g′21

v2 sin2 2β
∆2 ≡ (mmax

H± )2 . (3.4)

As an example, we plot the maximal value of the charged Higgs boson mass as a

function of RλS
in Fig. 1. We take λ = −0.8, λS = 0.1, vS = 300 GeV, vS1 = vS2 = vS3 =

3000 GeV, and tan β = 1 (red solid line), 5 (green dotted line), 10 (blue dashed line). The

CP -violating phases are assumed to be zero. Since the dominant terms are proportional

to 1/ sin2 2β in mmax
H± , tan β = 1 gives the smallest mmax

H± for a fixed RλS
. For RλS

> 0, the

value of mmax
H± decreases as RλS

increases. We find a maximum of RλS
% 640 GeV.
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tanβ = 1, 3, 5, λ = −0.8, λS = 0.1,
vS = 300 GeV, vS1 = vS2 = vS3 = 3000 GeV,
QHd = QHu = 1, QS = −2, QS1 = QS2 = 2,
QS3 = −4, g′

1 =
√

5/3g1.

RλS is also constrained,

i.e., Rmax
λS

! 640 GeV.

〈V0〉vac < 0 gives



Z-Z’ mixing

+|yt|2
(
|yt|2 −

g2
2

2

)
B22 + |yb|2

(
|yb|2 −

g2
2

2

)
T22

]

+
|yt|2

2
vdvu

(
|yb|2 −

g2
2

2

)
(m2

q̃a
− B22)|At|2 +

|yb|2

2
vdvu

(
|yt|2 −

g2
2

2

)
(m2

q̃a
− T22)|Ab|2

+
1
2
|ytyb|2vdvu

(
2m2

q̃a
− 2m2

q̃ − m2
W +

g2
1

12
v2 cos 2β

)
Re(AtA

∗
b)

−1
2
|ytyb|2v2

dv
2
uvS

(
|yb|2 −

g2
2

2

)
Rt −

1
2
|ytyb|2v2

dv
2
uvS

(
|yt|2 −

g2
2

2

)
Rb

+
1
2
|ytyb|2vdvu|AtAb|2 − |ytyb|2vdvu(RtRb + ItIb)v2

S , (B.35)

where M2
t̃,b̃

is the stop/sbottom mass matrix, Tij = (M2
t̃
)ij and Bij = (M2

b̃
)ij , and |µ|2 =

|λ|2v2
S/2.

B.4 The masses of Z and Z ′ bosons

The mass matrix of the Z and Z ′ bosons is

1
2

(
Zµ Z ′

µ

)
M2

ZZ′

(
Zµ

Z ′
µ

)
, (B.36)

where

M2
ZZ′ =

(
1
4(g2

2 + g2
1)v2 g′1

2

√
g2
2 + g2

1(QHdv
2
d − QHuv2

u)
g′1
2

√
g2
2 + g2

1(QHdv
2
d − QHuv2

u) g′21 (Q2
Hd

v2
d + Q2

Hu
v2
u + Q2

Sv2
S +

∑
i Q

2
Si

v2
Si

)

)
.(B.37)

The eigenvalues of the mass matrix and the mixing angle are respectively given by

m2
Z1,2

=
1
2

[
m2

Z + m2
Z′ ±

√
(m2

Z − m2
Z′)2 + g′21 (g2

2 + g2
1)(QHdv

2
d − QHuv2

u)2
]

, (B.38)

αZZ′ = arctan
(

2(M2
ZZ′)12

(M2
ZZ′)22 − (M2

ZZ′)11

)
, (B.39)

where

m2
Z =

g2
2 + g2

1

4
v2, (B.40)

m2
Z′ = g′21 (Q2

Hd
v2
d + Q2

Hu
v2
u + Q2

Sv2
S +

∑

i

Q2
Si

v2
Si

). (B.41)

B.5 ρ parameter

The two-point function of the gauge boson is defined by

iΠµν
V V (p2) =

(
−gµν +

pµpν

p2

)
ΠT

V V (p2) + i
pµpν

p2
ΠL

V V (p2),

= −igµνΠT
V V (p2) + i

pµpν

p2
(ΠT

V V (p2) + ΠL
V V (p2)). (B.42)
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M(S)
SP =





0 −Im(m2
SS1

eiϕ1) −Im(m2
SS2

eiϕ2) 0
−Im(m2

SS1
eiϕ1) 0 −Im(m2

S1S2
eiϕ5) + IλSvS3 IλSvS2

−Im(m2
SS2

eiϕ2) Im(m2
S1S2

eiϕ5) + IλSvS3 0 IλSvS1

0 IλSvS2 IλSvS1 0



 .

(2.77)

By use of the tadpole conditions, we obtatin

M(D)
SP = 0 M(DS)

SP = 0, (2.78)

M(S)
SP = Im(m2

S1S2
eiϕ5)





0 −vS2
vS

vS1
vS

0
−vS2

vS
0 −1 0

vS1
vS

1 0 0
0 0 0 0



 .

(2.79)

2.2 The mass matrix of the charged Higgs bosons

The mass matrix of the charged Higgs boson is given by

(
φ+

d φ+
u

)
M2

±

(
φ−

d

φ−
u

)
, (2.80)

where

(M2
±)11 = m2

1 +
g2
2 + g2

1

8
(v2

d − v2
u) +

g2
2

4
v2

u +
|λ|2
2

v2
S +

g′2
1

2
QHd

∆, (2.81)

(M2
±)22 = m2

2 −
g2
2 + g2

1

8
(v2

d − v2
u) +

g2
2

4
v2

d +
|λ|2
2

v2
S +

g′2
1

2
QHu∆, (2.82)

(M2
±)12 =

g2
2

4
vdvu +

1

2
(Rλ − iIλ)vS − |λ|2

2
vdvu, (2.83)

(M2
±)21 =

(
(M2

±)12

)∗
. (2.84)

By use of the tadpole conditions, we obtain

M2
± =

(
g2
2

4
+

RλvS

vdvu
− |λ|2

2

)(
v2

u vdvu

vdvu v2
d

)
. (2.85)

Thus we have

m2
H± =

1

sin β cos β

〈
∂2V0

∂φ+
d ∂φ−

u

〉
= m2

W +
2Rλ

sin 2β
vS − |λ|2

2
v2. (2.86)

2.3 The masses of the Z and Z ′ bosons

1

2

(
Zµ Z ′

µ

)
M2

ZZ′

(
Zµ

Z ′
µ

)
, (2.87)

where

M2
ZZ′ =

(
1
4(g

2
2 + g2

1)v
2 g′1

2

√
g2
2 + g2

1(QHd
v2

d − QHuv
2
u)

g′1
2

√
g2
2 + g2

1(QHd
v2

d − QHuv
2
u) g′2

1 (Q2
Hd

v2
d + Q2

Hu
v2

u + Q2
Sv2

S +
∑

i Q
2
Si

v2
Si

)

)
.(2.88)
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The eigenvalues of the mass matrix and the mixing angle are respectively given by

m2
Z1,2

=
1

2

[
m2

Z + m2
Z′ ±

√
(m2

Z − m2
Z′)2 + g′2

1 (g2
2 + g2

1)(QHd
v2

d − QHuv2
u)

2

]
, (2.89)

αZZ′ =
1

2
arctan

(
2(M2

ZZ′)12

(M2
ZZ′)22 − (M2

ZZ′)11

)
, (2.90)

where

m2
Z =

g2
2 + g2

1

4
v2, (2.91)

m2
Z′ = g′2

1 (Q2
Hd

v2
d + Q2

Hu
v2

u + Q2
Sv2

S +
∑

i

Q2
Si

v2
Si

). (2.92)

2.4 Field dependent masses of the quarks and squarks

• quark masses

m̄2
t,b =

1

2

[
|yt|2|Φu|2 + |yb|2|Φd|2 ±

√
(|yt|2|Φu|2 − |yb|2|Φd|2)2 + 4|ytyb|2|Φ†

uΦd|2
]

(2.93)

• quark masses in the vacuum

m2
t = 〈m̄2

t 〉 =
1

2
|yt|2v2

u, m2
b = 〈m̄2

b〉 =
1

2
|yb|2v2

d (2.94)

• squark masses (φ±
u = φ±

d = 0)

m̄2
t̃1,2

=
1

2

[
m2

q̃ + m2
t̃R

+ 2|yt|2|Φu|2 +
g2
2 + g2

1

4

(
|Φd|2 − |Φu|2

)

±
√(

m2
q̃ − m2

t̃R
+ xt(|Φd|2 − |Φu|2)

)2

+ 4|yt|2|Atφ0
u − (λSφ0

d)
∗|2

]
, (2.95)

m̄2
b̃1,2

=
1

2

[
m2

q̃ + m2
b̃R

+ 2|yb|2|Φd|2 −
g2
2 + g2

1

4

(
|Φd|2 − |Φu|2

)

±
√(

m2
q̃ − m2

b̃R
− xb(|Φd|2 − |Φu|2)

)2

+ 4|yb|2|Abφ0
d − (λSφ0

u)
∗|2

]
,

where

φ0
d =

eiθ1

√
2
(vd + hd + iad), φ0

u =
eiθ2

√
2
(vu + hu + iau), (2.96)

xt =
1

4

(
g2
2 −

5

3
g2
1

)
, xb =

1

4

(
g2
2 −

1

3
g2
1

)
. (2.97)

• squark masses in the vacuum

m2
t̃1,2

= 〈m̄2
t̃1,2

〉 =
1

2

[
m2

q̃ + m2
t̃R

+ 2m2
t +

m2
Z

2
cos 2β ±

√
(M2

t )2 − 2|yt|2|Ptv2
d − Qtv2

u|2
]

,

10

αZZ′ =
1
2

arctan
(

2(MZZ′)12
m2

Z′ −m2
Z

)
Masses and Mixing angle:

Mass matrix:

The experimental bounds are rather model dependent.
Here we adopt the typical values:

Figure 1: The constraints from the lower bound of mZ′ and the upper bound of αZZ′ in the
QHu-QHd plane. We take tanβ = 1,vS = 300 GeV, vS1 = vS2 = vS3 = 3000 GeV (left), tanβ = 50
and VEV’s are the same as the left figure (center), and tan β = 1, vS = 200 GeV, vS1 = vS2 = 500
GeV, vS3 = 3000 GeV (right).

[CHECK:]Z ′ search is model dependent!
We impose mZ′ > 600 GeV and αZZ′ < O(10−3) [2]. In Figs. 1, we plot the mZ′ = 600

GeV contour and αZZ′ = (1 − 3) × 10−3 in the QHu-QHd plane. Here we show the three
cases, vS = 300 GeV, vS1 = vS2 = vS3 = 3000 GeV with tan β = 1 (left figure) and
tanβ = 50 (central figure), and vS = 200 GeV, vS1 = vS2 = 500 GeV, vS3 = 3000 GeV
with tanβ = 1 (right figure). The red dots line shows mZ′ = 600 GeV contour. The
region within these two lines is excluded. And αZZ′ = 1× 10−3 (straight line in magenta),
αZZ′ = 3 × 10−3 (dots line in blue) and αZZ′ = 5 × 10−3 (dashed line in green). In the
region of QHd # QHu , the two terms in the off-diagonal element of M2

ZZ′ is cancelled each
other and would be suppressed. The central figure shows that the dependence of tan β on
Z ′ search constraints is rather mild. In the left figure, the allowed region is not drastically
changed, which implies that as long as one of vSi (i = 1 − 3) is sufficiently large, αZZ′

would be small enough to avoid the Z ′ search constraints.

4.3 ρ parameter

5. Allowed region

Finding a minimum of the Higgs potential is a non-trivial task even at the tree-level.
Though if we require the tadpole conditions and the mass-squared of Higgs bosons be
positive at the vacuum, the true minimum can exist in other places. This is because of the
presence of trilinear terms in the Higgs potential.

In Ref. [1], the soft SUSY breaking masses are given as the inputs at the beginning,
and then find a minimum. In their analysis, the Higgs VEV’s are determined through the
tadpole conditions. Therefore tanβ is the output. Here we do the analysis the other way
around. Namely, we take the Higgs VEV’s as the inputs, and then perform the minimum
search. Hence tan β is the input in our case. As an example, we here take QHd = QHu = 1,
m2

SS1
= m2

SS2
= −(500 GeV)2, m2

S1S2
= (50 GeV)2, vS = 300 GeV, vS1 = vS2 = vS3 = 3000
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■ Once we have the U(1)’ symmetry, the extra Z boson 
would appear and can mix with the ordinary Z boson.

To avoid these constraints, we should take vSi = O(TeV).



Table 1: The particle content of the sMSSM Higgs sector

Higgs SU(3)C × SU(2)L × U(1)Y × U(1)′Q′

Hd

(
1,2,−1/2, QHd

)

Hu

(
1,2, 1/2, QHu

)

S (1, 1, 0, QS)
S1 (1, 1, 0, QS1)
S2 (1, 1, 0, QS2)
S3 (1, 1, 0, QS3)

The model which we are considering is extended in such a way that no dimensional
parameter exist in the superpotential W:

W # −εijλSH i
dH

j
u − λSS1S2S3, (2.1)

where λ and λS are dimensionless couplings. Unlike the NMSSM, the U(1)′ symmetry
forbids a cubic term in the superpotential which could cause a domain wall problem if
the Z3 symmetry is broken spontaneously. Once the Higgs singlet S develops a vacuum
expectation value, the effective µ term is generated by µeff = λ〈S〉. Therefore the scale of
µeff is determined by the breaking scale of S.

The Higgs potential at the tree-level is given by

V0 = VF + VD + Vsoft, (2.2)

where

VF = |λ|2{|εijΦi
dΦ

j
u|2 + |S|2(Φ†

dΦd + Φ†
uΦu)} + |λS |2(|S1S2|2 + |S2S3|2 + |S3S1|2), (2.3)

VD =
g2
2 + g2

1

8
(Φ†

dΦd − Φ†
uΦu)2 +

g2
2

2
|Φ†

dΦu|2

+
g′21
2

(
QHdΦ

†
dΦd + QHuΦ†

uΦu + QS |S|2 +
3∑

i=1

QSi |Si|2
)2

, (2.4)

Vsoft = m2
1Φ

†
dΦd + m2

2Φ
†
uΦu + m2

S |S|2 +
3∑

i=1

m2
Si
|Si|2

−(εijλAλSΦi
dΦ

j
u + λSAλSS1S2S3 + m2

SS1
SS1 + m2

SS2
SS2 + m2

S1S2
S†

1S2 + h.c.).

(2.5)

where g2, g1 and g′1 are the SU(2), U(1), and U(1)′ gauge couplings, respectively. The soft
SUSY breaking masses mSS1 and mSS2 are introduced to break the two unwanted global
U(1) symmetries. This choice is called Model I, where QS = −QS1 = −QS2 = QS3/2 and
QHd + QHu + QS = 0. The (S1, S2, S3) sector can interact with (Hd, Hu, S) sector through
the g′1 coupling, mSS1 and mSS2 .
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Allowed region in the QHu -QHd plane

tanβ = 1, vS = 300 GeV,
vSi = 3000 GeV (i = 1− 3)

For QHd ! −QHu ,
αZZ′ becomes large.

! αZZ′ and mZ′ are plotted in the QHu -QHd plane.



Changing the input parameters as

In the following, we take QHd = QHu = 1.

tanβ = 50, vS = 300 GeV,
vSi = 3000 GeV (i = 1− 3)

For QHu ! QHd and vSi (i = 1− 3) > O(TeV), no constraint on ZZ ′ mixing.
This supports the original motivation of the sMSSM.

tanβ = 1, vS1 = vS2 = 100 GeV,
vS = 500 GeV, vS3 = 3000 GeV.



Searching the allowed regions

■ Vacuum stability (unbounded from below)
■ The EW vacuum should be a global minimum. 

■ To search a correct vacuum is a quite non-trivial task.
 ∵ presence of the trilinear terms in the potential.

 c.f. In the MSSM at the tree-level, a global minimum is 
guaranteed by the tadpole conditions.

 

Experimental constraints:

Theoretical constraints:

We search the allowed region under the theoretical
and experimental constrains:



Experimental constraints

■ ρ-parameter:

■ Higgs bounds@LEP
Higgsstrahlung process constraints
the Higgs mass mHi and
coupling ξ = gHV V /gSM

HV V .

Let us define the correction to the ρ parameter as

∆ρ ≡ ΠT
ZZ(0)
m2

Z

− ΠT
WW (0)
m2

W

=
1

m2
W

(
cos2 θW ΠT

ZZ(0) − ΠT
WW (0)

)
. (B.43)

And we also define the following function for later convenience:

B5(0; m1,m2) = −1
2
(m2

1 + m2
2) +

m2
1m

2
2

m2
1 − m2

2

log
m2

1

m2
2

. (B.44)

The contribution of top and bottom quarks to ρ parameter take the form:

∆ρquark = −
2LfNc

v2
|Vtb|2B5(0;mt,mb). (B.45)

where Lf = 1/(16π2). The divergent parts is cancelled after subtracting ZZ and WW self-
energies. From this expression, we can deduce that the contributions of any SU(2) doublet
quarks to ρ parameter is always positive. The contributions from stop and sbottom loops
are the exactly same as the that of MSSM:

∆ρsquark =
2LfNc

v2

[
4
{

T 2
3f |(SũA)11(SũA)12|2 − Qf sin2 θW T3f + Q2

f sin4 θW

}
B5(0; mũA1 ,mũA2)

+4
{

T 2
3f |(Sd̃A

)11(Sd̃A
)12|2 − Qf sin2 θW T3f + Q2

f sin4 θW

}
B5(0;md̃A1

,md̃A2
)

−|VAB|2
{
|(SũA)11(Sd̃B

)11|2B5(0;mũA1 ,md̃B1
) + |(SũA)11(Sd̃B

)12|2B5(0; mũA1 , md̃B2
)

+|(SũA)12(Sd̃B
)11|2B5(0;mũA2 ,md̃B1

) + |(SũA)12(Sd̃B
)12|2B5(0; mũA2 ,md̃B2

)
}]

,

where Sf̃ is a unitary matrix to diagonalize the squark mass matrix.

S†
f̃
M2

f̃
Sf̃ =

(
m2

f̃1
0

0 m2
f̃2

)
, (f = u, d) (B.46)

and we here assumed the minimal flavor violation in which the flavor mixing is absent the
squark sector. The divergent parts are cancelled in the each gauge boson self-energy.

∆ρHiggs =
Lf

v2




∑

i<j

g2
HiHjZB5(0;mHi ,mHj ) −

∑

i

|gHiHW |2B5(0;mH± , mHi)



 ,(B.47)

where

gHiHjZ = (O1iO7j − O1jO7i) sinβ − (O2iO7i − O2jO7i) cos β, (B.48)

gHiHW = O2i cos β − O1i sinβ − iO7i. (B.49)

In the calculation, we have used the indentity
∑

i<j

g2
HiHjZ

(
A(mHi) + A(mHj )

)
=

∑

i

|gHiHW |2A(mHi). (B.50)
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< 0.002

e.g., chargino mass > 104 GeV
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breaking the two unwanted global U(1) symmetries as discussed above. Here we show two

examples: (A) vS = 300 GeV, vS1 = vS2 = vS3 = 3000 GeV with tan β = 1 (upper left

figure) and tan β = 50 (upper right figure); (B) vS = 500 GeV, vS1 = vS3 = 100 GeV,

vS2 = 3000 GeV with tan β = 1 (lower left figure) and tan β = 10 (lower right figure). The

red dotted lines give the mZ′ = 600 GeV contour, and the region in between represents

mZ′ ≤ 600 GeV. The figures also show curves for αZZ′ = 1 × 10−3 (dashed line in green),

αZZ′ = 3 × 10−3 (dotted line in blue) and αZZ′ = 5 × 10−3 (solid line in magenta). In the

region where QHd
and QHu have the same sign, the two terms in the off-diagonal elements

of M2
ZZ′ tend to cancel with each other. The upper right figures show that the tan β

dependence on Z ′ search constraints is rather mild since the denominator in Eq. (3.9) is

relatively large for case (A). In the lower left figure, the covered areas of quadrants II and

IX have αZZ′ > 1 × 10−3. On the other hand, large portions of quadrants I and III are

not strongly constrained. If we take tan β = 10, the contours of αZZ′ is distorted and the

region around QHd
# QHu/ tan2 β becomes allowed. In our numerical study, as long as

one of vSi (i = 1 − 3) is taken to be at the TeV scale and QHd
# −QHu does not hold,

the constraints from the Z ′ boson search can be easily avoided. This supports the original

motivation for the sMSSM as mentioned in the Introduction.

According to the LEP experiments, the mass of the SM Higgs boson should be larger

than 114.4 GeV at 95 % CL [14]. However, this lower bound cannot be directly applied

to models beyond the SM due to the modification of the Higgs coupling to the Z boson

(gHZZ). When the Higgs boson masses are smaller than 114.4 GeV, we require instead

ξ2 < k(mHi) , (3.10)

where ξ = gHZZ/gSM
HZZ and k is the 95 % CL upper limit on the HZZ coupling and a

function of the Higgs boson mass [28, 29]. In our analysis, we do not consider the processes

e+e− → Z∗ → HiHj. They are expected to be less severe in comparison with the processes

e+e− → Z∗ → HiZ.

We also consider the Z boson decays, Z → HiHj and Z → Hil+l− for the light Higgs

bosons, and require that:

∑

i,j

Γ(Z → HiHj) +
∑

i

Γ(Z → Hil
+l−) < ∆ΓZ , (3.11)

where ∆ΓZ = 2.0 MeV is the 95 % CL upper bound on the possible additional decay width

of the Z boson [30].

The other experimental constraints come from the lower bounds of the SUSY particles.

The mass matrix of the charginos has the same form as in the MSSM if we replace µ with

µeff :

Mχ̃± =

(

M2 −
√

2mW cos β

−
√

2mW sin β µeffei(θ1+θ2)

)

, (3.12)

where M2 is the SU(2) gaugino mass. The physical CP -violating phase is θM2 + θλ + ϕ3,

where θM2 and θλ denote the arguments of M2 and λ, respectively. For the lower bound
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breaking the two unwanted global U(1) symmetries as discussed above. Here we show two

examples: (A) vS = 300 GeV, vS1 = vS2 = vS3 = 3000 GeV with tan β = 1 (upper left
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IX have αZZ′ > 1 × 10−3. On the other hand, large portions of quadrants I and III are
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region around QHd
# QHu/ tan2 β becomes allowed. In our numerical study, as long as

one of vSi (i = 1 − 3) is taken to be at the TeV scale and QHd
# −QHu does not hold,

the constraints from the Z ′ boson search can be easily avoided. This supports the original

motivation for the sMSSM as mentioned in the Introduction.

According to the LEP experiments, the mass of the SM Higgs boson should be larger

than 114.4 GeV at 95 % CL [14]. However, this lower bound cannot be directly applied

to models beyond the SM due to the modification of the Higgs coupling to the Z boson

(gHZZ). When the Higgs boson masses are smaller than 114.4 GeV, we require instead

ξ2 < k(mHi) , (3.10)

where ξ = gHZZ/gSM
HZZ and k is the 95 % CL upper limit on the HZZ coupling and a

function of the Higgs boson mass [28, 29]. In our analysis, we do not consider the processes

e+e− → Z∗ → HiHj. They are expected to be less severe in comparison with the processes

e+e− → Z∗ → HiZ.

We also consider the Z boson decays, Z → HiHj and Z → Hil+l− for the light Higgs

bosons, and require that:

∑

i,j

Γ(Z → HiHj) +
∑

i

Γ(Z → Hil
+l−) < ∆ΓZ , (3.11)

where ∆ΓZ = 2.0 MeV is the 95 % CL upper bound on the possible additional decay width

of the Z boson [30].

The other experimental constraints come from the lower bounds of the SUSY particles.

The mass matrix of the charginos has the same form as in the MSSM if we replace µ with

µeff :

Mχ̃± =

(

M2 −
√

2mW cos β

−
√

2mW sin β µeffei(θ1+θ2)

)

, (3.12)

where M2 is the SU(2) gaugino mass. The physical CP -violating phase is θM2 + θλ + ϕ3,

where θM2 and θλ denote the arguments of M2 and λ, respectively. For the lower bound
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However, neutralino mass bounds are 
rather model dependent.
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All secluded singlets VEVs are larger than 1 TeV.                          

■ For simplicity, we here consider the following 2 cases:

 Small VEV scenario (Case II)                                                               
The 2 secluded singlet VEVs are smaller than 1 TeV.
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Z ′ boson is small enough to evade the current experimental bound ∆ρ < 2.0 × 10−3 [14].

Let us consider the one-loop corrections, focusing particularly on the contributions of the

physical Higgs bosons rather than including all SUSY particles. The correction to the ρ

parameter is given by

∆ρ =
ΠT

ZZ(0)

m2
Z

−
ΠT

WW (0)

m2
W

, (3.13)

where ΠT
V V (0) (V = Z,W ) are the transverse parts of the weak boson self-energies at the

zero momentum. The Higgs boson contributions at the one-loop level take the form

∆ρHiggs =
GF

8
√

2π2





∑

i<j

g2
HiHjZB5(mHi ,mHj ) −

∑

i

|gHiHW |2B5(mH± ,mHi)



 ,(3.14)

with

B5(m1,m2) =







−
1

2
(m2

1 + m2
2) +

m2
1m

2
2

m2
1 − m2

2

ln
m2

1

m2
2

(m1 $= m2),

0 (m1 = m2)
, (3.15)

gHiHjZ = (O1iO7j − O1jO7i) sin β − (O2iO7i − O2jO7i) cos β , (3.16)

gHiHW = O2i cos β − O1i sin β − iO7i, (3.17)

where GF = 1/(
√

2v2) % 1.166 × 10−5 (GeV)−2. Unlike the MSSM, the custodial SU(2)

symmetry does not guarantee ∆ρHiggs = 0 due to the contributions from the Higgs singlets.

Finally we comment in passing on the constraints from B physics. The experimental

results of Bs → µ+µ−, b → sγ and B−
u → τ−ν̄τ can give a significant restriction on the

parameter space. However, so long as we limit our interest to the low tan β region (<∼ 20),

constraints from the branching ratios of Bs → µ+µ− and Bu → τντ are less stringent. The

b → sγ process can be important for the light charged Higgs bosons scenario, mH± <∼ 300

GeV, in which case the contributions from the charged Higgs bosons and those of the

charginos have to cancel [34] in a way to be consistent with the data [35]. We leave the

detailed analysis to another paper.

3.3 Numerical evaluation

Now we show the numerical results of the allowed regions in both case I and case II. We

take

QHd
= QHu = 1, AλS

= Aλ(mH±), At = Ab = µeff/ tan β,

mq̃ = 1000 GeV, mt̃R
= mb̃R

= 500 GeV, M2 = 200 GeV, (3.18)

where mq̃, mt̃R
and mb̃R

are the soft SUSY breaking masses of squarks. It should be noted

that Aλ is a function of mH± , as given by Eq. (2.35). In Fig. 3, the allowed region is plotted

in the λS-λ plane (left figure) and tan β-mH± plane (right figure). The input parameters

in Case I are

Case I : m2
SS1

= m2
SS2

= (500 GeV)2, m2
S1S2

= −(50 GeV)2,

vS = 300 GeV, vS1 = vS2 = vS3 = 3000 GeV. (3.19)
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Figure 3: The allowed region in the λS-λ plane (left figure) and tanβ-mH± plane (right figure).
We take QHd

= QHu
= 1, m2

SS1
= m2

SS2
= (500 GeV)2, m2

S1S2
= −(50 GeV)2, vS = 300 GeV,

vS1
= vS2

= vS3
= 3000 GeV.

For the moment, all the CP -violating phases are assumed to be zero. In the left figure,

we take tan β = 1 and mH± = 300 GeV. All the Higgs boson masses are non-negative in

the region between the two blue curves. For fixed λ, the depth of the vacuum decreases

as λS decreases and eventually becomes higher than the origin, as can been seen from

Eq. (3.3). The dotted curve in magenta corresponds to the critical situation, below which

the vacuum becomes metastable. The region to the right of the dotted-dashed line in green

has been excluded by the condition (3.10). Likewise, the region to the right of the dashed

line in red is excluded by the chargino lower mass bound. In the right figure, we take

λ = −0.8, λS = 0.1. As in the left figure, m2
H ≥ 0 is fulfilled between the two blue curves,

within which the vacuum becomes metastable below the dotted curve in magenta. The

region below the dotted-dashed curve in green is excluded by the condition (3.10), and

that below the dashed curve in black by ∆ρ > 2.0 × 10−3. Since the Higgs singlets can

affect the lightest Higgs boson mass, the possibility tan β = 1 excluded in the MSSM is

experimentally allowed in our model. On the contrary, the allowed region is much more

restricted by the conditions for the desired electroweak vacuum.

In Fig. 4, we consider

Case II : m2
SS1

= (306 GeV)2, m2
SS2

= (56 GeV)2, m2
S1S2

= (100 GeV)2,

vS = 500 GeV, vS1 = vS3 = 100 GeV, vS2 = 3000 GeV. (3.20)

In the left figure, we use tan β = 1 and mH± = 600 GeV. The region to the left of the

blue line is excluded by m2
H < 0, and that above the dashed curve in blue results in the

situation where V = V0 + V1 is unbounded from below. In the region between the two

lines in magenta, the vacuum is correctly located at v = 246 GeV. However, the region

to the left of the dotted-dashed line in green is excluded by Eq. (3.10). The fact that
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Z ′ boson is small enough to evade the current experimental bound ∆ρ < 2.0 × 10−3 [14].

Let us consider the one-loop corrections, focusing particularly on the contributions of the

physical Higgs bosons rather than including all SUSY particles. The correction to the ρ

parameter is given by

∆ρ =
ΠT

ZZ(0)

m2
Z

−
ΠT

WW (0)

m2
W

, (3.13)

where ΠT
V V (0) (V = Z,W ) are the transverse parts of the weak boson self-energies at the

zero momentum. The Higgs boson contributions at the one-loop level take the form

∆ρHiggs =
GF

8
√

2π2





∑

i<j

g2
HiHjZB5(mHi ,mHj ) −

∑

i

|gHiHW |2B5(mH± ,mHi)



 ,(3.14)

with

B5(m1,m2) =







−
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2
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1 + m2
2) +
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2
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ln
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0 (m1 = m2)
, (3.15)

gHiHjZ = (O1iO7j − O1jO7i) sin β − (O2iO7i − O2jO7i) cos β , (3.16)

gHiHW = O2i cos β − O1i sin β − iO7i, (3.17)

where GF = 1/(
√

2v2) % 1.166 × 10−5 (GeV)−2. Unlike the MSSM, the custodial SU(2)

symmetry does not guarantee ∆ρHiggs = 0 due to the contributions from the Higgs singlets.

Finally we comment in passing on the constraints from B physics. The experimental

results of Bs → µ+µ−, b → sγ and B−
u → τ−ν̄τ can give a significant restriction on the

parameter space. However, so long as we limit our interest to the low tan β region (<∼ 20),

constraints from the branching ratios of Bs → µ+µ− and Bu → τντ are less stringent. The

b → sγ process can be important for the light charged Higgs bosons scenario, mH± <∼ 300

GeV, in which case the contributions from the charged Higgs bosons and those of the

charginos have to cancel [34] in a way to be consistent with the data [35]. We leave the

detailed analysis to another paper.

3.3 Numerical evaluation

Now we show the numerical results of the allowed regions in both case I and case II. We

take

QHd
= QHu = 1, AλS

= Aλ(mH±), At = Ab = µeff/ tan β,

mq̃ = 1000 GeV, mt̃R
= mb̃R

= 500 GeV, M2 = 200 GeV, (3.18)

where mq̃, mt̃R
and mb̃R

are the soft SUSY breaking masses of squarks. It should be noted

that Aλ is a function of mH± , as given by Eq. (2.35). In Fig. 3, the allowed region is plotted

in the λS-λ plane (left figure) and tan β-mH± plane (right figure). The input parameters

in Case I are

Case I : m2
SS1

= m2
SS2

= (500 GeV)2, m2
S1S2

= −(50 GeV)2,

vS = 300 GeV, vS1 = vS2 = vS3 = 3000 GeV. (3.19)
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The remaining parameters are fixed as

N.B. Aλ is a function of mH± .
For the moment, we consider the CP conserving case.



Allowed region for Case I 

λ ! 10× λS is favored.■
Unlike the MSSM, tanβ = 1 is allowed.■
For tan β ! 1, mH1 ! 140 GeV.  ∵ Singlet contributions



Allowed region for Case II 

■ The conditions for the stable vacuum make the allowed
region quite limited.
■ Basically, the low tanβ region is favored for the small 
VEV scenarios.



Explicit CP violation
(ECPV)



CPV phases @1-loop
other in the vacuum through the tadpole conditions for the CP -odd Higgs fields. At the
one-loop level, we find

Iλ = − NC

8π2v2

[
m2

t It

sin2 β
f(m2

t̃1
,m2

t̃2
) +

m2
bIb

cos2 β
f(m2

b̃1
,m2

b̃2
)
]

, (4.1)

IλS = 0, (4.2)

Im(m2
SS1

eiϕ1) = Im(m2
S1S2

eiϕ12)
vS2

vS
, (4.3)

Im(m2
SS2

eiϕ2) = −Im(m2
S1S2

eiϕ12)
vS1

vS
, (4.4)

where It,b = Im(λAt,beiϕ3)/
√

2. If It or Ib is nonzero, Iλ can be nonzero as well at the one-
loop level. Nevertheless, we will focus exclusively on CP violation peculiar to the sMSSM,
and take It = Ib = 0 in what follows. Since we have the relation Eq. (2.35), the sign of Rλ

is determined through

sgn(Rλ) = sgn
(

m2
H± − m2

W +
|λ|2

2
v2 − ∆m2

H±

)
, (4.5)

where ∆m2
H± denotes the one-loop correction to the charged Higgs boson mass. On the

contrary, there is a sign ambiguity in RλS at this stage. The positivity of the squared mass
of the Higgs bosons gives us RλS > 0 in most of the parameter space. Now let us define
θSS1 = Arg(m2

SS1
), θSS2 = Arg(m2

SS2
), θS1S2 = Arg(m2

S1S2
). From Eqs. (4.3) and (4.4), it

follows that

θSS1 = sin−1

[∣∣∣∣∣
m2

S1S2

m2
SS1

∣∣∣∣∣
vS2

vS
sin(θS1S2 + ϕ12)

]
− ϕ1, (4.6)

θSS2 = sin−1

[
−

∣∣∣∣∣
m2

S1S2

m2
SS2

∣∣∣∣∣
vS1

vS
sin(θS1S2 + ϕ12)

]
− ϕ2. (4.7)

It should be noted that the arguments in the arcsines should be smaller than one, imposing
additional constraints on our input parameters.

The CP -violating phases show up in the mixing terms between CP -even and CP -odd
parts in the squared mass matrix (2.27). Let us parameterize M2

SP in terms of 3× 3 block
entries:

1
2

(
hT

O hT
S

)
M2

SP

(
aO

aS

)
, M2

SP =




M(O)

SP M(OS)
SP(

M(OS)
SP

)T
M(S)

SP



 . (4.8)

After the conditions (4.3) and (4.4) are applied, the entries are

M(O)
SP = 03×3, M(OS)

SP = Im(m2
S1S2

eiϕ12)




0 0 0
0 0 0

vS2
vS

−vS1
vS

0



 , (4.9)

M(S)
SP = Im(m2

S1S2
eiϕ12)




0 1 0
−1 0 0
0 0 0



 . (4.10)
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The arguments in the arcsines should be smaller than 1.

Additional constraints on the input parameters  

We take It,b = 0.

where



Scalar-pseudoscalar mixing
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To enhance the effect of CP violation, we take the large
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■ The scalar-pseudoscalar mixing terms are proportional 
to the imaginary part of the CPV phase.

Figure 5: The effects of the CP -violating phase on mH and g2
HV V . We take mH± = 600 GeV,

tanβ = 1, |m2
SS1

| = (306 GeV)2, |m2
SS2

| = (56 GeV)2, |m2
S1S2

| = (100 GeV)2, vS = 500 GeV,
vS1 = vS3 = 100 GeV, and vS2 = 3000 GeV.

If M2
SP has a large portion in M2

N , the CP -violating effects on the Higgs boson masses
can be enhanced. To achieve this, we assume large values for Im(m2

S1S2
eiϕ12)vS2/vS and

Im(m2
S1S2

eiϕ12)vS1/vS under the conditions (4.6) and (4.7), rendering

|m2
SS1

| ! |m2
S1S2

|vS2

vS
, (4.11)

|m2
SS2

| ! |m2
S1S2

|vS1

vS
, (4.12)

for sin(θS1S2 +ϕ12) ! 1. For the moment, we only consider ECPV, and hence ϕ1 = ϕ2 = 0.
We present two examples: one being Case II as given in Eq. (3.20) and the other being
Case III specified by

Case III : m2
SS1

= (72 GeV)2, m2
SS2

= (280 GeV)2, m2
S1S2

= (100 GeV)2,

vS = 300 GeV, vS1 = vS3 = 1500 GeV, vS2 = 100 GeV. (4.13)

We take tanβ = 1 and mH± = 600 GeV for Case II and tan β = 1 and mH± = 300
GeV for Case III. In Fig. 5, we plot mHi and g2

HiV V (i = 1 − 3) as functions of θS1S2 in
Case II. In the CP -conserving case, θS1S2 = 0, the second lightest Higgs boson is CP -odd
because gH2V V is zero. Around θS1S2 ! 40◦, H1 and H2 switch with each other and their
CP characters are exchanged, as can be seen from the right figure in Fig. 5. As in the
CP -violating MSSM, due to the large off-diagonal terms M2

SP , H1 can become lighter than
114.4 GeV for θS1S2

>∼ 60◦ with g2
H1V V being highly suppressed. This possibility cannot

be excluded by the LEP experimental results. This does not seem to be typical in the
CP -violating NMSSM [3]. Although all the Higgs boson masses are positive in the range
93◦ <∼ θS1S2

<∼ 102◦, the vacuum is metastable and is thus excluded. In Fig. 6, we plot
mHi and g2

HiV V (i = 1 − 3) as functions of θS1S2 for Case III. When θS1S2 = 0, H1 is the
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HiV V (i = 1 − 3) as functions of θS1S2 in
Case II. In the CP -conserving case, θS1S2 = 0, the second lightest Higgs boson is CP -odd
because gH2V V is zero. Around θS1S2 ! 40◦, H1 and H2 switch with each other and their
CP characters are exchanged, as can be seen from the right figure in Fig. 5. As in the
CP -violating MSSM, due to the large off-diagonal terms M2

SP , H1 can become lighter than
114.4 GeV for θS1S2

>∼ 60◦ with g2
H1V V being highly suppressed. This possibility cannot

be excluded by the LEP experimental results. This does not seem to be typical in the
CP -violating NMSSM [3]. Although all the Higgs boson masses are positive in the range
93◦ <∼ θS1S2

<∼ 102◦, the vacuum is metastable and is thus excluded. In Fig. 6, we plot
mHi and g2

HiV V (i = 1 − 3) as functions of θS1S2 for Case III. When θS1S2 = 0, H1 is the
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Higgs boson masses and couplings
Actually, Case II is one of realization for the large CPV.

tanβ = 1, mH± = 600 GeV, λ = 0.8, λS = 0.1.

! Similar to the CPX scenario in the MSSM,
mH1 can be as light as 50 GeV while g2

H1V V ! 0.

c.f. It seems that this is not typical in the NMSSM.
[Funakubo and Tao, PTP113 (05)]

! However, large A and µ are not necessarily required.
Different patters of the SUSY particle spectrum



Spontaneous CP violation
(SCPV)



Spontaneous CP violation

4.2 The metastability condition at the 1-loop level

The mass of the charged Higgs at the 1-loop level is given by
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W +
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H± , (4.7)

where ∆m2
H± is the 1-loop correction which is given by Eq. (3.21).

After eliminating Rλ the vacuum of the potential becomes

〈V 〉 = 〈V0〉 + 〈V1〉 (4.8)
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8
sin2 2β · ∆m2

H± + 〈V1〉. (4.9)

Thus we have

m2
H± < m2

W +
2|λ|2v2

S

sin2 2β
+ m2

Z cot2 2β − 4RλS

v2 sin2 2β
vS1vS2vS3
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2|λS|2

v2 sin2 2β
(v2

S1
v2

S2
+ v2

S2
v2

S3
+ v2

S3
v2

S1
) +

g′2
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v2 sin2 2β
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H± − 8
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〈V1〉. (4.10)

5 Spontaneous CP violation

Now we discuss the condition for the spontaneous CP violation. For simplicity, we assume
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,λAλ,λSAλS ∈ R. The phase dependent part in V0 is
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The first derivatives with respect to the CP phases are given by
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∂ϕ4
=

λSAλS√
2

vS1vS2vS3 sin ϕ4 = 0, (5.5)

which readily lead to sin ϕ3 = sin ϕ4 = 0. From Eqs. (5.2) and (5.3), it follows that
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a sin ϕ1 + b sin ϕ2 = 0, (5.7)
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Tadpole conditions for the CPV phases:
For simplicity,

... ϕ3 = ϕ4 = 0.
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■ Unlike the MSSM, the tree-level SCPV is possible.

The phase dependent terms in 〈V0〉 are



which is the CP conserving solution, or the CP violating one as

a sinϕ1 + b sin ϕ2 = 0, (7.7)

a cos ϕ1 + b cos ϕ2 = −ab

c
, (7.8)

where a = m2
SS1

vSvS1 , b = m2
SS2

vSvS2 , c = m2
S1S2

vS1vS2 . Thus we have the conditions of
the CP violating extremum as

cos ϕ1 =
1
2

(
bc

a2
− c

b
− b

c

)
, (7.9)

cos ϕ2 =
1
2

(ac

b2
− a

c
− c

a

)
, (7.10)

cos(ϕ1 − ϕ2) =
1
2

(
ab

c2
− b

a
− a

b

)
, (7.11)

where abc > 0 should be satisfied.

8. Conclusions

A. The mass matrix of the neutral and charged Higgs bosons

A.1 The mass matrix of the neutral Higgs bosons

The mass matrix of the neutral Higgs boson is given by

1
2

(
hT aT

)
M2

N

(
h

a

)
, M2

N =

(
M2

S M2
SP

(M2
SP )T M2

P

)
, (A.1)

where hT ≡ (hT
D = (hd hu)T hT

S = (hS hS1 hS2 hS3)T ), aT ≡ (aT
D = (ad au)T aT

S =
(aS aS1 aS2 aS3)T ).

• scalar

1
2

(
hT

D hT
S

)
M2

S

(
hD

hS

)
, M2

S =




M(D)

S M(DS)
S(

M(DS)
S

)T
M(DS)

S



 , (A.2)

where

(M(D)
S )11 =

[
g2
2 + g2

1

4
+ g′21 Q2

Hd

]
v2
d + Rλ

vuvS

vd
, (A.3)

(M(D)
S )22 =

[
g2
2 + g2

1

4
+ g′21 Q2

Hu

]
v2
u + Rλ

vdvS

vu
, (A.4)

(M(D)
S )12 = (M(D)

S )12 =
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−g2

2 + g2
1

4
+ |λ|2 + g′21 QHdQHu

]
vdvu − RλvS , (A.5)

(M(S)
S )11 = −Re(m2

SS1
eiϕ1)

vS1

vS
− Re(m2

SS2
eiϕ2)

vS2

vS
+ Rλ

vdvu

vS
+ g′21 Q2

Sv2
S , (A.6)
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If the solutions exist, the following triangle can be formed. 

And the potential has the CPV minimum if ac/b < 0.



Scanning the following parameters,

Figure 8: The left plot shows the upper bounds on the four light neutral Higgs boson masses,
mmax

H1
(cross in red), mmax

H2
(triangle in green), mmax

H1
(circle in blue) and mmax

H1
(square in yellow),

as functions of mH± . The right plot shows | sinϕ1| and | sinϕ2| in the case of mmax
H1

. The crosses
in red and the triangles in green are for either | sinϕ1| or | sin ϕ2|.

following ranges:

m2
SS1

= m2
SS2

= (10 GeV)2 − (1000 GeV)2,

−m2
S1S2

= (1000 GeV)2 − (10 GeV)2, (4.22)

for fixed values of mH± . The remaining parameters are chosen as λ = −0.8, λS = 0.1,
tanβ = 1, vS = 300 GeV, and vS1

= vS2
= vS3

= 3000 GeV. In Fig. 8, the maximal
values of mHi (i = 1 − 4) (left figure) and | sinϕ1| and | sin ϕ2| (right figure) are plotted
as functions of mH± . For each fixed mH± , all mmax

H are obtained for different sets of
(mSS1

, mSS2
,mS1S2

). One can see that the upper bounds on mHi strongly depend on mH±

except for mH2 . It is found that the upper bound on the lightest neutral Higgs boson
mass mmax

H1
is below 125 GeV and can reach up to around 123 GeV for mH± = 334 GeV.

Since the lightest state H1 is mainly composed of the singlet states, mH1 do not increase
even if we change the values of (mq̃,mt̃R

,mb̃R
)=(1000, 500, 500) GeV to, say (3000, 1500,

1500) GeV. In this case, the second lightest Higgs boson H2 receives corrections from the
top/stop loops. In the right plot of Fig. 8, | sinϕ1| and | sinϕ2| are plotted in the case of
mmax

H1
. The crosses in red and the triangles in green are for either | sinϕ1| or | sin ϕ2|. One

can see that the CP symmetry is maximally violated when mmax
H1

> 100 GeV.
It is noticed that the CP -violating solutions ϕ1 and ϕ2 are obtained by solving the

necessary conditions for SCPV, Eqs. (4.14) and (4.15). In order to check whether they
give CP violation at the vacuum, we perform the minimization in the ten-dimensional
parameter space (vd, vu, vS , vS1 , vS2 , vS3 , θ2, θS , θS1 , θS2), and find that the solutions
obtained above indeed give the CP -violating vacuum.

– 20 –

• We obtain the maximal values of mHi(i = 1− 4).

! Typically, the light Higgs boson exists depending mH± .
! For mH± ! 334 GeV, mH1 ! 125 GeV with maximal CPV.



Application
■ Electroweak phase transition

Finite temperature Higgs potential

For m2
Φ(v) ! M2,m2

h(v) m2
Φ(ϕ) " m2

Φ(v)ϕ2

v2 , (Φ = H, A, H±)

Veff " D(T 2 − T 2
0 )ϕ2 − ETϕ3 +

λT

4
ϕ4

where
E =

1
12πv3

(6m3
W + 3m3

Z + m3
H + m3

A + 2m3
H±︸ ︷︷ ︸

additional contributions

)

At Tc, degenerate minima: ϕc = 0,
2ETc

λTc

• The magnitude of E is relevent for the
strongly 1st order phase transition

• We examine the strength of the phase transition
without the high temperature expansion. 0

0 50 100 150 200 250 300

! (GeV)

Veff

T=Tc

T>Tc

T<Tc

— Seminar@IPAS, June 16, 2006 — 14/26

e.g. 1 dim. 10 order parameters 

Minimum search in the 10 dim.
space.

In general, the calculation of 
the critical temperature is a
time consuming task.

work in progress

vd, vueiθ2 , vSeiθS , vS1e
iθS1 , vS2e

iθS2 , vS3



Summary
 We have studied the Higgs sector of the secluded U(1)’ 

extended MSSM (sMSSM).

 The upper bound of the charged Higgs boson can be obtained 
from the condition for the vacuum meta-stability.

 Similar to the CPX scenario in the MSSM, the CPV effect on 
the Higgs boson masses and couplings can be large.                     
However, the large A and µ are not necessarily required.                              
→ The different patterns of the SUSY particle spectrum.

 SCPV can be possible at the tree level. In such case, the Higgs 
bosons are typically light. 

work in progress
■ Electroweak phase transition with/without CP violation

e.g. mH1 ! 125 GeV with the maximal CPV.
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• Tadpole conditions

1

vd

〈
∂V0

∂hd

〉
= m2

1 +
g2
2 + g2

1

8
(v2

d − v2
u) − Rλ

vuvS

vd
+

|λ|2

2
(v2

u + v2
S) +

g′2
1

2
QHd

∆ = 0, (2.3)

1

vu

〈
∂V0

∂hu

〉
= m2

2 −
g2
2 + g2

1

8
(v2

d − v2
u) − Rλ

vdvS

vu
+

|λ|2

2
(v2

d + v2
S) +

g′2
1

2
QHu∆ = 0, (2.4)

1

vS

〈
∂V0

∂hS

〉
= m2

S + Re(m2
SS1

eiϕ1)
vS1

vS
+ Re(m2

SS2
eiϕ2)

vS2

vS
− Rλ

vdvu

vS

+
|λ|2

2
(v2

d + v2
u) +

g′2
1

2
QS∆ = 0, (2.5)

1

vS1

〈
∂V0

∂hS1

〉
= m2

S1
+ Re(m2

SS1
eiϕ1)

vS

vS1

+ Re(m2
S1S2

eiϕ5)
vS2

vS1

− RλS

vS2vS3

vS1

+
|λS|2

2
(v2

S2
+ v2

S3
) +

g′2
1

2
QS1∆ = 0, (2.6)

1

vS2

〈
∂V0

∂hS2

〉
= m2

S2
+ Re(m2

SS2
eiϕ2)

vS

vS2

+ Re(m2
S1S2

eiϕ5)
vS1

vS2

− RλS

vS1vS3

vS2

+
|λS|2

2
(v2

S1
+ v2

S3
) +

g′2
1

2
QS2∆ = 0, (2.7)

1

vS3

〈
∂V0

∂hS3

〉
= m2

S3
− RλS

vS1vS2

vS3

+
|λS|2

2
(v2

S1
+ v2

S2
) +

g′2
1

2
QS3∆ = 0, (2.8)

1

vu

〈
∂V0

∂ad

〉
=

1

vd

〈
∂V0

∂au

〉
= IλvS = 0, (2.9)

〈
∂V0

∂aS

〉
= −Im(m2

SS1
eiϕ1)vS1 − Im(m2

SS2
eiϕ2)vS2 + Iλvdvu = 0, (2.10)

〈
∂V0

∂aS1

〉
= −Im(m2

SS1
eiϕ1)vS + Im(m2

S1S2
eiϕ5)vS2 + IλSvS2vS3 = 0, (2.11)

〈
∂V0

∂aS2

〉
= −Im(m2

SS2
eiϕ2)vS − Im(m2

S1S2
eiϕ5)vS1 + IλSvS1vS3 = 0, (2.12)

〈
∂V0

∂aS3

〉
= IλSvS1vS2 = 0, (2.13)

where

ϕ1 = θS + θS1 , ϕ2 = θS + θS2 , ϕ3 = θS + θ1 + θ2, (2.14)

ϕ4 = θS1 + θS2 + θS3 , ϕ5 = −θS1 + θS2 = −ϕ1 + ϕ2, (2.15)

∆ = QHd
v2

d + QHuv
2
u + QSv2

S +
3∑

i=1

QSiv
2
Si

, (2.16)

Rλ =
Re(λAλeiϕ3)√

2
, Iλ =

Im(λAλeiϕ3)√
2

, (2.17)

RλS =
Re(λSAλSeiϕ4)√

2
, IλS =

Im(λSAλSeiϕ4)√
2

. (2.18)

5

Tadpole conditions



Mass matrix of the pseudoscalar 

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
0
4
P
_
0
4
0
8

The CP -odd part is given by

1

2

(

aT
O aT

S

)

M2
P

(

aO

aS

)

, M2
P =





M(O)
P M(OS)

P
(

M(OS)
P

)T
M(S)

P



 , (A.23)

where

M(O)
P =







Rλ
vuvS
vd

RλvS Rλvu

RλvS Rλ
vdvS
vu

Rλvd

Rλvu Rλvd (M(O)
P )33






, M(OS)

P =







0 0 0

0 0 0

Re(m2
SS1

eiϕ1) Re(m2
SS2

eiϕ2) 0






,

M(S)
P =







(M(S)
P )11 −Re(m2

S1S2
eiϕ12) + RλS

vS3 RλS
vS2

−Re(m2
S1S2

eiϕ12) + RλS
vS3 (M(S)

P )22 RλS
vS1

RλS
vS2 RλS

vS1 RλS

vS1
vS2

vS3






, (A.24)

with

(M(O)
P )33 = Re(m2

SS1
eiϕ1)

vS1

vS
+ Re(m2

SS2
eiϕ2)

vS2

vS
+ Rλ

vdvu

vS
, (A.25)

(M(S)
P )11 = Re(m2

SS1
eiϕ1)

vS

vS1

+ Re(m2
S1S2

eiϕ12)
vS2

vS1

+ RλS

vS2vS3

vS1

, (A.26)

(M(S)
P )22 = Re(m2

SS2
eiϕ2)

vS

vS2

+ Re(m2
S1S2

eiϕ12)
vS1

vS2

+ RλS

vS1vS3

vS2

. (A.27)

The mixing between CP -even and CP -odd parts is already given in the main text.
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