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Main Motivation:

Try to find an analogous expression

to the Aharonov-Bohm effect in quantum physics

of the twin effect in special relativity.

2



Theorem I:

The length difference between two curves, C1 and C0, sharing identical end-points

∂C1 = ∂C0 = {A, B}, is equal to the integral of the geodesic curvatures κg(Cλ)

along all interpolating curves Cλ (with common end-points ∂Cλ = {A, B}) with

respect to any deformation surface Σ bounded by C1 and C0.∫∫
Σ
κg(Cλ) d2a =

∫
C1

dl −
∫
C0

dl, ∂Σ = C1 ∪ (−C0). (1)

Theorem II:

The area difference between two surfaces, S1 and S0, sharing identical boundary

contour ∂S1 = ∂S0 = C, is equal to the integral of twice of the mean curvatures

H(Sλ) over all interpolating surfaces Sλ (with common boundary contour ∂Sλ = C)

within the interior region, Ω, of the closed surface formed by the union of S1 and

−S0. ∫∫∫
Ω

2H(Sλ) d3τ =
∫∫
S1

d2a−
∫∫
S0

d2a. ∂Ω := S1 ∪ (−S0). (2)
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• The starting point of our construction is to express the length difference between

two curves sharing common end-points as a contour integral,

∆l = l1 − l0 =
∮
C=C1∪(−C0)

dl

=
∮
C=C1∪(−C0)

√(
x′
)2

+
(
y′
)2

+
(
z′
)2
dσ. (3)

• Here we take general parametrization of the curves C1, C0 as

C1 ⇒ ~r1(σ) := (x1(σ), y1(σ), z1(σ)),

C0 ⇒ ~r0(σ) := (x0(σ), y0(σ), z0(σ)). (4)

dl =
d~r

dl
· d~r =: ~A · d~r,

∮
C
dl =

∮
C
~A · d~r.

⇒ ~A =
d~r

dl
=
d~r/dσ

dl/dσ
=

~r′√
~r′ · ~r′

,

⇒ ~A(~r(σ)) = ~A(x(σ), y(σ), z(σ)). (5)
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• We introduce a ”fiberization” of the 3-dimensional space as follows:

x = f(ξ, η, σ) := x0(σ) + ξ [∆x(σ)]

y = g(ξ, η, σ) := y0(σ) + η [∆y(σ)]

z = h(ξ, η, σ) := z0(σ) +
(
ξ + η

2

)
[∆z(σ)] . (6)

• This ”fiberization” can be viewed as introducing a two-parameter family of inter-

polating curves, ~rξη(σ) := (f(ξ, η, σ), g(ξ, η, σ), h(ξ, η, σ)),

~r00(σ) = (f(0,0, σ), g(0,0, σ), h(0,0, σ)) = ~r0(σ),

~r11(σ) = (f(1,1, σ), g(1,1, σ), h(1,1, σ)) = ~r1(σ). (7)

• If we treat the fiberization of the three-dimensional space as a change of coordi-

nates, (x, y, z)⇔ (ξ, η, σ), then it is possible to extend the definition of the vector

potentials as follows,

~A(x, y, z) :=
~r′ξη(σ)√[

~r′ξη(σ) · ~r′ξη(σ)
], ~r′ξη(σ) :=

∂

∂σ
~rξη(σ). (8)
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• For later convenience, it is useful to notice the following identity,

∂

∂λ
~rλλ =

∂

∂ξ
~rξη

∣∣∣∣∣
η,σ

+
∂

∂η
~rξη

∣∣∣∣∣
ξ,σ

= ∆~r. (9)

• We choose a deformation surface, Σ, as a diagonal slice of the fibrization,

Σ⇒ ~R(λ, σ) := ~rλλ(σ) = (f(λ, λ, σ), g(λ, λ, σ), h(λ, λ, σ)) ,

∂Σ = C1 ∪ (−C0). (10)

• We can now use the Stokes’ theorem to derive our main result,∮
C
dl =

∮
C
~A.d~r =

∫∫
Σ

(
~∇× ~A

)
· d2~a =

∫∫
Σ

(
~∇× ~A · ~U

)
dλdσ. (11)

• Here ~U stands for the normal vector of the deformation surface Σ,

~U :=
∂ ~R

∂λ
×
∂ ~R

∂σ
=
∂~rλλ
∂λ
×
∂~rλλ
∂σ

. (12)(
~∇× ~A

)
· ~U = εlmn(∂mAn)εljk(∂λrj)(∂σrk)

= (δmjδnk − δmkδnj)(∂mAn)(∂λrj)(∂σrk)

= (∂λAn)(∂σrn)− (∂σAn)(∂λrn) = (∂λ ~A) · ~r′ − (∂σ ~A)(∆~r).
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• Recall that ~A is defined as the normalized tangent vector of the interpolating curve,

∂λ ~A =
(∆~r′)(~r′ · ~r′)− ~r′(~r′ ·∆~r′)

(~r′ · ~r′)
3
2

, (∂λ ~A) · ~r′ = 0. (13)

∂σ ~A =
~r′′(~r′ · ~r′)− ~r′(~r′ · ~r′′)

(~r′ · ~r′)
3
2

. ~r′ :=
∂~rλλ
∂σ

, ~r′′ :=
∂2~rλλ
∂2σ

. (14)

• Consequently, we can verify that the integrand in Eq.(), is indeed given by the

geodesic curvature of the interpolating curve ~rλλ with respect to the deformation

surface Σλ,

(~∇× ~A) · ~U =
(∆~r · ~v)(~v · ~a)− (∆~r · ~a)(~v · ~v)

|~v|
3
2

=
(~v × ~a) · (∆~r × ~v)

|~v|
3
2

=
(~v × ~a) · ~U

|~v|
3
2

= κg(~rλλ). (15)

Here we use the kinematic symbols, velocity ~v := ~r′, and acceleration ~a := ~r′′.
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• The proof of the Theorem II for the area difference follows similar idea of that

of the length difference. We first rewrite the area difference as an integral over

closed surface,

∆A = A1 −A0 =
∫∫
∂Ω
± d2a =

∫∫
Σ
±
∣∣∣∣∣~Ru × ~Rv

∣∣∣∣∣du dv. (16)

• By taking general parametrizations of the surfaces S1, S0 as

S1 : ~R1(u, v) := (x1(u, v), y1(u, v), z1(u, v)),

S0 : ~R0(u, v) := (x0(u, v), y0(u, v), z0(u, v)), (17)

• we compute the surface area element from the cross-product of two tangent vec-

tors,

d2a =

∣∣∣∣∣∂u ~R× ∂v ~R
∣∣∣∣∣du dv

=

√√√√√∣∣∣∣∣ ∂uy ∂uz

∂uy ∂uz

∣∣∣∣∣
2

+

∣∣∣∣∣ ∂uz ∂ux

∂uz ∂ux

∣∣∣∣∣
2

+

∣∣∣∣∣ ∂ux ∂uy

∂ux ∂uy

∣∣∣∣∣
2

du dv. (18)
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• If we wish to identify the area element as a flux density of a vector field, ~E,

d2a = ~E · d2~a = E1dy ∧ dz + E2dz ∧ dx+ E3dx ∧ dy, (19)

then it is natural to define ~E as the unit normal vector of the surface

~E :=
∂u ~R× ∂v ~R∣∣∣∣∣∂u ~R× ∂v ~R

∣∣∣∣∣
. (20)

• To extend the definition of the vector field ~E throughout the 3-dimensional space,

we in introduce a foliation of the 3-dimensional space as follow :

x = F (u, v, λ) := x0(u, v) + λ∆x(u, v),

y = G(u, v, λ) := y0(u, v) + λ∆y(u, v),

z = H(u, v, λ) := z0(u, v) + λ∆z(u, v). (21)
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• Again, this foliation can be either thought as a family of interpolating surfaces,

Sλ ⇒ ~Rλ(u, v) = ~R0(u, v)+λ∆~R(u, v), ∆~R(u, v) := ~R1(u, v)−~R0(u, v),

(22)

or treated as a change of coordinates (x, y, z) ⇔ (u, v, λ). In either case, we can

apply the divergence theorem to Eq.(27), and obtain

∆A =
∫∫
∂Ω

~E · d2~a =
∫∫∫

Ω
~∇ · ~Ed3τ. (23)

• It is know that for a given surface, the divergence of the unit normal vector is

equal to double of the mean curvature

~∇ · ~E = ~∇ ·
∂u ~R× ∂v ~R∣∣∣∣∣∂u ~R× ∂v ~R

∣∣∣∣∣
= 2H(Sλ). (24)

Thus this completes the proof of our second main result, Theorem II.

∆A = A1 −A0 =
∫∫
∂Ω

d2a =
∫∫∫

Ω
2H(Sλ) d3τ. (25)
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