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Motivation

Conservation of 𝑇𝜇𝜈

Hawking radiation 𝑇𝑢𝑢 > 0

In-falling negative energy 𝑇𝑣𝑣 < 0

Quantum effects of matter fields 
around black holes

Hawking radiation BH evaporation

It is sometimes considered that 
Hawking radiation appears in bulk

In this case, infalling negative energy cancels BH energy

However, negative energy appears even around static black holes
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Negative energy appears even 
around static black holes

Introduction

Conservation of 𝑇𝜇𝜈

Weyl anomaly 𝑇 𝜇
𝜇

≠ 0

negative energy 𝑇𝑣𝑣 < 0 𝑇𝑢𝑢 < 0

For example, models with 2D matters

We consider effects of negative energy in 
Boulware vacuum 𝑇𝜇𝜈 → 0 in    𝑟 → ∞

𝐺𝜇𝜈
(4𝐷)

= 8𝜋𝐺 𝑇𝜇𝜈
(4𝐷)

Einstein equation with back reaction from 〈𝑇𝜇𝜈〉



2D model for 4D black hole

Separate 4D metric to angular part and others

𝑑𝑠2 =  

𝜇=0,1,2,3

𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 =  

𝜇=0,1

𝑔𝜇𝜈
(2𝐷)

𝑑𝑥𝜇𝑑𝑥𝜈 + 𝑟2𝑑Ω2

The Einstein-Hilbert action gives dilaton action

𝑆 =
1

16𝜋𝐺
 𝑑𝑥4 −𝑔𝑅

=
𝜇2

16𝜋𝐺
 𝑑𝑥2 −𝑔2𝐷 𝑒−2𝜙[𝑅2𝐷 + 2 𝜕𝜙 2 + 2𝑒2𝜙]

𝑒𝜙 =
𝜇

𝑟
where

We integrate out angular directions

2D curvature is non-zero even in the vacuum

𝑅4𝐷 = 0 𝑅2𝐷 ≠ 0 for 𝑇𝜇𝜈 = 0



Energy-momentum tensor in 4D and 2D are

𝑇𝜇𝜈
(4𝐷)

= −
2

−𝑔4𝐷

𝛿𝑆

𝛿𝑔𝜇𝜈
𝑇𝜇𝜈

(2𝐷)
= −

2

−𝑔2𝐷

𝛿𝑆

𝛿𝑔(2𝐷)
𝜇𝜈

For 𝜇, 𝜈 = 0,1, 𝑇𝜇𝜈
(4𝐷)

=
1

𝑟2
〈𝑇𝜇𝜈

(2𝐷)
〉

We treat dilaton 𝑟 = 𝜇𝑒−𝜙 as a background field

EM tensor for dilaton 4D Einstein tensor

Semi-classical Einstein equation

𝐺𝜇𝜈
(4𝐷)

=
8𝜋𝐺

𝑟2
〈𝑇𝜇𝜈

(2𝐷)
〉

We consider scalar fields

𝑆 = −
1

2
 𝑑𝑥4 −𝑔 𝜕𝜒 2 = −2𝜋  𝑑𝑥2 −𝑔2𝐷 𝑟2[ 𝜕𝜒 2]



We consider the 2D model as a toy model

2D scalar fields

classically conformal, but has anomaly

𝑆 = −
1

2
 𝑑2𝑥 −𝑔 𝜕𝜒 2

𝑇𝜇
(2𝐷)𝜇

=
1

24𝜋
𝑅2𝐷

Using anomaly, we can integrate conservation law;

We neglect factor of 𝑟2

𝛻𝜇〈𝑇𝜇𝜈
(2𝐷)

〉 = 0

Toy model: 4D gravity with 2D scalar

and then, 2D energy-momentum tensor is completely fixed. 

Here, we use the following boundary condition

𝑇𝜇𝜈
2𝐷

→ 0 in 𝑟 → ∞



Vacuum energy without back reaction

We consider the fixed background of Schwarzschild BH

𝑑𝑠2 = − 1 −
𝑎0

𝑟
𝑑𝑡2 +

1

1 −
𝑎0
𝑟

𝑑𝑟2 + 𝑟2𝑑Ω2

Quantum effects in energy-momentum  tensor

𝑇𝑢𝑣
(2𝐷)

=
𝑁

48𝜋

𝑎0
2

𝑟4
−

𝑎0

𝑟3

𝑇𝑢𝑢
(2𝐷)

=
𝑁

48𝜋

3𝑎0
2

𝑟4
−

𝑎0

𝑟3

𝑇𝑣𝑣
(2𝐷)

=
𝑁

48𝜋

3𝑎0
2

𝑟4
−

𝑎0

𝑟3



Vacuum energy without back reaction

Quantum effects give energy flow in 𝑟 → ∞ (Hawking radiation)

〈𝑇𝑢𝑣
2𝐷

〉 〈𝑇𝑢𝑢
2𝐷

〉

No incoming or outgoing energy at the horizon

𝑀 = 1, the horizon is at 𝑟 = 2

Hawking radiation
𝑇𝑢𝑢 = 0
at horizon



Vacuum energy without back reaction

Quantum effects give negative energy outside the horizon

〈𝑇𝑢𝑣
2𝐷

〉

No incoming or outgoing energy in 𝑟 → ∞

〈𝑇𝑢𝑢
2𝐷

〉

The horizon is at 𝑎0 = 2

𝑇𝑢𝑢 = 0
in 𝑟 → ∞

Negative energy at horizon



Breakdown of perturbative expansion

Perturbative expansion around classical solution

𝑑𝑠2 = −𝐶 𝑟 𝑑𝑡2 +
𝐶 𝑟

𝐹2 𝑟
𝑑𝑟2 + 𝑟2𝑑Ω2

𝐶 𝑟 = 𝐶0 𝑟 + 𝛼𝐶1 𝑟 + ⋯

𝛼 =
𝐺𝑁

3

𝐶0 = 1 −
𝑎0

𝑟

Perturbative correction 𝐶1 𝑟 diverges at the horizon 𝑟 = 𝑎0.

𝐶1 𝑟 =
4𝑟2 + 𝑎0

2 + 4𝑎0𝑟 2𝑐1𝑟 − 1

4𝑎0𝑟2 𝑟 − 𝑎0
−

2𝑟 − 3𝑎0

2𝑎0
2 𝑟 − 𝑎0

log(1 −
𝑎0

𝑟
)

The leading term 𝐶0 𝑟 is classical solution 

𝐶1(𝑟) is the correction at 𝒪(𝛼) from 𝑇𝜇𝜈

We cannot use 𝛼-expansion near 𝑟 = 𝑎0.

We solve the Einstein equation without using 𝛼-expansion.



Self-consistent Einstein equation

We solve semi-classical Einstein equation for 𝑔𝜇𝜈 and 〈𝑇𝜇𝜈〉

𝐺𝜇𝜈
(4𝐷)

=
8𝜋𝐺

𝑟2
〈𝑇𝜇𝜈

(2𝐷)
〉

𝜇, 𝜈 = 0,1
𝐺𝜃𝜃 = 0

where metric and 〈𝑇𝜇𝜈
2𝐷

〉 are given by

𝑑𝑠2 = −𝐶 𝑟 𝑑𝑢𝑑𝑣 + 𝑟2𝑑Ω2

𝑇𝑢𝑣
(2𝐷)

= −
1

12𝜋
𝐶𝜕𝑢𝜕𝑣𝐶 − 𝜕𝑢𝐶𝜕𝑣𝐶

𝑇𝑢𝑢
(2𝐷)

= 𝑇𝑣𝑣
(2𝐷)

= −
1

12𝜋
𝐶1/2𝜕𝑢

2𝐶−1/2



Results

𝐶 𝑟 = 𝑒2𝜌Define

𝜌 satisfies

𝑟𝜌′ + 2𝑟2 + 𝛼 𝜌′2 + 𝛼𝑟𝜌′3 + 𝑟2 − 𝛼 𝜌′′ = 0

Numerical result for 𝐶(𝑟)

Non-zero at 
Schwarzschild 
radius 𝑟 = 𝑎

Asymptotically flat

𝑑𝑠2 = −𝐶 𝑟 𝑑𝑡2 +
𝐶 𝑟

𝐹2 𝑟
𝑑𝑟2 + 𝑟2𝑑Ω2

𝛼 =
𝐺𝑁

3

𝑁:Number of DoF
(scalar)



Results

𝐹(𝑟) is related to 𝐶(𝑟) as 

Numerical result for 𝐹(𝑟)

Goes to zeroAsymptotically flat

𝑑𝑠2 = −𝐶 𝑟 𝑑𝑡2 +
𝐶 𝑟

𝐹2 𝑟
𝑑𝑟2 + 𝑟2𝑑Ω2

𝐹 𝑟 =
𝐶3/2(𝑟)

4𝐶2 𝑟 + 4𝑟𝐶 𝑟 𝐶′ 𝑟 + 𝛼𝐶′2



Near “horizon” behavior 

horizon 𝐶 𝑟 = 0 𝜌 → −∞

𝐶 𝑟 = 𝑒2𝜌

Differential equation for 𝜌 is approximated as 

𝛼𝑎𝜌′3 + 𝑎2 − 𝛼 𝜌′′ = 0

𝑟𝜌′ + 2𝑟2 + 𝛼 𝜌′2 + 𝛼𝑟𝜌′3 + 𝑟2 − 𝛼 𝜌′′ = 0

𝜌′ → ∞

𝐶(𝑟), 𝐹(𝑟) behaves near 𝑟 = 𝑎 as

𝐶 𝑟 = 𝑐0𝑒2𝑘 𝑟−𝑎 𝐹 𝑟 =
1

𝑘
4𝑐0 𝑟 − 𝑎

𝜌′ ∼
𝑘

𝑟 − 𝑎
Then, 𝜌′ behaves as 

Assume 𝜌′
𝑟→𝑎

∞, at some point 𝑟 = 𝑎,

𝑘 ∼
2𝑎

𝛼

2

where



Near “horizon” geometry

𝑑𝑠2 ∼ −𝑐0𝑑𝑡2 +
𝑘𝛼 𝑑𝑟2

4 𝑟 − 𝑎
+ 𝑟2𝑑Ω2

metric near 𝑟 = 𝑎 This is wormhole metric

Define 𝑥 by 𝑟 = 𝑎 +
𝑐0

𝛼𝑘
𝑥2

𝑑𝑠2 ∼ −𝑐0 𝑑𝑡2 + 𝑑𝑥2 + 𝑎2𝑑Ω2

Metric is given by

𝑑𝑠2 = −𝐶 𝑟 𝑑𝑡2 +
𝐶 𝑟

𝐹2 𝑟
𝑑𝑟2 + 𝑟2𝑑Ω2

Assuming that 𝐶 𝑟 = 𝑎 = 0,  𝐶(𝑟), 𝐹(𝑟) behaves near 𝑟 = 𝑎 as

𝐶 𝑟 = 𝑐0𝑒2𝑘 𝑟−𝑎 𝐹 𝑟 =
1

𝑘
4𝑐0 𝑟 − 𝑎



Generic energy-momentum tensor

Consider the semi-classical Einstein equation for generic 〈𝑇𝜇𝜈〉

𝐺𝜇𝜈 = 8𝜋𝐺 𝑇𝜇𝜈

Regularity of curvature is related to energy-momentum tensor 

For static and spherically symmetric metric

𝑔𝑢𝑣𝑅𝑢𝑣

𝑅𝜃𝜃

are regular
𝑔𝑢𝑣 𝑇𝑢𝑣

〈𝑇𝜃𝜃〉
are regular

〈𝑇𝜇𝜈〉 diverges at the horizon in Boulware vacuum

Geometry must be modified for regularity



Condition for (Killing) horizon

𝑢, 𝑣 coordinate has coordinate singularity at (future) horizon

Take another coordinate (  𝑢, 𝑣) to avoid singularity

𝑑𝑠2 = −𝐶 𝑑𝑢 𝑑𝑣 = −  𝐶 𝑑  𝑢 𝑑𝑣

where 𝐶 = 0 but  𝐶 ≠ 0 at the horizon.

 𝐶 =
𝑑𝑢

𝑑  𝑢
𝐶

𝑑𝑢

𝑑  𝑢
∝ 𝐶−1 → ∞ at horizon

Energy-momentum tensor in this coordinate must be regular

𝑇 𝑢 𝑢 =
𝑑𝑢

𝑑  𝑢

2

𝑇𝑢𝑢 𝑇 𝑢𝑣 =
𝑑𝑢

𝑑  𝑢
𝑇𝑢𝑣

𝑇𝑢𝑣 = 𝑇𝑢𝑢(= 𝑇𝑣𝑣) = 0 at the horizon



Classification by energy-momentum tensor

I. 𝑇𝑢𝑢 = 0 𝑇 𝑢
𝑢 > −

1

8𝜋𝐺𝑎2

Near horizon geometry is Rindler space

II. 𝑇𝑢𝑢 = 0 𝑇 𝑢
𝑢 = −

1

8𝜋𝐺𝑎2
𝑇𝜃𝜃 > 0

Near horizon geometry is Rindler or AdS2

𝑇𝑢𝑣 = 0

𝑇𝑢𝑣 = 0

III. 𝑇𝑢𝑢 < 0 𝑇𝑢𝑢 − 𝑇𝑢𝑣 = −
𝐶 𝑎

16𝜋𝐺𝑎2

Near horizon geometry is wormhole

VI. 𝑇𝑢𝑢 > 0

No special structure such as horizon or wormhole



Discussions
Black hole geometry is modified by quantum effects in 〈𝑇𝜇𝜈〉

Negative energy Wormhole geometry

Positive energy No horizon or wormhole

There are various vacua with positive, negative or zero energy

For general 〈𝑇𝜇𝜈〉, we have not calculated any solution explicitly.

However, negative energy will still appear even with back reaction

Classical solution take back reaction into account

Negative energy

Modified solution

Negative energy

If vacuum energy around a black hole is negative, 
the black hole is modified to wormhole by the negative energy.



Interior of wormhole

In the other side of wormhole radius 𝑟 decreases as it goes inside

“Vacuum” solution: without matters

Physical model: there are matters which form the black hole

Singularity in 𝑟 → ∞

the radius 𝑟 starts decrease as it goes inside matters

“Vacuum” solution With matters inside wormhole



Geometry of interior of black hole
We put the surface of the star at 𝑟 = 𝑟𝑠

Outside the surface Vacuum solution (wormhole)

Inside the surface Geometry with matter distribution

Energy-momentum tensor

𝑇𝜇𝜈 = 𝑇𝜇𝜈
Ω + 𝑇𝜇𝜈

𝑚

𝑇𝜇𝜈
Ω =

1

𝑟2
𝑇𝜇𝜈

(2𝐷)

Energy-momentum 
tensor of matters

Energy-momentum 
tensor of vacuum

We consider incompressible fluid

𝑇𝜇𝜈
𝑚 = 𝑚0 + 𝑃 𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈

𝑚0: Density (constant)

𝑃: Pressure



Pressure in classical limit

𝑃 𝑟 = 8𝜋𝐺
3 − 8𝜋𝐺𝑚0𝑟

2 − 3 − 8𝜋𝐺𝑚0𝑟𝑠
2

3 3 − 8𝜋𝐺𝑚0𝑟𝑠
2 − 3 − 8𝜋𝐺𝑚0𝑟

2

Condition for non-singular pressure

𝑚0 <
1

3𝜋𝐺𝑟𝑠
2 𝑟𝑠 >

9

8
𝑎

Classical star of incompressible fluid

Relation between 𝑎 and 𝑚0

𝑎0

2
=

4𝜋

3
𝑚0𝑟𝑠

3



Semi-classical geometry of interior

Assumption: 𝑇𝜇𝜈
Ω and 𝑇𝜇𝜈

𝑚 are conserved independently.

𝑑𝑠2 = 𝐶 𝑟∗ −𝑑𝑡2 + 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑Ω2

𝑇𝑢𝑣
Ω = −

𝑁

12𝜋𝑟2
𝐶𝜕𝑢𝜕𝑣𝐶 − 𝜕𝑢𝐶𝜕𝑣𝐶

𝑇𝑢𝑢
Ω = 𝑇𝑣𝑣

Ω = −
𝑁

12𝜋𝑟2
𝐶1/2𝜕𝑢

2𝐶−1/2

Vacuum energy-momentum tensor (approx. by 2D scalar)

Energy-momentum tensor for incompressible fluid

Conservation law 𝑃 = −𝑚0 + 𝑃0

𝐶 𝑟𝑠
𝐶 𝑟

1
2

Tortoise coordinate 𝑟∗ is convenient to see interior



Numerical analysis and free parameters

We solve the semi-classical Einstein equation numerically.

Metric is approx. by classical Schwarzschild metric in 𝑟 → ∞

Initial condition:

Junction condition:

• Pressure 𝑃 = 0 at 𝑟 = 𝑟𝑠
• Metric is smooth at the surface 𝑟 = 𝑟𝑠

Parameters of the system (3 parameters)

𝑃0 = 𝑚0

density: 𝑚0 Surface radius: 𝑟𝑠

Classical Schwarzschild radius: 𝑎0 Total mass

Total mass

Only 2 of 3 are independent parameters: e.g. 𝑚0 =  𝑚0 𝑎0, 𝑟𝑠

difficult to find exact relation by numerical calculation

must be same



Numerical analysis and free parameters
Appropriate density  𝑚0(𝑎0, 𝑟𝑠)

However, numerical calculation can be done with 3 parameters 
as free parameters. What happens for 𝑚0 ≠  𝑚0?

Case I: Too small density (𝑚0 ≪  𝑚0)

Case II: Too large density (𝑚0 ≫  𝑚0)

Case III: approximately appropriate density (𝑚0 ∼  𝑚0)

• There is a singularity with positive mass in “center” (𝑟 → ∞).
• Geometry is similar to “vacuum”: 𝑟 → ∞ at 𝑟∗ → −∞.

• There is a singularity with negative mass at center (𝑟 ∼ 0).
• There is another 𝑃 = 0 at 𝑟 < 𝑟𝑠, inside surface.

• continues to 𝑟 ∼ 0 with 𝑃 > 0 (physical fluid).
• would have no singularity if 𝑚0 =  𝑚0 exactly. 



Case I: Too small density (𝑚0 ≪  𝑚0)

𝑑𝑠2 = 𝐶 𝑟∗ −𝑑𝑡2 + 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑Ω2Numerical result for 𝐶 𝑟∗

Asymptotically flat
Very small but 
non-zero

𝐶(𝑟∗)

𝑟∗

log 𝐶(𝑟∗)



𝑑𝑠2 = 𝐶 𝑟∗ −𝑑𝑡2 + 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑Ω2Numerical result for 𝑟 𝑟∗

𝑟(𝑟∗)

𝑟∗

Quantum
Schwarzschild radius

𝑟 = 𝑎

Surface of 
the star

Does not go to zero

𝑟 increases as 
𝑟∗ decreases



Case II: Too large density (𝑚0 ≫  𝑚0)

𝑑𝑠2 = 𝐶 𝑟∗ −𝑑𝑡2 + 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑Ω2

Numerical result for 𝐶 𝑟∗

Pressure 𝑃 𝑟∗

Pressure is zero at 
the surface 𝑟 = 𝑟𝑠

Another endpoint of 
matter distribution

𝐶(𝑟∗)

𝑟∗
𝑟∗

𝑃 = 0, here

Asymptotically flat



𝑑𝑠2 = 𝐶 𝑟∗ −𝑑𝑡2 + 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑Ω2Numerical result for 𝑟 𝑟∗

𝑟(𝑟∗)

𝑟∗

Quantum
Schwarzschild radius

𝑟 = 𝑎

Surface of 
the star

𝑃 = 0

𝑟 ≠ 0
where 𝑃 = 0



Case III: approx. appropriate density (𝑚0 ∼  𝑚0)

𝑑𝑠2 = 𝐶 𝑟∗ −𝑑𝑡2 + 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑Ω2

Numerical result for 𝐶 𝑟∗

𝐶(𝑟∗)

𝑟∗



Quantum
Schwarzschild radius

𝑟 = 𝑎

Surface of 
the star

Goes to 𝑟 = 𝒪(ℓ𝑝)

𝑑𝑠2 = 𝐶 𝑟∗ −𝑑𝑡2 + 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑Ω2Numerical result for 𝑟 𝑟∗

𝑟(𝑟∗)



Pressure 𝑃 𝑟∗

𝑃

𝑟∗

𝑃 ≠ 0
at 𝑟 ∼ 𝒪(ℓ𝑝)

Pressure is zero at 
the surface 𝑟 = 𝑟𝑠



Surface at deeper place

Relation between 𝑚0 and 𝑟𝑠 for 𝑎 = 10

𝑚0 log 𝑚0

𝑟𝑠 𝑟𝑠

Surface is inside of 𝑟 = 𝑎

• Density 𝑚0 increases exponentially as surface moves inside

• Difference between local minimum and local maximum of 𝑟
would be of Planck scale. 



Mass of fluid and black hole

Komar mass calculated from fluid density and pressure

𝑀fluid = −  𝑑3𝑥 −𝑔 2𝑇0
0 − 𝑇𝜇

𝜇
= 4𝜋  𝑑𝑟∗ 𝑟2𝐶 𝑚0 + 3𝑃

𝜅

4𝜋
𝑀fluid

𝑎0

𝜅

4𝜋
𝑀fluid

𝑟𝑠 = 𝑎

𝑟𝑠

𝑎 = 10

• Komar mass of fluid almost reproduce black hole mass
• Fluid mass is slightly larger than BH mass because of 

negative vacuum energy



Density for 𝑟𝑠 = 𝑎
Density 𝑚0 for the star with surface at neck of “wormhole”

𝜅𝑚0

𝑎0

𝜅𝑚0

2𝛼

• Density 𝑚0 is independent of mass of black hole 𝑎0

• Density is very large: 𝑚0 ∼ 𝒪 𝜅−1𝛼−1 ∼ 𝒪 ℓ𝑝
−4

𝑚0 <
1

3𝜋𝐺𝑟𝑠
2Classical regularity condition for pressure 

can be violated by arbitrary small 𝑚0

Arbitrarily large star can be non-singular



“Embedding” of geometry

𝑑𝑠2 = 𝐶 𝑟∗ 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑𝜃2

Geometry cannot be embedded into 3D space 
since proper length in 𝑟 direction is smaller than 𝑟

Embedding of BH geometry to 3D space

𝑑𝑠2 = 1 −
𝑎

𝑟

−1

𝑑𝑟2 + 𝑟2𝑑𝜃2

Embed the following metric, instead

𝑑𝑠2 = 𝑑𝑟∗
2 + 𝑟2 𝑟∗ 𝑑𝜃2



Conclusion
• We have considered back reaction to geometry from quantum 

effects in energy-momentum tensor.

• For simplest scalar model, anomaly gives negative energy.

• In stationary case, the quantum energy-momentum tensor 
(Boulware vacuum) has divergence at the horizon. 

• Quantum effects are very small except for near horizon region. 

• Back reaction becomes large very near the horizon, and 
geometry near the horizon must be modified.

• In general, as far as the energy-momentum tensor is non-zero 
at the horizon, the horizon is killed by the back reaction.

wormhole metric



Conclusion (2)
• For interior geometry of “black hole,” we considered a star 

which consists of incompressible fluid.

• If density 𝑚0 is almost appropriate, the geometry continues to 
𝑟 ∼ 𝒪 ℓ𝑝 , at least. 

• The geometry does not have horizon or singularity.

• Density becomes very large if surface of the star is around the 
wormhole. 

• If density of incompressible fluid is sufficiently small, surface of 
the star cannot be inside the Schwarzschild radius, in contrast 
to the classical solution.



Thank you


