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Motivation

Quantum effects of matter fields
around black holes

Hawking ‘-V

Qeation Hawking radiation E> BH evaporation
singularity Z\
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horizon AN Conservation of (T, )
N\ " Negative
ega . L
energy Hawking radiation (T,,,) > 0
flow \- ‘ s

In-falling negative energy (T,,,) < 0
Collapsing shell

It is sometimes considered that
Hawking radiation appears in bulk

In this case, infalling negative energy cancels BH energy

However, negative energy appears even around static black holes



Introduction

Negative energy appears even
around static black holes

singularity

horizon

For example, models with 2D matters

-
Conservation of (T,,)

U
s Weyl anomaly (T",) # 0

o

negative energy (T,,) <0 (Ty) <0

Negative
energy
flow

We consider effects of negative energy in
Boulware vacuum  (T,,,) > 0 in 7> o

Einstein equation with back reaction from (T, )
(4D) _ (4D)
G = 811G <Tuv )



2D model for 4D black hole

Separate 4D metric to angular part and others

ds? = z gdxtdx? = z gl(ﬁ,D)dx”dx"+r2dQ2
u=0,1,2,3 u=0,1

We integrate out angular directions
The Einstein-Hilbert action gives dilaton action
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2D curvature is non-zero even in the vacuum

R,p =0 R,p, # 0 for <Tuv> =0



We consider scalar fields

1
s = =3 | ax*y=gl0n)*) = ~2r | dx*y=g5 1?00

Energy-momentum tensor in 4D and 2D are

gp)___ 23S ep)___ 2 _8S
H = 59”v H N 59(2D)

For u,v = 0,1, (T (4D)> ( (2D)>

We treat dllaton r = e~ ? as a background field

EM tensor for dilaton <:> 4D Einstein tensor

Semi-classical Einstein equation

81l
(4D) (2D)
G 1% T 7‘2 ( Uuv )



Toy model: 4D gravity with 2D scalar

We consider the 2D model as a toy model
2D scalar fields / We neglect factor of 2

1
s =3 | d*y=g (002

classically conformal, but has anomaly

Using anomaly, we can integrate conservation law;
(2D)\ _
V“(Tw y=20
and then, 2D energy-momentum tensor is completely fixed.
Here, we use the following boundary condition

(Tﬂ(sD)) -0 in 1o o



Vacuum energy without back reaction

We consider the fixed background of Schwarzschild BH
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7 dr? + r2dQ>?
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ds? =—(1—%)dt2+

Quantum effects in energy-momentum tensor
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Vacuum energy without back reaction

No incoming or outgoing energy at the horizon

Quantum effects give energy flow in r = oo (Hawking radiation)
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Vacuum energy without back reaction

No incoming or outgoing energy inr — o

Quantum effects give negative energy outside the horizon
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Breakdown of perturbative expansion

Perturbative expansion around classical solution

C(r)
2 _ _ 2 2 2 102 GN
ds* = —C(r)dt +F2(r)dr + r<dQ) a= "
C(r) =Cy(r) + aCy(r) + -
The leading term C,(r) is classical solution (, =1 —%
C1(r) is the correction at O(a) from (T),,)
412 + a3 + 4a,r(2cyr — 1)  2r — 3a, a,
) = 4a,r2(r — ay) B 2a8(r — ag) log(1 = 7)

Perturbative correction C, (1) diverges at the horizon r = a,.

I:> We cannot use a-expansion nearr = a,.

We solve the Einstein equation without using a-expansion.



Self-consistent Einstein equation

We solve semi-classical Einstein equation for g,,, and (T}, )

3G
(4D) _ (2D) Gop = 0
G‘uv ( Uy ) 0V =0,1 66

where metric and (TWD)) are given by

ds? = —C(r)dudv + r?dQ?
1
(T\2P)y = 5= (€0,0,C = 0,€0,C)

(T (2D)> (T (ZD)>_ 1 C1/202C 1/2
127



C(r)

Results ds® = —C(r)dt® + 75 dr +r°dQ?
Define C(r) = e?P

B GN N:Number of DoF

p satisfies @=3 (scalar)

rp' + Qré+a)p? +arp + (% —a)p’” =0

Numerical result for C ()
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C(r)
2 _ __ 2 2 2 2
Results ds? = —C(r)de? + o5 dr? +r2d0

F(r)isrelated to C(r) as

C3/2(r)
\/4C2(r) + 4rC(r)C'(r) + aC'?

F(r) =

Numerical result for F (1)
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Near “horizon” behavior

horizon » C(r)=0 » p —> —0 » p' > o

r—a — p2p
Assume p’ — o0, at some pointr = a, (C(T) € )

Differential equation for p is approximated as

ro'+ Qri+a)p? +arp®+(@?—a)p” =0

b aap' + (a®* —a)p” =0

k 2
Then, p’ behavesas p’ ~ ﬁ where  k ~ <Z_a>
- a

C(r), F(r) behaves nearr = a as

C(r) = cyje?kVr-a F(r) = %\/4%(7” —a)



Near “horizon” geometry

Metric is given by

C(r)

2 2 102
Fz(r)dr + r<d()

ds? = —C(r)dt? +

Assuming that C(r = a) = 0, C(r), F(r) behaves nearr = a as

C(r) = cye?kVr-a F(r) = %\/4%(7‘ —a)

metricnearr = a This is wormhole metric

ka dr?
ds? ~ —codt? + +r?dQ? X
0 4(r —a) | '
. _ & 2
Definex byr = a + — X

ds? ~ —co(dt? + dx?) + a?dQ?




Generic energy-momentum tensor

Consider the semi-classical Einstein equation for generic (T},,)

Gy = 8nG(Ty,y)
Regularity of curvature is related to energy-momentum tensor

For static and spherically symmetric metric

guvRuv <T99>
are regular » are regular
Rgg 9 (Tyy)

(T, ) diverges at the horizon in Boulware vacuum

¥

Geometry must be modified for regularity



Condition for (Killing) horizon

(u, v) coordinate has coordinate singularity at (future) horizon

I:> Take another coordinate (i, v) to avoid singularity
ds?=—-Cdudv=-Cdiidv

where C = 0 but € # 0 at the horizon.

. du du .
C =—2C — x C™1 5 0 athorizon
dti dti

Energy-momentum tensor in this coordinate must be regular

du\’ du
Tan = dii Ty Iy = dii Ty

|:> Ty = T ,(=T,,) =0 atthe horizon



Classification by energy-momentum tensor

L (T =0 (Tuw)=0 (T%)>~- 8mGa?

I:> Near horizon geometry is Rindler space

Il (Tyy) =0 (Tuw) =0 (T*) = — 877G a2 (Tgg) > 0
I:> Near horizon geometry is Rindler or AdS,
C(a)
. (Tye) <0 (Tyu) — (Typ) = — 167G a?

I:> Near horizon geometry is wormhole
VI. (T,,) >0

I:> No special structure such as horizon or wormhole



Discussions

Black hole geometry is modified by quantum effects in (T}, )
There are various vacua with positive, negative or zero energy

Negative energy # Wormhole geometry

Positive energy # No horizon or wormhole
For general (T,,,), we have not calculated any solution explicitly.
However, negative energy will still appear even with back reaction
| Classical solution | take back reaction into account | Modified solution |

| Negative energy | | Negative energy |

If vacuum energy around a black hole is negative,
the black hole is modified to wormhole by the negative energy.



Interior of wormhole
In the other side of wormhole radius r decreases as it goes inside

“Vacuum” solution: without matters I:> Singularity inr — o

Physical model: there are matters which form the black hole

I:> the radius r starts decrease as it goes inside matters

With matters inside wormhole




Geometry of interior of black hole

We put the surface of the staratr =r;
Outside the surface I:> Vacuum solution (wormhole)

Inside the surface I:> Geometry with matter distribution

Energy-momentum tensor
Energy-momentum

(THV) — TM% 4+ le’/t «—  tensor of matters

\ Energy-momentum TQ . i<T(2D)
tensor of vacuum pv uv

We consider incompressible fluid
mg: Density (constant)

T =(my+ P)u,u, + P
Hy (mo )“ Y Juv P: Pressure



Classical star of incompressible fluid

Relation between a and m,

Ao 41T 3

Pressure in classical limit

J3 = 8nGmyr? — /3 — 8nGmyr?

P(r) = 8nG
33 — 8nGmyr? — /3 — 8nGmyr?

Condition for non-singular pressure

1 9
mao < . > —a
O T 3612 © ST 8




Semi-classical geometry of interior
Assumption: T} uy and Ty are conserved independently.

Vacuum energy-momentum tensor (approx. by 2D scalar)

TS = — ; ZIZTZ (co,o0,C —9,Ca,C)
T.Q — T.Q — N Cl/ZaZC 1/2
uu vv 127TT2
Energy-momentum tensor for incompressible fluid

[N

C(r.)\?
Conservation law |:> P=—-my+ p0< ( S)>

C(r)

Tortoise coordinate r, is convenient to see interior

ds? = C(r,)(—=dt? + dr?) + r?(r,)dO?



Numerical analysis and free parameters

We solve the semi-classical Einstein equation numerically.

Initial condition:

Metric is approx. by classical Schwarzschild metricinr = o

Junction condition:
* Pressure P =0atr =1, —) P, = m,
* Metric is smooth at the surface r = 7y

Parameters of the system (3 parameters)

Classical Schwarzschild radius: a I:> Total mass

{) must be same
density: m, Surface radius: 75 I:> Total mass

Only 2 of 3 are independent parameters: e.g. my = my(ag, 1)

difficult to find exact relation by numerical calculation



Numerical analysis and free parameters
Appropriate density 7y (ag, 15)

However, numerical calculation can be done with 3 parameters
as free parameters. What happens for my # m?

Case I: Too small density (my < m,)

* There is a singularity with positive mass in “center” (r — o0).
e Geometry is similar to “vacuum”: r - oo atr, - —oo0.

Case Il: Too large density (my > m,)

* There is a singularity with negative mass at center (r ~ 0).
* Thereisanother P = 0 atr < r, inside surface.

Case lll: approximately appropriate density (my ~ M)

e continuestor ~ 0 with P > 0 (physical fluid).
* would have no singularity if my = m exactly.



Case |: Too small density (my < M)

Numerical result for C(r;) ds? = C(r)(—dt? + dr?) + r2(r.)dQ?
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Numerical result for r(r;)

r(r)

Does not go to zero

T increases as
1, decreases
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Case Il: Too large density (mg > M)

Numerical result for C(r;)

C(r)
&
1.0 ==
0sf o T
osf Asymptotically flat
osf |
02l ".'I
| r
T Tl
P = 0, here

ds? = C(r,)(—=dt? + dr?) + r%(1.)dQ?

Pressure P(r,)

Another endpoint of
matter distribution
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Pressure is zero at
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Numerical result for r(r,)

r() |

ds? = C(r,)(—=dt? + dr?) + r%(1.)dQ?
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Case lll: approx. appropriate density (mg ~ my)

Numerical result for C(r;)

C(r:)
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ds? = C(r,)(—=dt? + dr?) + r%(1.)dQ?




Numerical

r(r)

result for r(r;)
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Pressure P(1,)
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Pressure is zero at
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Surface at deeper place

Relation between my and r; fora = 10

Surfaceisinsideof r = a
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* Density m, increases exponentially as surface moves inside

e Difference between local minimum and local maximum of r

would be of Planck scale.



Mass of fluid and black hole

Komar mass calculated from fluid density and pressure

Mayiq = — f d3x=g (2T — T, ) = 4n f dr, v?C(mgy + 3P)
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 Komar mass of fluid almost reproduce black hole mass
* Fluid mass is slightly larger than BH mass because of
negative vacuum energy



Density forr, = a
Density mg for the star with surface at neck of “wormhole”

Km Km,

0f

151

[ 104
10+ I

s PP
wm
Sy s s carn ot

* Density m, is independent of mass of black hole a,
» Density is very large: mg ~ O(k"*a™1) ~ 0(£5%)

i i Arbitrarily large star can be non-singular
1

3nGTE

Classical regularity condition for pressure my <
can be violated by arbitrary small m,



“Embedding” of geometry

Embedding of BH geometry to 3D space

ds? = (1 —%)_1 dr? + 1242 j‘>

Geometry cannot be embedded into 3D space
since proper length in r direction is smaller than r

ds? = C(r.)dr? + 1r%(r,)dO?

<

Embed the following metric, instead
ds? = dr? + r?(r,)d6? :




Conclusion

* We have considered back reaction to geometry from quantum
effects in energy-momentum tensor.

* For simplest scalar model, anomaly gives negative energy.

> wormhole metric

* In stationary case, the quantum energy-momentum tensor
(Boulware vacuum) has divergence at the horizon.

* Quantum effects are very small except for near horizon region.

* Back reaction becomes large very near the horizon, and
geometry near the horizon must be modified.

* In general, as far as the energy-momentum tensor is non-zero
at the horizon, the horizon is killed by the back reaction.



Conclusion (2)
* For interior geometry of “black hole,” we considered a star
which consists of incompressible fluid.

* If density m; is almost appropriate, the geometry continues to
r ~ 0(£p), at least.

* The geometry does not have horizon or singularity.

* Density becomes very large if surface of the star is around the
wormhole.

* |f density of incompressible fluid is sufficiently small, surface of
the star cannot be inside the Schwarzschild radius, in contrast
to the classical solution.



Thank you



