Static black holes with back reaction from vacuum energy

Yoshinori Matsuo
National Taiwan University

In collaboration with Pei-Ming Ho

arXiv:1703.08662 arXiv:1710.nnnnn

Motivation

However, negative energy appears even around static black holes

Introduction

singularity horizon **Negative** energy flow

Negative energy appears even around static black holes

For example, models with 2D matters

Conservation of $\langle T_{\mu\nu} \rangle$ Weyl anomaly $\langle T^{\mu}_{\ \mu} \rangle \neq 0$

We consider effects of negative energy in Boulware vacuum $\langle T_{\mu\nu} \rangle \to 0$ in $r \to \infty$

Einstein equation with back reaction from $\langle T_{\mu\nu} \rangle$

$$G_{\mu\nu}^{(4D)} = 8\pi G \langle T_{\mu\nu}^{(4D)} \rangle$$

2D model for 4D black hole

Separate 4D metric to angular part and others

$$ds^{2} = \sum_{\mu=0,1,2,3} g_{\mu\nu} dx^{\mu} dx^{\nu} = \sum_{\mu=0,1} g_{\mu\nu}^{(2D)} dx^{\mu} dx^{\nu} + r^{2} d\Omega^{2}$$

We integrate out angular directions

The Einstein-Hilbert action gives dilaton action

$$S = \frac{1}{16\pi G} \int dx^4 \sqrt{-g}R \qquad \text{where} \quad e^{\phi} = \frac{\mu}{r}$$
$$= \frac{\mu^2}{16\pi G} \int dx^2 \sqrt{-g_{2D}} e^{-2\phi} [R_{2D} + 2(\partial\phi)^2 + 2e^{2\phi}]$$

2D curvature is non-zero even in the vacuum

$$R_{4D} = 0$$
 $R_{2D} \neq 0$ for $\langle T_{\mu\nu} \rangle = 0$

We consider scalar fields

$$S = -\frac{1}{2} \int dx^4 \sqrt{-g} [(\partial \chi)^2] = -2\pi \int dx^2 \sqrt{-g_{2D}} \, r^2 [(\partial \chi)^2]$$

Energy-momentum tensor in 4D and 2D are

$$T_{\mu\nu}^{(4D)} = -\frac{2}{\sqrt{-g_{4D}}} \frac{\delta S}{\delta g^{\mu\nu}} \qquad T_{\mu\nu}^{(2D)} = -\frac{2}{\sqrt{-g_{2D}}} \frac{\delta S}{\delta g_{(2D)}^{\mu\nu}}$$

For
$$\mu, \nu = 0,1$$
, $\langle T_{\mu\nu}^{(4D)} \rangle = \frac{1}{r^2} \langle T_{\mu\nu}^{(2D)} \rangle$

We treat dilaton $r = \mu e^{-\phi}$ as a background field

EM tensor for dilaton 4D Einstein tensor

Semi-classical Einstein equation

$$G_{\mu\nu}^{(4D)} = \frac{8\pi G}{r^2} \langle T_{\mu\nu}^{(2D)} \rangle$$

Toy model: 4D gravity with 2D scalar

We consider the 2D model as a toy model

2D scalar fields

We neglect factor of
$$r^2$$

$$S = -\frac{1}{2} \int d^2x \sqrt{-g} \; (\partial \chi)^2$$

classically conformal, but has anomaly

$$\langle T_{\mu}^{(2D)\mu} \rangle = \frac{1}{24\pi} R_{2D}$$

Using anomaly, we can integrate conservation law;

$$\nabla^{\mu} \langle T_{\mu\nu}^{(2D)} \rangle = 0$$

and then, 2D energy-momentum tensor is completely fixed.

Here, we use the following boundary condition

$$\langle T_{\mu\nu}^{(2D)} \rangle \to 0$$
 in $r \to \infty$

Vacuum energy without back reaction

We consider the fixed background of Schwarzschild BH

$$ds^{2} = -\left(1 - \frac{a_{0}}{r}\right)dt^{2} + \frac{1}{1 - \frac{a_{0}}{r}}dr^{2} + r^{2}d\Omega^{2}$$

Quantum effects in energy-momentum tensor

$$\langle T_{uv}^{(2D)} \rangle = \frac{N}{48\pi} \left(\frac{a_0^2}{r^4} - \frac{a_0}{r^3} \right)$$

$$\langle T_{uu}^{(2D)} \rangle = \frac{N}{48\pi} \left(\frac{3a_0^2}{r^4} - \frac{a_0}{r^3} \right)$$

$$\langle T_{vv}^{(2D)} \rangle = \frac{N}{48\pi} \left(\frac{3a_0^2}{r^4} - \frac{a_0}{r^3} \right)$$

Vacuum energy without back reaction

No incoming or outgoing energy at the horizon

Quantum effects give energy flow in $r \to \infty$ (Hawking radiation)

M=1, the horizon is at r=2

Vacuum energy without back reaction

No incoming or outgoing energy in $r \to \infty$

Quantum effects give negative energy outside the horizon

The horizon is at $a_0 = 2$

Breakdown of perturbative expansion

Perturbative expansion around classical solution

$$ds^{2} = -C(r)dt^{2} + \frac{C(r)}{F^{2}(r)}dr^{2} + r^{2}d\Omega^{2}$$

$$C(r) = C_{0}(r) + \alpha C_{1}(r) + \cdots$$

$$\alpha = \frac{GN}{3}$$

The leading term $C_0(r)$ is classical solution $C_0 = 1 - \frac{a_0}{r}$

 $C_1(r)$ is the correction at $\mathcal{O}(\alpha)$ from $\langle T_{\mu\nu} \rangle$

$$C_1(r) = \frac{4r^2 + a_0^2 + 4a_0r(2c_1r - 1)}{4a_0r^2(r - a_0)} - \frac{2r - 3a_0}{2a_0^2(r - a_0)}\log(1 - \frac{a_0}{r})$$

Perturbative correction $C_1(r)$ diverges at the horizon $r=a_0$.

We cannot use α -expansion near $r=a_0$.

We solve the Einstein equation without using α -expansion.

Self-consistent Einstein equation

We solve semi-classical Einstein equation for $g_{\mu\nu}$ and $\langle T_{\mu\nu} \rangle$

$$G_{\mu\nu}^{(4D)} = \frac{8\pi G}{r^2} \langle T_{\mu\nu}^{(2D)} \rangle$$
 $\mu, \nu = 0.1$ $G_{\theta\theta} = 0$

where metric and $\langle T_{\mu\nu}^{(2D)} \rangle$ are given by

$$\begin{split} ds^2 &= -C(r)dudv + r^2 d\Omega^2 \\ \langle T_{uv}^{(2D)} \rangle &= -\frac{1}{12\pi} (C \partial_u \partial_v C - \partial_u C \partial_v C) \\ \langle T_{uu}^{(2D)} \rangle &= \langle T_{vv}^{(2D)} \rangle = -\frac{1}{12\pi} C^{1/2} \partial_u^2 C^{-1/2} \end{split}$$

$$ds^{2} = -C(r)dt^{2} + \frac{C(r)}{F^{2}(r)}dr^{2} + r^{2}d\Omega^{2}$$

Define $C(r) = e^{2\rho}$

 ρ satisfies

$$\alpha = \frac{GN}{3}$$
 N:Number of DoF (scalar)

$$r\rho' + (2r^2 + \alpha)\rho'^2 + \alpha r\rho'^3 + (r^2 - \alpha)\rho'' = 0$$

$$ds^{2} = -C(r)dt^{2} + \frac{C(r)}{F^{2}(r)}dr^{2} + r^{2}d\Omega^{2}$$

F(r) is related to C(r) as

$$F(r) = \frac{C^{3/2}(r)}{\sqrt{4C^2(r) + 4rC(r)C'(r) + \alpha C'^2}}$$

Near "horizon" behavior

horizon
$$C(r)=0 \qquad \rho \to -\infty \qquad \rho' \to \infty$$
 Assume $\rho' \overset{r\to a}{\longrightarrow} \infty$, at some point $r=a$,
$$(C(r)=e^{2\rho})$$

Differential equation for ρ is approximated as

$$r\rho' + (2r^2 + \alpha)\rho'^2 + \alpha r\rho'^3 + (r^2 - \alpha)\rho'' = 0$$

Then,
$$\rho'$$
 behaves as $\rho' \sim \frac{k}{\sqrt{r-a}}$ where $k \sim \left(\frac{2a}{\alpha}\right)^2$

C(r), F(r) behaves near r = a as

$$C(r) = c_0 e^{2k\sqrt{r-a}}$$
 $F(r) = \frac{1}{k} \sqrt{4c_0(r-a)}$

Near "horizon" geometry

Metric is given by

$$ds^{2} = -C(r)dt^{2} + \frac{C(r)}{F^{2}(r)}dr^{2} + r^{2}d\Omega^{2}$$

Assuming that C(r = a) = 0, C(r), F(r) behaves near r = a as

$$C(r) = c_0 e^{2k\sqrt{r-a}}$$
 $F(r) = \frac{1}{k} \sqrt{4c_0(r-a)}$

metric near r = a

$$ds^2 \sim -c_0 dt^2 + \frac{k\alpha dr^2}{4(r-a)} + r^2 d\Omega^2$$

Define
$$x$$
 by $r = a + \frac{c_0}{\alpha k} x^2$

$$ds^2 \sim -c_0(dt^2 + dx^2) + a^2 d\Omega^2$$

This is wormhole metric

Generic energy-momentum tensor

Consider the semi-classical Einstein equation for generic $\langle T_{\mu\nu} \rangle$

$$G_{\mu\nu} = 8\pi G \langle T_{\mu\nu} \rangle$$

Regularity of curvature is related to energy-momentum tensor

For static and spherically symmetric metric

$$g^{uv}R_{uv}$$
 are regular $\langle T_{\theta\theta} \rangle$ are regular $R_{\theta\theta}$ $g^{uv}\langle T_{uv} \rangle$

 $\langle T_{\mu\nu} \rangle$ diverges at the horizon in Boulware vacuum

Geometry must be modified for regularity

Condition for (Killing) horizon

(u,v) coordinate has coordinate singularity at (future) horizon

Take another coordinate (\tilde{u}, v) to avoid singularity

$$ds^2 = -C du dv = -\tilde{C} d\tilde{u} dv$$

where C=0 but $\tilde{C}\neq 0$ at the horizon.

$$\tilde{C} = \frac{du}{d\tilde{u}}C$$
 \longrightarrow $\frac{du}{d\tilde{u}} \propto C^{-1} \to \infty$ at horizon

Energy-momentum tensor in this coordinate must be regular

$$T_{\widetilde{u}\widetilde{u}} = \left(\frac{du}{d\widetilde{u}}\right)^2 T_{uu}$$
 $T_{\widetilde{u}v} = \left(\frac{du}{d\widetilde{u}}\right) T_{uv}$
$$T_{uv} = T_{uu} (= T_{vv}) = 0 \quad \text{at the horizon}$$

Classification by energy-momentum tensor

I.
$$\langle T_{uu} \rangle = 0$$
 $\langle T_{uv} \rangle = 0$ $\langle T_{uv}^u \rangle > -\frac{1}{8\pi G a^2}$

Near horizon geometry is Rindler space

II.
$$\langle T_{uu} \rangle = 0$$
 $\langle T_{uv} \rangle = 0$ $\langle T_{uv}^u \rangle = -\frac{1}{8\pi G a^2}$ $\langle T_{\theta\theta} \rangle > 0$

Near horizon geometry is Rindler or AdS₂

III.
$$\langle T_{uu} \rangle < 0$$
 $\langle T_{uu} \rangle - \langle T_{uv} \rangle = -\frac{C(a)}{16\pi G a^2}$

Near horizon geometry is wormhole

VI.
$$\langle T_{uu} \rangle > 0$$

No special structure such as horizon or wormhole

Discussions

Black hole geometry is modified by quantum effects in $\langle T_{\mu\nu} \rangle$

There are various vacua with positive, negative or zero energy

Negative energy Wormhole geometry

Positive energy No horizon or wormhole

For general $\langle T_{\mu\nu} \rangle$, we have not calculated any solution explicitly.

However, negative energy will still appear even with back reaction

If vacuum energy around a black hole is negative, the black hole is modified to wormhole by the negative energy.

Interior of wormhole

In the other side of wormhole radius r decreases as it goes inside

"Vacuum" solution: without matters \square Singularity in $r \to \infty$

Physical model: there are matters which form the black hole

the radius r starts decrease as it goes inside matters

Geometry of interior of black hole

We put the surface of the star at $r=r_{\rm s}$

Outside the surface Vacuum solution (wormhole)

Inside the surface

Geometry with matter distribution

Energy-momentum tensor

$$\langle T_{\mu\nu}\rangle = T_{\mu\nu}^{\Omega} + T_{\mu\nu}^{m} \quad \longleftarrow$$

Energy-momentum tensor of matters

Energy-momentum tensor of vacuum

$$T_{\mu\nu}^{\Omega} = \frac{1}{r^2} \langle T_{\mu\nu}^{(2D)} \rangle$$

We consider incompressible fluid

$$T_{\mu\nu}^{m} = (m_0 + P)u_{\mu}u_{\nu} + Pg_{\mu\nu}$$

 m_0 : Density (constant)

P: Pressure

Classical star of incompressible fluid

Relation between a and m_0

$$\frac{a_0}{2} = \frac{4\pi}{3} m_0 r_s^3$$

Pressure in classical limit

$$P(r) = 8\pi G \frac{\sqrt{3 - 8\pi G m_0 r^2} - \sqrt{3 - 8\pi G m_0 r_s^2}}{3\sqrt{3 - 8\pi G m_0 r_s^2} - \sqrt{3 - 8\pi G m_0 r^2}}$$

Condition for non-singular pressure

$$m_0 < \frac{1}{3\pi G r_s^2} \qquad \qquad r_s > \frac{9}{8}a$$

Semi-classical geometry of interior

Assumption: $T_{\mu\nu}^{\Omega}$ and $T_{\mu\nu}^{m}$ are conserved independently.

Vacuum energy-momentum tensor (approx. by 2D scalar)

$$T_{uv}^{\Omega} = -\frac{N}{12\pi r^2} (C\partial_u \partial_v C - \partial_u C\partial_v C)$$

$$T_{uu}^{\Omega} = T_{vv}^{\Omega} = -\frac{N}{12\pi r^2} C^{1/2} \partial_u^2 C^{-1/2}$$

Energy-momentum tensor for incompressible fluid

Conservation law
$$P = -m_0 + P_0 \left(\frac{C(r_s)}{C(r)}\right)^{\overline{2}}$$

Tortoise coordinate r_* is convenient to see interior

$$ds^2 = C(r_*)(-dt^2 + dr_*^2) + r^2(r_*)d\Omega^2$$

Numerical analysis and free parameters

We solve the semi-classical Einstein equation numerically.

Initial condition:

Metric is approx. by classical Schwarzschild metric in $r \to \infty$

Junction condition:

- Pressure P=0 at $r=r_s \implies P_0=m_0$
- Metric is smooth at the surface $r = r_s$

Parameters of the system (3 parameters)

Classical Schwarzschild radius: a_0 \Longrightarrow Total mass \Longrightarrow must be same

density: m_0 Surface radius: r_s Total mass

Only 2 of 3 are independent parameters: e.g. $m_0 = \widehat{m}_0(a_0, r_s)$ difficult to find exact relation by numerical calculation

Numerical analysis and free parameters

Appropriate density $\widehat{m}_0(a_0, r_s)$

However, numerical calculation can be done with 3 parameters as free parameters. What happens for $m_0 \neq \hat{m}_0$?

Case I: Too small density ($m_0 \ll \widehat{m}_0$)

- There is a singularity with positive mass in "center" $(r \to \infty)$.
- Geometry is similar to "vacuum": $r \to \infty$ at $r_* \to -\infty$.

Case II: Too large density $(m_0\gg\widehat{m}_0)$

- There is a singularity with negative mass at center ($r \sim 0$).
- There is another P = 0 at $r < r_s$, inside surface.

Case III: approximately appropriate density ($m_0 \sim \widehat{m}_0$)

- continues to $r \sim 0$ with P > 0 (physical fluid).
- would have no singularity if $m_0 = \widehat{m}_0$ exactly.

Case I: Too small density $(m_0 \ll \widehat{m}_0)$

Numerical result for $C(r_*)$

$$ds^{2} = C(r_{*})(-dt^{2} + dr_{*}^{2}) + r^{2}(r_{*})d\Omega^{2}$$

Numerical result for $r(r_*)$ $ds^2 = C(r_*)(-dt^2 + dr_*^2) + r^2(r_*)d\Omega^2$ $r(r_*)$ 100 ┌ 10,01911 Quantum 10.01910 80 Schwarzschild radius 10.01909 Does not go to zero 10.01908 r = a10.01907 10.01906 20 10,01905 γ_* -55 -1500 500 -2000 -1000-500r increases as 10.019104 r_* decreases 10.019102 15 10.019100 10.019098 Surface of 10 10.019096 the star 10.019094 5 0.019092

-60.04

-60.00

-60.02

-59.98

-80000

-100000

-60000

-40000

-20000

-59.94

-59.96

Case II: Too large density $(m_0 \gg \widehat{m}_0)$

Numerical result for $C(r_*)$

$$ds^{2} = C(r_{*})(-dt^{2} + dr_{*}^{2}) + r^{2}(r_{*})d\Omega^{2}$$

Pressure $P(r_*)$

Case III: approx. appropriate density $(m_0 \sim \widehat{m}_0)$

Numerical result for $C(r_*)$

$$ds^{2} = C(r_{*})(-dt^{2} + dr_{*}^{2}) + r^{2}(r_{*})d\Omega^{2}$$

Pressure $P(r_*)$

Surface at deeper place

Relation between m_0 and r_S for a=10

Surface is inside of r = a

- Density m_0 increases exponentially as surface moves inside
- Difference between local minimum and local maximum of r would be of Planck scale.

Mass of fluid and black hole

Komar mass calculated from fluid density and pressure

$$M_{\text{fluid}} = -\int d^3x \sqrt{-g} (2T_0^0 - T_\mu^\mu) = 4\pi \int dr_* \, r^2 C(m_0 + 3P)$$

- Komar mass of fluid almost reproduce black hole mass
- Fluid mass is slightly larger than BH mass because of negative vacuum energy

Density for $r_s = a$

Density m_0 for the star with surface at neck of "wormhole"

- Density m_0 is independent of mass of black hole a_0
- Density is very large: $m_0 \sim \mathcal{O}(\kappa^{-1}\alpha^{-1}) \sim \mathcal{O}(\ell_p^{-4})$

Arbitrarily large star can be non-singular

Classical regularity condition for pressure $m_0 < \frac{1}{3\pi G r_s^2}$ can be violated by arbitrary small m_0

"Embedding" of geometry

Embedding of BH geometry to 3D space

$$ds^{2} = \left(1 - \frac{a}{r}\right)^{-1} dr^{2} + r^{2} d\theta^{2}$$

Geometry cannot be embedded into 3D space since proper length in r direction is smaller than r

$$ds^2 = C(r_*)dr_*^2 + r^2(r_*)d\theta^2$$

Embed the following metric, instead

$$ds^2 = dr_*^2 + r^2(r_*)d\theta^2$$

Conclusion

- We have considered back reaction to geometry from quantum effects in energy-momentum tensor.
- For simplest scalar model, anomaly gives negative energy.

- In stationary case, the quantum energy-momentum tensor (Boulware vacuum) has divergence at the horizon.
- Quantum effects are very small except for near horizon region.
- Back reaction becomes large very near the horizon, and geometry near the horizon must be modified.
- In general, as far as the energy-momentum tensor is non-zero at the horizon, the horizon is killed by the back reaction.

Conclusion (2)

- For interior geometry of "black hole," we considered a star which consists of incompressible fluid.
- If density m_0 is almost appropriate, the geometry continues to $r \sim \mathcal{O}(\ell_p)$, at least.
- The geometry does not have horizon or singularity.
- Density becomes very large if surface of the star is around the wormhole.
- If density of incompressible fluid is sufficiently small, surface of the star cannot be inside the Schwarzschild radius, in contrast to the classical solution.

Thank you