# Resolutions to $B \rightarrow \eta^{(1)} K$ branching ratios

Hsiang-nan Li
Academia Sinica
Presented at CYCU
Mar. 11, 2008

#### **Outlines**

- Introduction
- Plausible resolutions
- flavor-singlet contribution
- (gluonic) charming penguin
- chiral mass scale
- axial U(1) anomaly
- Summary and experimental discrimination

# Introduction

# A long-standing puzzle

CLEO (1998,99) measured

$$Br(B \to \eta' K) \approx 65,80 \times 10^{-6}$$

- But  $Br(B \rightarrow \pi^0 K) \approx 10 \times 10^{-6}$
- Why are they so different?



• Why are  $Br(B \to \eta K) \approx 2 \times 10^{-6}$  so small?

# $\eta - \eta'$ mixing

Feldmann-Kroll-Stech scheme

$$\begin{pmatrix} |\eta\rangle \\ |\eta'\rangle \end{pmatrix} = U(\phi) \begin{pmatrix} |\eta_q\rangle \\ |\eta_s\rangle \end{pmatrix} \quad U(\phi) = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix}$$

- Flavor states  $|\eta_a\rangle = |(uu + d\overline{d})/\sqrt{2}\rangle$   $|\eta_s\rangle = |s\overline{s}\rangle$
- Decay constants

Global fit

$$\phi = 39.3^{\circ} \pm 1.0^{\circ}$$

$$f_q = (1.07 \pm 0.02) f_{\pi}$$
,  $f_s = (1.34 \pm 0.06) f_{\pi}$ ,

Assumption diagrams are suppressed.

$$\bar{u} - g - \bar{s}$$
 $u - \bar{s}$ 

#### Interference

Decay amplitudes

$$A(B \to \eta' K) = A(\eta_q K) \sin \phi + A(\eta_s K) \cos \phi$$
$$A(B \to \eta K) = A(\eta_q K) \cos \phi - A(\eta_s K) \sin \phi$$

Feynman diagrams with penguin operators



#### Naive estimate

Try to understand the data of branching ratios

$$A(\eta_q K) \approx \left( f_q / f_\pi \right) A(\pi^0 K) = 1.07 A(\pi^0 K)$$

$$A(\eta_s K) \approx \left( f_s / f_\pi \right) \sqrt{2} A(\pi^0 K) = 1.56 A(\pi^0 K)$$

$$B(\eta' K) \approx 4B(\pi^0 K) \approx 40 \times 10^{-6}$$

$$B(\eta K) \approx 0.2B(\pi^0 K) \approx 2 \times 10^{-6}$$

- Interference has explained very different  $B(\eta'K)$ ,  $B(\eta K)$  to some extent
- Need new mechanism compared to  $B \to \pi K$

#### Recent calculations

•  $B \rightarrow \eta' K$  branching ratios are not yet completely understood after 10 years

 $PQCD \quad QCDF$   $B(B^{\pm} \to \eta' K^{\pm}) = (70.2 \pm 2.5) \times 10^{-6} , 35 \qquad 42$   $B(B^{0} \to \eta' K^{0}) = (64.9 \pm 3.1) \times 10^{-6} , 31 \qquad 41$   $B(B^{\pm} \to \eta K^{\pm}) = (2.7 \pm 0.3) \times 10^{-6} , 5.7 \qquad 1.7$   $B(B^{0} \to \eta K^{0}) < 1.9 \times 10^{-6} . \qquad 3.0 \qquad 1.0$ 

 PQCD (Kou, Sanda 01; Akeroyd, Chen, Geng 07) and QCDF (Beneke, Neubert 02) give small results, when predictions for B → πK match data.

## Plausible resolutions

#### Resolutions

- Large flavor-singlet contribution (BN 02)
- Charming penguins (Williamson, Zupan 06)
- Large chiral scale  $m_0^q$  associated with  $\eta_q$  (Akeroyd, Chen, Geng 07)
- Axial U(1) anomaly (Gerard, Kou 06)
- SU(3) (Fu, He, Hsiao 03), including  $\eta_1$  to form a nonet, additional parameters
- Large  $B \rightarrow \eta'$  form factor (Pham 07)
- Final-state interaction (Cheng, Chua, Soni 05)
- FSI was fixed by branching ratio data, and then used to predict CP asymmetries

## Flavor-singlet contribution

• Absent in  $B \to \pi K$ , good for QCDF,



Du, Kim, Yang 98 Eeg, Kumericki, Picek 03...

- $B(\eta K)$  are OK,  $B(\eta' K)$  too small in QCDF
- Similar for  $\eta_q K$ ,  $\eta_s K$ , cancel in  $\eta K$ , enhance  $\eta' K$
- reminded

$$A(B \to \eta' K) = A(\eta_q K) \sin \phi + A(\eta_s K) \cos \phi$$
$$A(B \to \eta K) = A(\eta_q K) \cos \phi - A(\eta_s K) \sin \phi$$

### Theo and exp checks

- Parameterized as  $F_2$  in QCDF, increased up to 40% of quark contribution
- Can flavor-singlet contribution be so large?
- Computed by Charng, Kurimoto, Li using PQCD (2005). Inputs for gluonic distribution amplitudes are constrained by other data of  $\gamma^* \gamma \to \eta^{(1)}$
- found to be few percents at most, negligible!
- No sign from Ds decays (CLEO), consistent with

FKS
$$\frac{B(D_s \to \eta' \ell \nu)}{B(D_s \to \eta \ell \nu)} = 0.35 \pm 0.09 \pm 0.07$$

$$\cot \phi = 1.22 \quad \Leftrightarrow \quad \frac{F_{+}^{D_s \eta'}(0)}{F_{+}^{D_s \eta}(0)} = 1.14 \pm 0.17 \pm 0.13$$

#### Transition form factor data

Form factors computed up to NLO



# Hint of B decay data

Use data of semileptonic B decays (Kim, Oh, Yu
 04), which have conflict between BaBar

$$B(B^+ \to \eta \ell^+ \nu) = (0.84 \pm 0.27 \pm 0.21) \times 10^{-4} < 1.4 \times 10^{-4}$$
  
 $B(B^+ \to \eta' \ell^+ \nu) = (0.33 \pm 0.60 \pm 0.30) \times 10^{-4} < 1.3 \times 10^{-4}$ 

• and CLEO  $< 1.01 \ {
m at} \ 90\% \ {
m CL} \ 2.66 \pm 0.80 \pm 0.57 \pm 0.04$ 

$$R_{\ell\nu} \equiv \frac{B(B \to \eta' \ell \nu)}{B(B \to \eta \ell \nu)}$$
 > 2.5 but  $\tan^2 \phi = 0.67$ 

 CLEO data imply large flavor-singlet contribution or other new mechanism

# (gluonic) charming penguins

Nonperturbative charming penguins introduced

in SCET parameterization





- Due to SU(3) symmetry, charming penguin, contributing to other PP modes, can not be large.
- Gluonic charming penguin responsible for  $B(\eta'K) >> B(\pi K)$  in data fitting

#### Small form factors

• Due to dominance of charming penguins and destructive  $F_2$ , form factors are small

$$\begin{split} f_{+}^{B\eta_q}(0) &= \begin{cases} (-2.3 \pm 4.8) \times 10^{-2}, & \text{Solution I} \\ (4.5 \pm 8.6) \times 10^{-2}, & \text{Solution II} \end{cases} \\ f_{+}^{B\eta_s}(0) &= \begin{cases} (-9.9 \pm 2.4) \times 10^{-2}, & \text{huge uncertainty due to flavor-singlet contribution} \\ (-6.6 \pm 4.3) \times 10^{-2}, & \text{contribution} \end{cases} \end{split}$$

- Violate FKS relation  $R_{\ell\nu} \equiv \frac{B(B \to \eta' \ell \nu)}{B(B \to \eta \ell \nu)} \approx \tan^2 \phi$
- Lead to small  $B(B \to \eta^{(1)} l \nu) \sim O(10^{-5})$

#### Chiral mass scale

- Good for PQCD (ACG 07)
- $B(\eta K)$  are larger,  $B(\eta' K)$  smaller in PQCD
- Large chiral scale  $m_0^q \equiv m_{qq}^2/(2m_q)$  enhances form factors through twist-3 DA



• Increase  $A(\eta_q K)$ , more constructive (destructive) interference with  $A(\eta_s K)$  leads to larger (smaller)  $B(\eta' K)[B(\eta K)]$ 

## Check semileptonic data

- Large chiral scale then increases semileptonic branching ratios
- For  $m_{qq} = 0.22 \, GeV$ , PQCD predictions (ACG 07) barely consistent with data

$$B(B^+ \to \eta \ell^+ \nu) = 1.27 \times 10^{-4}$$
 <1.4   
  $B(B^+ \to \eta' \ell^+ \nu) = 0.62 \times 10^{-4}$  <1.3

• FKS scheme is roughly respected: 0.62/1.27=0.5

$$R_{\ell\nu} \equiv \frac{B(B \to \eta' \ell \nu)}{B(B \to \eta \ell \nu)} \approx \tan^2 \phi = 0.67$$

# OZI violating effects

- Can the chiral scale be so large?
- Yes, if OZI violating effects exist at percent level (Hsu, Charng, Li 07)

$$\begin{pmatrix} f_{\eta}^{q} & f_{\eta}^{s} \\ f_{\eta'}^{q} & f_{\eta'}^{s} \end{pmatrix} = U(\phi) \begin{pmatrix} f_{q} & f_{sq} \\ f_{qs} & f_{s} \end{pmatrix}$$

Equation of motion
 gives the chiral scale

$$\partial_{\mu}(\bar{q}\gamma^{\mu}\gamma_{5}q)=2im_{q}\,\bar{q}\gamma_{5}q+\frac{\alpha_{s}}{4\pi}\,G_{\mu\nu}\,\tilde{G}^{\mu\nu}\qquad \text{gives axial}$$
 
$$f_{qs}\big/f_{q}\,,f_{sq}\big/f_{s}<0.05 \Rightarrow m_{q}=0.2\,GeV\qquad \text{U(1) anomaly}$$

5% OZI violation is common in experiments

# Axial U(1) anomaly

 Pseudoscalar density with SU(3) breaking and axial U(1) anomaly

$$\langle 0|\bar{s}\gamma_{5}s|\eta\rangle = -i\frac{f_{K}}{\sqrt{3}}\frac{M_{K}^{2}}{m_{s} + m_{q}}\left(\sqrt{2}c\theta + s\theta\right)$$

$$\times \left[1 + \frac{M_{\eta}^{2} - M_{K}^{2}}{\Lambda_{0}^{2}} + 2(M_{K}^{2} - M_{\pi}^{2})\left(\frac{1}{\Lambda_{1}^{2}} - \frac{1}{4\Lambda_{2}^{2}}\right)\right]$$

$$\langle 0|\bar{s}\gamma_{5}s|\eta'\rangle = i\frac{f_{K}}{\sqrt{3}}\frac{M_{K}^{2}}{m_{s} + m_{q}}\left(c\theta - \sqrt{2}s\theta\right)$$

$$\times \left[1 + \frac{M_{\eta'}^{2} - M_{K}^{2}}{\Lambda_{0}^{2}} + 2(M_{K}^{2} - M_{\pi}^{2})\left(\frac{1}{\Lambda_{1}^{2}} - \frac{1}{4\Lambda_{2}^{2}}\right)\right]$$

$$\times \left[1 + \frac{M_{\eta'}^{2} - M_{K}^{2}}{\Lambda_{0}^{2}} + 2(M_{K}^{2} - M_{\pi}^{2})\left(\frac{1}{\Lambda_{1}^{2}} - \frac{1}{4\Lambda_{2}^{2}}\right)\right]$$

• SU(3) breaking alone

$$(M_{\eta}^2)_{ideal}=2M_K^2-M_{\pi}^2, \quad (M_{\eta'}^2)_{ideal}=M_{\pi}^2$$
 pert theory  $\Lambda_0\simeq 1.2~{\rm GeV}, \quad \Lambda_1\simeq 1.2~{\rm GeV}, \quad \Lambda_2\simeq 1.3~{\rm GeV}$ 

from chiral

# Large pseudoscalar density

Numerical results

| $\theta = -22^{\circ}$                          | $U(1)_A \times SU(3)_V$ | $SU(3)_V$ . |
|-------------------------------------------------|-------------------------|-------------|
| $2im_s\langle 0 \bar{s}\gamma_5 s \eta\rangle$  | $+0.053 \pm 0.008$      | +0.058      |
| $2im_s\langle 0 \bar{s}\gamma_5 s \eta'\rangle$ | $-0.109 \pm 0.016$      | (-0.069)    |

Enhance (V-A)(V+A) penguins

$$\left| \frac{\langle 0|\bar{s}\gamma_5 s|\eta'\rangle}{\langle 0|\bar{s}\gamma_5 s|\eta\rangle} \right| \approx 2.1 > \cot \phi = 1.22$$

No sign from Ds decays

$$\frac{F_{+}^{D_{s}\eta'}(0)}{F_{+}^{D_{s}\eta}(0)} = 1.14 \pm 0.17 \pm 0.13 \quad \gamma_{5} \qquad \qquad \eta$$



## Summary

- Understanding of  $B(B \to \eta^{(1)} K)$  requires new mechanism compared to  $B \to \pi K$
- Flavor-singlet contribution may be too small
- Gluonic charming penguin is a free parameter
- Large axial U(1) anomaly is not seen in other decays
- Large chiral scale is likely due to OZI violating effects
- $B(B \to \eta^{(i)} K)$  are still an unsettled issue 10 years after their observation!
- Further exp discrimination is necessary:

## Experimental discrimination

• By means of  $B \rightarrow \eta^{(1)} l \nu$ ,  $B_s \rightarrow \eta^{(1)} l \nu$ 

• Ratios FS CP CS AA 
$$\frac{B(B \to \eta' \ell \nu)}{B(B \to \eta \ell \nu)} pprox an^2 \phi ext{ X } ext{ X } ext{ V } ext{ V} ext{ } e$$