VACUUM AND HADRON STRUCTURES

Investigations on hadron properties EM & decay form factors, wave functions

VACUUM AND HADRON STRUCTURES

Investigations on hadron properties EM & decay form factors, wave functions

VACUUM AND HADRON STRUCTURES

Investigations on hadron properties EM & decay form factors, wave functions

HADRON REACTION

Hadron-production experiments

Energy scale ~ a few GeV

CLAS, LEPS, CB-ELSA, GRAAL, COSY...

Photon-beam experimental facilities

QCD at extreme conditions (hot and/or dense) Rich phase structures as function of T and ρ Behaviors of order parameters ~ Behaviors of symmetries

QCD phase diagram as function of T and ρ

t=-00.22 fm/c

QCD at extreme conditions

Hot and/or dense QCD achieved in Heavy-Ion Collision (HIC)

RHIC, FAIR, LHC, NICA, KoRIA, etc

QGP, CGC, Jet quenching, Higgs, and more

Pb+Pb 160 GeV/A

Heavy-ion collider in the world

Quark-Gluon Plasma (QGP): Deconfined quarks and gluons

A good place to study QCD

Chiral Magnetic Effect (CME) ~ QCD vacuum

Fire ball (QGP) created in head-on HIC

HIC without (left) and with (right) QGP

Strong B field created in noncentral HIC $\sim 10^{17}$ Gauss Emergence of free quarks in hot QGP with B field Event-by-event phenomena: very instantaneous!!

Free-quark spins aligned to B field (σ // B)

According to Helicity (Chirality at m ≈ 0), Left-handed and Righthanded quarks in opposite directions

What if numbers of LH and RH are different?: EM current induced

RH and LH quarks moves oppositely under constant B field

Magnetic field
EM current induced by # difference between
RH and LH qaurks under constant B field

Axial identity $Q_{t} \propto N_{R} - N_{L}$ relates to P- & CP- violations Nonzero Q_{t} indicates Redundant RH (LH) quarks Q_{t} can be tested under strong B field in HIC Chiral Magnetic Effect (CME)

Charge separation due to induced EM current

Schematic figure of charge separation

Instanton-Antiinstanton number difference ~ Δ^{II} Δ^{II} ~ Chirality flip ~ Δ^{RL} ~ \mathbf{Q}_{t}

Final remarks

In QCD we trust: the holy grail

Trinity of strongly interacting systems
i) Vacuum ii) Structure iii) Reaction

Thank you very much for your attention!!