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@ Conformal Killing-Yano p-forms



Symmetries

On a curved manifold with metric g, we are interested in field equations:

e Klein-Gordon (¢"*V,V, —m?)® =0
e Maxwell VAF,,, = 0, F,,) =0
e Dirac (iv#V, +m)¥ =0
Solutions will form representations of the symmetry group.
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Symmetries

On a curved manifold with metric g, we are interested in field equations:

e Klein-Gordon (¢"*V,V, —m?)® =0

e Maxwell VAF,,, = 0, F,,) =0

e Dirac (iv#V, +m)¥ =0
Solutions will form representations of the symmetry group.
Internal (global) symmetries are given by construction.

What about spacetime symmetries?

given by Killing vectors = isometries of the metric
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Conformal Killing-Yano p-forms

Reminder on diffeomorphisms
From flows to vector fields and back:
/4
/k/'
/! S L ”
foA e

B(p

V4 M

One can integrate a vector field & (infinitesimal diffeomorphism) to a flow
(one-parameter finite diffeomorphism) ¢, : M — M,

¢o =Id and ¢ 0 ¢y = Py

and conversely, with

d

G| =k



Isometries

Killing vectors: those infinitesimal diffeomorphisms that leave the metric
invariant

69,“/ = (['59)#1/ = gpapg/u/ + 8,u§pgp1/ + auépgpu
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Isometries

Killing vectors: those infinitesimal diffeomorphisms that leave the metric
invariant

69,W = ([’59)#1’ = gpapg;w + 8,u£pgp1/ + auépgpu
=V, +V,6,=0

Equivalently:
V& = Ay is a two-form, antisymmetric in [u, v].

Ay = — Ay
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Conformal Killing-Yano p-forms

Isometries

Killing vectors: those infinitesimal diffeomorphisms that leave the metric
invariant

69}“/ = ([’59)#1’ = fpapg;w + a,ufpgpz/ + auépgpu
=V, +V,6,=0

Equivalently:
V& = Ay is a two-form, antisymmetric in [u, v].
A =—-Ay,

E.g., Klein-Gordon equation with [L¢, V] =0 and [L¢, 9] =0
or [L¢,d] =0 and [Lg,+] = 0:

(—*d*d—m2)®:oé>(—*d*d—m2) (Led) =0
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Symmetry operators of Dirac

However there might be more “spacetime” symmetries. Dirac equation is

*

Spinor endomorphisms are mixed-degree differential forms

Py = Z ng ey € End(S)
p= 0

First order operators are given by L. = P; + Py with

d+1

/'Ll ‘Up—1\7Vp
Z Pl K1 pp— 1|/‘P v
p= 0

When does ¥L = R X (R-commute) and when does R =17
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Conformal Killing-Yano p-forms

Conformal Killing-Yano as symmetries

The most general first-order operator? that R-commutes with X is
L = Lg + (staff) X where

P d—p
Lg =~4"KV, + —dK — —— 0K
K=YVt T d—p+1
and K is a Conformal Killing-Yano p-form:
VMKVr"Vp = AuVl"'Vp —i—pgu[,lelQ...yp] .

It commutes R =1 if B =0 and either
@ Dimension d is even.

@ Dimension d is odd and degree p is odd.

2Benn,Charlton hep-th/9612011
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Conformal Killing-Yano as generalization

¢ is a Killing vector (L¢g = 0):

vufu = A;w
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Conformal Killing-Yano as generalization

¢ is a conformal Killing vector (L¢g = %Bg):

V,ugu = A;u/ + Bg,ul/

/35



Conformal Killing-Yano as generalization

¢ is a conformal Killing vector (L¢g = %Bg):

V,ugu = Aul/ + Bg,uu

A conformal Killing-Yano p-form:

VMKVr“Vp = AMV1~~~Vp+p Iulin B,/2...Vp]
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Conformal Killing-Yano p-forms

Conformal Killing-Yano as generalization

¢ is a conformal Killing vector (L¢g = %Bg):

v,ugu = A;u/ + Bg,uu

A conformal Killing-Yano p-form:

VMKVr"Vp = A,“,l...l,p—i-p Iulin B,/2...Vp]

Conformal Killing-Yano definition is equivariant under
© Homotheties g — e?Ag = K s ePtPIAEK
@ Hodge duality K +— K = (A, B) = ((—=1)P"1 % B, (=1)P x A)
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Conformal Killing-Yano p-forms

Conformal Killing-Yano as generalization

¢ is a conformal Killing vector (L¢g = %Bg):

v,ugu = A;u/ + Bg,uu

A conformal Killing-Yano p-form:

VMKVr"Vp = A,“,l...l,p—i-p Iulin B,/2...Vp]

Conformal Killing-Yano definition is equivariant under

@ Homotheties g — e g = K s e@PTPIAK
@ Hodge duality K + xK = (A, B) — ((—=1)P~1 % B, (—1)? % A)

l.e., they are conformally invariant
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More on CKY and symmetries

(Conformal) Killing-Yano p-forms - (C)KY - give

@ Symmetries of (massless) Dirac equation
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More on CKY and symmetries

(Conformal) Killing-Yano p-forms - (C)KY - give
@ Symmetries of (massless) Dirac equation

e Constants of (lightlike) geodesic motion
G5 = 0= C = 6167 (Ko, 6,777 71) with 69V,C = 0

or constant tensors along geodesic 6#V (6" Kyyy...p,_,) = 0



More on CKY and symmetries

(Conformal) Killing-Yano p-forms - (C)KY - give
@ Symmetries of (massless) Dirac equation
e Constants of (lightlike) geodesic motion

@ Separability of Klein-Gordon and Hamilton-Jacobi equation
(Sergyeyev, Krtous 0711.4623)

L2 = v#(KMVQMVpKVVQWvaV)



More on CKY and symmetries

(Conformal) Killing-Yano p-forms - (C)KY - give
@ Symmetries of (massless) Dirac equation
e Constants of (lightlike) geodesic motion

@ Separability of Klein-Gordon and Hamilton-Jacobi equation
(Sergyeyev, Krtous 0711.4623)

o Middle-form CKY symmetry of middle-form Maxwell
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More on CKY and symmetries

(Conformal) Killing-Yano p-forms - (C)KY - give
@ Symmetries of (massless) Dirac equation
e Constants of (lightlike) geodesic motion

@ Separability of Klein-Gordon and Hamilton-Jacobi equation
(Sergyeyev, Krtous 0711.4623)

o Middle-form CKY symmetry of middle-form Maxwell

@ Exotic supersymmetries of superparticle (review Santillan 1108.0149)
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More on CKY and symmetries

(Conformal) Killing-Yano p-forms - (C)KY - give
@ Symmetries of (massless) Dirac equation
e Constants of (lightlike) geodesic motion

@ Separability of Klein-Gordon and Hamilton-Jacobi equation
(Sergyeyev, Krtous 0711.4623)

Middle-form CKY symmetry of middle-form Maxwell
Exotic supersymmetries of superparticle (review Santillan 1108.0149)

action geometric Killing spinors (generalizing spinorial Lie derivative)

Uniqueness of Kerr, geometric structure, ...



Killing transport of isometries

What kind of beast is an equation like “V &, = A,,"7?
ViuAvp = VA = Ruwpo€”
Vopdvu = ViAo = Rpppo€”
VoA = VuAp = Ry’
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Killing transport of isometries

What kind of beast is an equation like “V &, = A,,"7?
ViuAvp = Ny = Ruwpo€”
ooy — oAz = Rovpo”
N — ViAo = Rpuwol”

Adding them (4-Bianchi) gives the derivative of A:

= VA, = Rypuct’
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Conformal Killing-Yano p-forms

Killing transport of isometries

What kind of beast is an equation like “V &, = A,,"7?

ViuAvp = VA = Ruwpo€”
Vopdvu = ViAo = Rpppo€”
VoA = VuAp = Ry’
Adding them (4-Bianchi) gives the derivative of A:
=V, A, = Rypucl’

Killing vectors are parallel under a connection D on A! @ A?
€Y _ [ Vx&—ixA |\ _
Dx <A “\vyarx,6) ="

Maximum number of solutions d + 4(d — 1) for spheres, flat, (A)dS, H,
and discrete quotients thereof.
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Conformal Killing-Yano p-forms

Killing transport of CKY

Similarly CKY p-forms are in one-to-one correspondence with parallel
section

K+A+B+Ce AP AP AP L AP

under a connection® D.

3Semmelmann math /0206117, explicit in M&M 1110.3872
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Conformal Killing-Yano p-forms

Killing transport of CKY

Similarly CKY p-forms are in one-to-one correspondence with parallel
section

K+A+B+Ce AP AP AP L AP

under a connection3 D.
E.g., forp=2

VuKvp = Auvp + guwBp — gup By

3 i 3
V,U,Aulygygz - ER[Vll/Q“,L K0'|1/3] - Zgu[ulcugug]
1 1 1
ViBy = 160w = 55—
VG = ...

(Rop K%, + Ry K7 ),)

3Semmelmann math /0206117, explicit in M&M 1110.3872
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CKY transport and holonomy

Given g, one can try to solve:

a(t)

/

p

D,£E=0= < +ot(t > E(t
Transport Py (&) = &,. Holonomy on solution
P&y =&

for closed loops . Solutions are singlets under holonomy of D.
11/35



Einstein d=4, p=2

For p = 2 note

1 1
W&_%%2d2

4
If the background is Einstein then B is a Killing one-form.
Also CKY is equivariant under Hodge duality,
K — xK = (A,B) — (— x B,*A). So for Einstein, d =4, p = 2:

(RouK°

oK)

both B and *A are Killing one-forms
The right-hand side of

VuKyp = Apvp + 9w Bp — gupBy
is in terms of 2N unknown constants, where N < %(d + 1) Write this as
K& (€€

12/35



Conformal Killing-Yano p-forms

CKY under isometries

Assume a Killing vector k£ and a CKY p-form K:

0 =Ly (VxK —ixA—X"AB)
IV[k’X}K - i[k,X]A - [kJ,X]b AN B
+VxLpK —ixLpA— XA L.B
=VxLpK —ixLrA— X" A LB .

Therefore, CKY two-forms form a representation under the isometry
algebra of the metric:

K5 (€, 6) = LK 5 (Li€, Lif)

We can fix most of the right-hand side A and B by using the action of the
isometries.

13/35
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© Kerr black hole



Kerr black hole

Uniqueness theorems

A black hole: a region of spacetime from which nothing, not even
light, can escape.

Stationary metrics: no time dependence Lj,g = 0

No-hair theorems/conjectures and uniqueness theorems: stationary
black holes have only a finite number of parameters = charges

For Einstein solutions?, charges are: mass, angular momentum and
NUT charge (if asymptotically only locally AdS/flat) [q. 7*d(9,")

(local) uniqueness® of Kerr from a closed CKY 2-form (A = 0)

*Israel '67, Carter '71, Robinson '75
SHouri et al. 0708.1368, Krtous et al. 0804.4705
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Kerr metric

Kerr's solution of R, — %Rg,u, —
ds? = ———"— + (dt + y2dzp)
e, o
A, (1—|—£2)(r +a%) —2Mr |
e Mass M
@ angular parameter a
o NUT charge L
e cosmological const. —3/¢?

g%g;w =0

oyt (de - er¢)2

T2+y2d 2+T2+y2dy2

TR T,

2

Ay = (a® )1 - 2) +2Ly .

02
2 2

° R“ypo'RquU T +£>—>0

s+, 4+, +)

@ range of parameters

e periodicities ds?| = dr? + r2d6?

@ signature (—

15/35



Graphs of metric functions

NN SN

(a) M < M, (b) M = M, (c) M > M,

Figure: A,.(r) in Kerr-AdS for fixed a.

AN
(a) |L] < L« (b) |L| = L. (c) IL] > L.
Figure: Ay (y) in Kerr-AdS for fixed a.

So we need M > M,(a) and |L| < L,(a) to shield singluarities.

16/35



Physical parameters

For negative comsmological constant
e Given mass M, the black hole cannot over-rotate |a| < M, (a)
@ Given rotation parameter a, the NUT charge cannot be too large
L] < La(a)

17 /35



Physical parameters

For negative comsmological constant

@ Given mass M,

the black hole cannot over-rotate |a| < M, (a)

@ Given rotation parameter a, the NUT charge cannot be too large

L] < Lu(a)

For positive cosmological constant, £2 — —1/g:

0.06

0.05

0.04

r M?g?

1
7r27

3 1/7 4 80+ 416

. . . . . . L. a9

0.01 0.02 0.03 0.04 0.05 0.06 0.07
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Extremality

At extremality M = M, (a):
@ double root A,.(7) =0
@ Hawking temperature Ty =0
e Future and past horizon do not intersect/bifurcate

w/ , o
| f s
D g e g
extrerﬁal horizon non-extremal horizon

18/35



Extremality

At extremality M = M, (a):
@ double root A,.(7) =0
@ Hawking temperature Ty = 0
e Future and past horizon do not intersect/bifurcate

When NUT L =0, 1 is periodic. When NUT L # 0, coordinates (¢, )
describe torus fibers, because the two roots of A, impose different
periodicities close to each root

ds?| = dr* + r*do*
At extremality L = L. (a):

@ double root Ay (y) =0 (e.g. on the right)

@ only one periodicity again (from the root on the left) and an infinite
throat at the double root y = y.

Similar to extremal mass, with 7 and y exchanged.

18 /35



Geroch's results on spacetime limits
Definition

Take a smooth family of spacetimes (M., g, €) for € > 0.
If lime_,0 ge = go exists, it is a “spacetime limit in the family”.

Definition
If fo: My — M, for e > 0 is an isometry, then gg is a “limit of the metric
glﬂ.

If go is not isometric to g; then we have something new!

Theorem (Geroch '69)

The kernel of a connection D does not reduce its dimension under a
spacetime limit. A holonomy result.

An example of a metric limit is the near-horizon limit.
19/35



Near-horizon limits

Extremal black holes in gaussian coordinates at the horizon® r = 0

g=r>F(r)du®+ G(r)drdu+ -

5Racz, Wald '92

20/35



Near-horizon limits

Extremal black holes in gaussian coordinates at the horizon® r = 0
g= 7'2F(r) du? + G(r)drdu+ ---
The diffomorphism with € > 0
r—r'=r/e, u—u =eu

a) preserves the horizon and b) for 7’ € [0, 1] zooms in with .

5Racz, Wald '92
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Near-horizon limits

Extremal black holes in gaussian coordinates at the horizon® r = 0
g=r>F(r)du® + G(r)drdu +---
The diffomorphism with € > 0
r—r'=rle, u—u =eu

a) preserves the horizon and b) for ' € [0, 1] zooms in with e.

I

20/35



Kerr black hole

Near-horizon limits

Extremal black holes in gaussian coordinates at the horizon® = 0
go =12 F(}/j(()iUQ + G(ﬂ%rdu +---
The diffomorphism with € > 0
r—r'=rle, u—u =eu
a) preserves the horizon and b) for ' € [0, 1] zooms in with e.

The output of the near-horizon limit ¢ — 0" is

© a new metric gg

@ a Killing horizon 7" = 0 (but not a BH - not asympt. to AdS/flat)

5Racz, Wald '92
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Kerr black hole

Near-horizon limits

Extremal black holes in gaussian coordinates at the horizon® r = 0
g= T’QF(T’) du? +G(r)drdu+---
The diffomorphism with € > 0
r—r'=r/e, u—u =eu
a) preserves the horizon and b) for 7’ € [0, 1] zooms in with .

The output of the near-horizon limit € — 07 is

© a new metric gp

@ a Killing horizon = 0 (but not a BH - not asympt. to AdS/flat)

5Racz, Wald '92

20/35



Kerr black hole

Near-horizon limits

Extremal black holes in gaussian coordinates at the horizon® = 0

1
g= rZ‘F(r) du® + G(r) drdu + - - -
The diffomorphism with € > 0
r—r1r'=r/e, uw—u =eu
a) preserves the horizon and b) for 7’ € [0, 1] zooms in with .

The output of the near-horizon limit € — 0T is
© a new metric gp

@ a Killing horizon ' = 0 (but not a BH - not asympt. to AdS/flat)
For non-extremal black holes

5Racz, Wald '92

20/35



Kerr black hole

Near-horizon limits

Extremal black holes in gaussian coordinates at the horizon® r = 0
g= 7'2F(r) du? +G(r)drdu+---
The diffomorphism with € > 0
r—r'=r/e, u—u =eu
a) preserves the horizon and b) for 7’ € [0, 1] zooms in with .

The output of the near-horizon limit € — 07 is
© a new metric gp
@ a Killing horizon = 0 (but not a BH - not asympt. to AdS/flat)

For non-extremal black holes, one can take r; — r_ as ¢ — 0t, but ...

5Racz, Wald '92
20/35
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© Near-horizon of Kerr



The near-horizon limit (locally)

Taking the limit € — 0T of extremal Kerr:

d:U

ds? = Q%(y) ( 22dr? + — + A%(y)(du + :cd7’)2> +
with

i Ay, i
W=y, DN =gt B L),

21/35



Near-horizon of Kerr

The near-horizon limit (locally)

Taking the limit € — 0T of extremal Kerr:

- 2
ds? = Q2(y) ( 22dr? + — dx A2(y)(du+:cd7')2> + Xy dy? ,
y
with
2 2,2 2 202 _ Ay o =
O =p°(r +vy°) , Q°A 48", B(r, L).

r+y

Similarly, for the polar limit € — 0T:

N2 2 + 12
ds? = Q2(r )<+x2d1/12 df’; — A%(r) (du + 2 dy)) >+ YT g2
T

A,
with

Ay
gQ + 7‘2

= By + 1) Q°A% = 42 B* B(g, M).

21/35



Near-horizon of Kerr

The near-horizon limit (periods)

The near-horizon limit of extremal Kerr:

d =2 2
ds? = Q%(y) ( 2?dr? 4+ — 4+ A?(y)(du + xd7)2> + %df ,
Yy

We find
@ the near-horizon limit is well-defined only for L = 0, otherwise the
torus lattice degenerates. In this first case u = u + 277T(7, L).
@ The polar limit is always well-defined, with u = u + 27T (y, M).

However, there are reasons to consider the NHEK metric with two
parameters...

22 /35



Near-horizon of Kerr

NHEK as a general solution

Assume a metric

dzx 2
ds? = Q%(y) | —2?dr? + — +A2( ) (du + 2 d7)? | + F2(y)dy>.

and fix F' = 1. Einstein's equations become
A= f(AAA) and Q = g(A, A, K)

Gauge F' =1 is preserved by y — y + ¢. So most general solution depends
on two integration constants:

= solution is locally the NHEK metric - but with 2, L € R

AdS, is included with F' = ¢, A%2 =1 and Q% = ¢2 cosh? (y/¢?) - but with
7= —1!

23 /35



Deformed™ AdS in NHEK

At fixed y the NHEK becomes

do” =+ A y) (du+ 2 dr)?

+ F2apydy”.

d82|:Q2(y)l r?dr? + —-

or
ds?) = 02 (=" 2 0" + 0" © 0" + A% 2 0?)
where the 6's are the right-invariant one-forms of SL(2, R).

For A = 1, ds?| is the “round” metric on SL(2,R), which gives Anti-de
Sitter in d = 3.

24 /35



Deformed™ AdS isometries

AdSs is SL(2,R) with metric:
g:QQ(_00®90+91®91+02®92) ,

0%: right-invariant one-forms of SL(2,R)

25/35



Near-horizon of Kerr

Deformed™ AdS isometries

AdSs is SL(2,R) with metric:
g:QQ(_90®00+61®91+92®02) ,

0%: right-invariant one-forms of SL(2,R)

lq: right-invariant vector fields that generate the left-action

rq: left-invariant vector fields that generate the right-action
L. 0°=0 L1,0° = e,b.0°

Killing algebra of AdSg is

(1) ® (rq) =sl(2,R)p & sl(2,R) g = so(1,2) ®so(1,2)
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Near-horizon of Kerr

Deformed™ AdS isometries

deformed® AdSs is SL(2,R) with metric:
g= 92(—(90 ®00 +91 ®91 +A202 ®02) ,
0%: right-invariant one-forms of SL(2,R)
lq: right-invariant vector fields that generate the left-action
rq: left-invariant vector fields that generate the right-action
L. 0°=0 L1,0° = e,b.0°
Killing algebra of deformed™ AdS; is

(I2) ® (rq) =R ®sl(2,R)g = R®so(1,2)
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Near-horizon of Kerr

Deformed™ AdS isometries

deformed™ AdSs is SL(2,R) with metric:
g= QQ(—GO ®00 +01 ®01 +A292 ®02) ,

0%: right-invariant one-forms of SL(2,R)
lq: right-invariant vector fields that generate the left-action
rq: left-invariant vector fields that generate the right-action

L. 60°=0 L1,6° = e,0.6°
Killing algebra of deformed™ AdSs is
(lo) ® (ry) =R@sl(2,R)r = R®so(1,2)

NHEK has isometries sl(2,R) & R

25 /35
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Kerr/CFT

@ We have seen that the near-horizon limit has more isometries than
the Kerr black hole (enhancement) from (0;) ® (0y) to sl(2,R) & (l2)

@ Geroch says CKY 2-forms also do not reduce

@ It is conjectured that the Kerr black hole is dual to a CFT2

e Entropy can be written as that of a CFT2

the right Virasoro is related to the 7,

Bulk correlators of scalars are approximately CFT2 correlators
Some discussion on hidden symmetry
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Kerr/CFT

@ We have seen that the near-horizon limit has more isometries than
the Kerr black hole (enhancement) from (0;) ® (0y) to sl(2,R) & (l2)

@ Geroch says CKY 2-forms also do not reduce

@ It is conjectured that the Kerr black hole is dual to a CFT2

e Entropy can be written as that of a CFT2

the right Virasoro is related to the 7,

Bulk correlators of scalars are approximately CFT2 correlators
Some discussion on hidden symmetry

Questions for the NHEK
o Is there a second sl(2,R)?

@ Do the conformal Killing-Yano two-forms enhance?

26 /35



i < A X el LE S
Reminder

We have seen that a CKY 2-form in a d = 4 Einstein spacetime:
@ Definition
VuKuvp = Awp + guwBp — 9upBy

@ Both £ = B and ¢ = xA are Killing one-forms/vectors
K& (€ €)
@ The hodge dual is also a CKY two-form with
K% (€, =€)
O If K is a CKY two-form and k is a Killing vector, then

LiK & (Ly€, Lk€)

27 /35



Fixing r Part 1

The NHEK is known to have a CKY two-form K, such that

xK, = (I2, 0) and K, +> (0, —ls).

28/35



CKY in the NHEK

Fixing r Part 1
The NHEK is known to have a CKY two-form K, such that
*Kp l1> (lg, 0) and Kp ii) (0, —12).

Killing vectors are (r,) @ (l2) and the CKY defining equation is R-linear:
If there are more CKY 2-forms, then there is a CKY 2-form K such that

K5 (r, 1),

where r = Arg+ Bry + Cry and similar for r’.
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Fixing r Part 1

The NHEK is known to have a CKY two-form K, such that
xK, = (I2, 0) and K, +> (0, —ls).
Killing vectors are (r,) @ (l2) and the CKY defining equation is R-linear:
If there are more CKY 2-forms, then there is a CKY 2-form K such that
K& (r, 1),
where r = Arg + Br; + Cre and similar for r'.

If 7 is colinear with 7/, use Hodge duality. If r is not colinear with 7/, then
consider L7’ # 0. In either case:

K& (r,0)

28 /35



Fixing r Part 2

Action of sl(2,R) on the r, is irreducible:

+ BQ—I-CQ—AQTQ
r=Arg+Br; +Cry so'(_1>72) +v/—B2 - (C? 4+ A%r
+rgE£re

29/35



Fixing r Part 2

Action of sl(2,R) on the r, is irreducible:

:|:\/Bz—|-02 —A2T2
r=Arg+Bri+Cr 42 +v—-B2 - C2 + A2
+rg £ 1o

If there are more than two CKY two-forms, then there are eight. Three of
them are Killing-Yano (B = 0)

Ko (14, 0)
and another three are closed CKY (A4 = 0)

*K, = (0, _Ta)'

29 /35



Fixing K Part 1

We have completely fixed the right-hand side of
Viulvp = 9uwBp — gupBy

with By, = (74) -
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Fixing K Part 1

We have completely fixed the right-hand side of
Viulvp = 9uwBp — gupBy
with B, = (74).

There are 3 x 3(4 — 1) = 2 x 32 = 18 unknown functions of (z, 7, u,y) on
the left-hand side. We can partially fix them by active transformations:

Kq v (14, 0)
LK, (eearra, 0) = Ka|¢é(p) = Sl * Kb]p .
Ko ™ (Sa"(e)r, 0)
The right action acts transitively on y-constant surfaces.
= 18 functions of y.
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Fixing K Part 2

At any point p of a slice y we have 18 coefficients. At any other point of
the same slice, K is given by:
1 ~ ~ ~
Ka = 0°(ra) (H ()beg ¢ acl” 1 0° + Gy)heddy 1 67)

where §¢ are right-invariant.

H,, and Gy, are 2 x 32 = 18 functions of y alone: easy to solve.
31/35



CKY in the NHEK

Equations to solve

The defining equation

VuKyp = guwBp — gupBy

becomes first-order differential equations in y. The y-dependence is solved
and we get 9 linear equations for the 4 non-zero Hy;, and Gy, e.g.

1 .
Hoo + H00§A + GooQF = -0?

—Hy1 — Hyo (1 — ;A2> — Goo(Q + A)F_l = 02A
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CKY in the NHEK

Equations to solve

The defining equation

VuKyp = guwBp — gupBy

becomes first-order differential equations in y. The y-dependence is solved
and we get 9 linear equations for the 4 non-zero Hy;, and Gy, e.g.

1 .
Ho + H00§A + GOOQF_I = -0

—Hy1 — Hyo (1 — ;A2> — Goo(Q + A)F_l = 0%A

= Unless the NHEK solution is precisely AdS,, there is no solution.
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Summary

We saw:

o definition, usefulness, and properties of conformal Killing-Yano
p-forms

@ the near-horizon limit and a motivation to study it

@ when there is enough isometries, how to reduce the CKY equation
In the work with Y.Mitsuka:

@ we derived the connection D of CKY p-forms in d dimensions

e commented on the near-horizon: the limit (periodicities) is not
well-defined for non-zero NUT

@ introduced a polar extremal limit

o for the NHEK and polar limit geometry: either one and only one
Killing-Yano two-form, or AdS4 in which case 2 x 3(5 — 1) = 20 CKY
2-forms
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Outline

© Outlook



Not the end

Possible extensions:
@ adding flux to Einstein’
@ higher dimensions and degrees
@ quest for non-trivial CKY algebra*
°

How do the hidden spacetime symmetries realize in supergravity?

"Cariglia et al. 1102.4501
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Geometric Killing spinors
Spinor inner product, e.g. in d =4
€1€a = —€9€] and ’_yu =~
Geometric Killing spinor
V€= Aye
so that
Vu (Elnyr“VpeQ) = \é1 [’71/1~-~1/p77u]€2

is antisymmetric for p odd
Freund-Rubin backgrounds, e.g. AdS; x S7, have supergravity Killing
spinors the tensor of geometric Killing spinors

€ = €ads @ €5
However, symmetric square of supergravity field variations only gives the

Killing vector plus trivial gauge shifts. Consistent reductions?
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