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Conformal Killing-Yano p-forms

Symmetries

On a curved manifold with metric g, we are interested in field equations:
Klein-Gordon (gµν∇µ∇ν −m2)Φ = 0
Maxwell ∇µFµν = ∂[µF νρ] = 0
Dirac (iγµ∇µ +m)Ψ = 0

Solutions will form representations of the symmetry group.

Internal (global) symmetries are given by construction.

What about spacetime symmetries?

given by Killing vectors = isometries of the metric
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Conformal Killing-Yano p-forms

Reminder on diffeomorphisms
From flows to vector fields and back:

M

φt(p)

p

p′

k

k

k

One can integrate a vector field k (infinitesimal diffeomorphism) to a flow
(one-parameter finite diffeomorphism) φt : M →M ,

φ0 = Id and φt ◦ φt′ = φt+t′

and conversely, with
d
dtx

µ (φt(p))
∣∣∣∣
t=0

= kµ
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Conformal Killing-Yano p-forms

Isometries
Killing vectors: those infinitesimal diffeomorphisms that leave the metric
invariant

δgµν = (Lξg)µν = ξρ∂ρgµν + ∂µξ
ρgρν + ∂νξ

ρgρµ

= ∇µξν +∇νξµ = 0

Equivalently:

∇µξν = Aµν is a two-form, antisymmetric in [µ, ν].

Aµν = −Aνµ

E.g., Klein-Gordon equation with [Lξ,∇] = 0 and [Lξ, g] = 0
or [Lξ, d] = 0 and [Lξ, ∗] = 0:(

− ∗ d ∗ d−m2
)

Φ = 0
Lξ=⇒

(
− ∗ d ∗ d−m2

)
(LξΦ) = 0
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Conformal Killing-Yano p-forms

Symmetry operators of Dirac

However there might be more “spacetime” symmetries. Dirac equation is

(iγµ∇µ +m)Ψ = 0

Spinor endomorphisms are mixed-degree differential forms∗

P0 =
d∑
p=0

1
p!P

[p]
0 µ1···µpγ

µ1···µp ∈ End(S)

First order operators are given by L = P1 + P0 with

P1 =
d+1∑
p=0

1
n!P

[p]
1 µ1···µp−1|µpγ

µ1···µp−1∇νp

When does 6 ∇L = R 6 ∇ (R-commute) and when does R = 1 ?
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Conformal Killing-Yano p-forms

Conformal Killing-Yano as symmetries

The most general first-order operator2 that R-commutes with 6 ∇ is
L = LK + (staff) 6 ∇ where

LK = γµK∇µ + p

p+ 1dK −
d− p

d− p+ 1δK

and K is a Conformal Killing-Yano p-form:

∇µKν1···νp = Aµν1···νp + p gµ[ν1Bν2···νp ] .

It commutes R = 1 if B = 0 and either
Dimension d is even.
Dimension d is odd and degree p is odd.

2Benn,Charlton hep-th/9612011
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Conformal Killing-Yano p-forms

Conformal Killing-Yano as generalization

ξ is a Killing vector (Lξg = 0):

∇µξν = Aµν

A conformal Killing-Yano p-form:

∇µKν1···νp = Aµν1···νp+p gµ[ν1Bν2···νp ]

Conformal Killing-Yano definition is equivariant under
1 Homotheties g 7→ e2Λg ⇒ K 7→ e(p+p!)ΛK

2 Hodge duality K 7→ ∗K ⇒ (A,B) 7→ ((−1)p−1 ∗B, (−1)p ∗A)

I.e., they are conformally invariant
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Conformal Killing-Yano p-forms

More on CKY and symmetries

(Conformal) Killing-Yano p-forms - (C)KY - give
Symmetries of (massless) Dirac equation

Constants of (lightlike) geodesic motion
Separability of Klein-Gordon and Hamilton-Jacobi equation
(Sergyeyev, Krtous 0711.4623)
Middle-form CKY symmetry of middle-form Maxwell
Exotic supersymmetries of superparticle (review Santillan 1108.0149)
action geometric Killing spinors (generalizing spinorial Lie derivative)
Uniqueness of Kerr, geometric structure, ...
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Conformal Killing-Yano p-forms

Killing transport of isometries
What kind of beast is an equation like “∇µξν = Aµν”?

∇µAνρ −∇νAµρ = Rµνρσξ
σ

∇ρAνµ −∇νAρµ = Rρνµσξ
σ

∇ρAµν −∇µAρν = Rρµνσξ
σ

Adding them (+Bianchi) gives the derivative of A:

⇒ ∇µAνρ = Rνρµσξ
σ

Killing vectors are parallel under a connection D on Λ1 ⊕ Λ2

DX

(
ξ
A

)
=
(
∇Xξ − iXA
∇XA−R(X, ξ)

)
= 0

Maximum number of solutions d+ d
2(d− 1) for spheres, flat, (A)dS, H,

and discrete quotients thereof.
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Conformal Killing-Yano p-forms

Killing transport of CKY

Similarly CKY p-forms are in one-to-one correspondence with parallel
section

K +A+B + C ∈ Λp ⊕ Λp+1 ⊕ Λp−1 ⊕ Λp

under a connection3 D.

E.g., for p = 2

∇µKνρ = Aµνρ + gµνBρ − gµρBν

∇µAν1ν2ν3=− 3
2R[ν1ν2|µ

σKσ|ν3] −
3
4gµ[ν1Cν2ν3]

∇µBν = 1
4Cµν −

1
2

1
d− 2(RσµKσ

ν +RσνK
σ
µ)

∇µCν1ν2 = ...

3Semmelmann math/0206117, explicit in M&M 1110.3872
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Conformal Killing-Yano p-forms

CKY transport and holonomy
Given g, one can try to solve:

M
p′

p′′

σ(t)
p

γ(t)

DµE = 0⇒
( d

dt + σ̇µ(t)Aµ(σ(t))
)
E(t) = 0

Transport Pσ(Ep′) = Ep′′ . Holonomy on solution

PγEp = Ep

for closed loops γ. Solutions are singlets under holonomy of D.
11 / 35



Conformal Killing-Yano p-forms

Einstein d=4, p=2
For p = 2 note

∇µBν = 1
4Cµν−

1
2

1
d− 2((((

(((
(((((RσµKσ

ν +RσνK
σ
µ)

If the background is Einstein then B is a Killing one-form.
Also CKY is equivariant under Hodge duality,
K 7→ ∗K ⇒ (A,B) 7→ (− ∗B, ∗A). So for Einstein, d = 4, p = 2:

both B and ∗A are Killing one-forms

The right-hand side of

∇µKνρ = Aµνρ + gµνBρ − gµρBν

is in terms of 2N unknown constants, where N ≤ d
2(d+ 1) Write this as

K
π7→ (ξ̃, ξ)
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Conformal Killing-Yano p-forms

CKY under isometries

Assume a Killing vector k and a CKY p-form K:

0 =Lk
(
∇XK − iXA−X[ ∧B

)
=∇[k,X]K − i[k,X]A− [k,X][ ∧B

+∇XLkK − iXLkA−X[ ∧ LkB
=∇XLkK − iXLkA−X[ ∧ LkB .

(1)

Therefore, CKY two-forms form a representation under the isometry
algebra of the metric:

K
π7→ (ξ̃, ξ)⇒ LkK

π7→ (Lkξ̃, Lkξ)

We can fix most of the right-hand side A and B by using the action of the
isometries.

13 / 35



Kerr black hole
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Kerr black hole

Uniqueness theorems

A black hole: a region of spacetime from which nothing, not even
light, can escape.
Stationary metrics: no time dependence L∂tg = 0
No-hair theorems/conjectures and uniqueness theorems: stationary
black holes have only a finite number of parameters = charges
For Einstein solutions4, charges are: mass, angular momentum and
NUT charge (if asymptotically only locally AdS/flat)

∫
S2 π∗d(∂t[)

(local) uniqueness5 of Kerr from a closed CKY 2-form (A = 0)

4Israel ’67, Carter ’71, Robinson ’75
5Houri et al. 0708.1368, Krtous et al. 0804.4705
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Kerr black hole

Kerr metric
Kerr’s solution of Rµν − 1

2Rgµν −
3
`2 gµν = 0

ds2 = − ∆r

r2 + y2

(
dt+ y2dψ

)2
+ ∆y

r2 + y2

(
dt− r2dψ

)2

+ r2 + y2

∆r
dr2 + r2 + y2

∆y
dy2 ,

∆r = (1 + r2

`2
)(r2 + a2)− 2Mr , ∆y = (a2 − y2)(1− y2

`2
) + 2Ly .

Mass M
angular parameter a
NUT charge L
cosmological const. −3/`2

RµνρσR
µνρσ r2+y2→0→ ∞

signature (−,+,+,+)
range of parameters
periodicities ds2| = dr2 + r2dθ2
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Kerr black hole

Graphs of metric functions

(a) M < M∗

r̄

(b) M = M∗ (c) M > M∗

Figure: ∆r(r) in Kerr-AdS for fixed a.

(a) |L| < L∗

ȳ

(b) |L| = L∗ (c) |L| > L∗

Figure: ∆y(y) in Kerr-AdS for fixed a.

So we need M ≥M∗(a) and |L| ≤ L∗(a) to shield singluarities.
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Kerr black hole

Physical parameters
For negative comsmological constant

Given mass M , the black hole cannot over-rotate |a| ≤M∗(a)
Given rotation parameter a, the NUT charge cannot be too large
|L| ≤ L∗(a)

For positive cosmological constant, `2 → −1/g2:
M2g2

a g
0.01 0.02 0.03 0.04 0.05 0.06 0.07

0.01

0.02

0.03

0.04

0.05

0.06

1
27

(
√

7− 4
√
4,−80 + 416

3
√
3
)
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Kerr black hole

Extremality
At extremality M = M∗(a):

double root ∆r(r̄) = 0
Hawking temperature TH = 0
Future and past horizon do not intersect/bifurcate

H+

H−

J+

J−

H+

H−

J+

J−

extremal horizon non-extremal horizon

S2

When NUT L = 0, ψ is periodic. When NUT L 6= 0, coordinates (t, ψ)
describe torus fibers, because the two roots of ∆y impose different
periodicities close to each root

ds2| ≈ dr2 + r2dθ2

At extremality L = L∗(a):
double root ∆y(ȳ) = 0 (e.g. on the right)
only one periodicity again (from the root on the left) and an infinite
throat at the double root y = ȳ.

Similar to extremal mass, with r and y exchanged.
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Kerr black hole

Geroch’s results on spacetime limits

Definition
Take a smooth family of spacetimes (Mε, gε, ε) for ε > 0.
If limε→0 gε = g0 exists, it is a “spacetime limit in the family”.

Definition
If fε : M1 →Mε for ε > 0 is an isometry, then g0 is a “limit of the metric
g1”.

If g0 is not isometric to g1 then we have something new!

Theorem (Geroch ’69)
The kernel of a connection D does not reduce its dimension under a
spacetime limit. A holonomy result.

An example of a metric limit is the near-horizon limit.
19 / 35



Kerr black hole

Near-horizon limits

Extremal black holes in gaussian coordinates at the horizon6 r = 0

g = r2 F (r) du2 +G(r) dr du+ · · ·

The diffomorphism with ε > 0

r 7→ r′ = r/ε , u 7→ u′ = εu

a) preserves the horizon and b) for r′ ∈ [0, 1] zooms in with ε.

The output of the near-horizon limit ε→ 0+ is
1 a new metric g0
2 a Killing horizon r′ = 0 (but not a BH - not asympt. to AdS/flat)

For non-extremal black holes, one can take r+ → r− as ε→ 0+, but ...

6Racz, Wald ’92
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Near-horizon of Kerr

The near-horizon limit (locally)
Taking the limit ε→ 0+ of extremal Kerr:

ds̄2 = Ω2(y)
(
−x2dτ2 + dx2

x2 + Λ2(y)(du+ x dτ)2
)

+ r̄2 + y2

∆y
dy2 ,

with

Ω2 = β2(r̄2 + y2) , Ω2Λ2 = ∆y

r̄2 + y2 4r̄2β4 , β(r̄, L).

Similarly, for the polar limit ε→ 0+:

ds̄′2 = Ω2(r)
(

+x2dψ̄2 + dx2

x2 − Λ2(r)
(
du+ x dψ̄

)2
)

+ ȳ2 + r2

∆r
dr2 ,

with

Ω2 = β2(ȳ2 + r2) Ω2Λ2 = ∆r

ȳ2 + r2 4ȳ2β4 , β(ȳ,M).
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Near-horizon of Kerr

The near-horizon limit (periods)

The near-horizon limit of extremal Kerr:

ds̄2 = Ω2(y)
(
−x2dτ2 + dx2

x2 + Λ2(y)(du+ x dτ)2
)

+ r̄2 + y2

∆y
dy2 ,

We find
the near-horizon limit is well-defined only for L = 0, otherwise the
torus lattice degenerates. In this first case u = u+ 2πT (r̄, L).
The polar limit is always well-defined, with u = u+ 2πT (ȳ,M).

However, there are reasons to consider the NHEK metric with two
parameters...
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Near-horizon of Kerr

NHEK as a general solution

Assume a metric

ds2 = Ω2(y)
[
−x2 dτ2 + dx2

x2 + Λ2(y) (du+ x dτ)2
]

+ F 2(y)dy2.

and fix F = 1. Einstein’s equations become

˙̈Λ = f(Λ, Λ̇, Λ̈) and Ω = g(Λ, Λ̇, Λ̈)

Gauge F = 1 is preserved by y 7→ y + c. So most general solution depends
on two integration constants:

⇒ solution is locally the NHEK metric - but with r̄2, L ∈ R!

AdS4 is included with F = `, Λ2 = 1 and Ω2 = `2 cosh2 (y/`2) - but with
r̄2 = −1!
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Near-horizon of Kerr

Deformed+ AdS in NHEK

At fixed y the NHEK becomes

ds2| = Ω2(y)
[
−x2 dτ2 + dx2

x2 + Λ2(y) (du+ x dτ)2
]

+����
�

F 2(y)dy2.

or
ds2| = Ω2

(
−θ0 ⊗ θ0 + θ1 ⊗ θ1 + Λ2θ2 ⊗ θ2

)
where the θ’s are the right-invariant one-forms of SL(2,R).

For Λ = 1, ds2| is the “round” metric on SL(2,R), which gives Anti-de
Sitter in d = 3.
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Near-horizon of Kerr

Deformed+ AdS isometries

AdS3 is SL(2,R) with metric:

g = Ω2(−θ0 ⊗ θ0 + θ1 ⊗ θ1 + θ2 ⊗ θ2) ,

θa: right-invariant one-forms of SL(2,R)

la: right-invariant vector fields that generate the left-action
ra: left-invariant vector fields that generate the right-action

Lraθb = 0 Llaθb = εa
b
cθ
c

Killing algebra of AdS3 is

〈la〉 ⊕ 〈ra〉 = sl(2,R)L ⊕ sl(2,R)R = so(1, 2)⊕ so(1, 2)
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cθ
c

Killing algebra of deformed+ AdS3 is

〈l2〉 ⊕ 〈ra〉 = R⊕ sl(2,R)R = R⊕ so(1, 2)

NHEK has isometries sl(2,R)⊕ R
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CKY in the NHEK

Kerr/CFT

We have seen that the near-horizon limit has more isometries than
the Kerr black hole (enhancement) from 〈∂t〉 ⊕ 〈∂ψ〉 to sl(2,R)⊕ 〈l2〉
Geroch says CKY 2-forms also do not reduce
It is conjectured that the Kerr black hole is dual to a CFT2

Entropy can be written as that of a CFT2
the right Virasoro is related to the ra

Bulk correlators of scalars are approximately CFT2 correlators
Some discussion on hidden symmetry

Questions for the NHEK
Is there a second sl(2,R)?
Do the conformal Killing-Yano two-forms enhance?
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CKY in the NHEK

Reminder

We have seen that a CKY 2-form in a d = 4 Einstein spacetime:
0 Definition

∇µKνρ = Aµνρ + gµνBρ − gµρBν
1 Both ξ̃ = B and ξ = ∗A are Killing one-forms/vectors

K
π7→ (ξ, ξ̃)

2 The hodge dual is also a CKY two-form with

∗K π7→ (ξ̃, −ξ)

3 If K is a CKY two-form and k is a Killing vector, then

LkK
π7→ (Lkξ, Lkξ̃)
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CKY in the NHEK

Fixing r Part 1
The NHEK is known to have a CKY two-form Kp such that

∗Kp
π7→ (l2, 0) and Kp

π7→ (0, −l2).

Killing vectors are 〈ra〉 ⊕ 〈l2〉 and the CKY defining equation is R-linear:
If there are more CKY 2-forms, then there is a CKY 2-form K such that

K
π7→ (r, r′),

where r = Ar0 +B r1 + C r2 and similar for r′.

If r is colinear with r′, use Hodge duality. If r is not colinear with r′, then
consider Lrr′ 6= 0. In either case:

K
π7→ (r, 0)
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CKY in the NHEK

Fixing r Part 2
Action of sl(2,R) on the ra is irreducible:

r = Ar0 +B r1 + C r2
so(1,2)7→


±
√
B2 + C2 −A2 r2

±
√
−B2 − C2 +A2 r0

±r0 ± r2

If there are more than two CKY two-forms, then there are eight. Three of
them are Killing-Yano (B = 0)

Ka
π7→ (ra, 0)

and another three are closed CKY (A = 0)

∗Ka
π7→ (0, −ra).
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CKY in the NHEK

Fixing K Part 1
We have completely fixed the right-hand side of

∇µKνρ = gµνBρ − gµρBν

with Bµ = (ra)µ.

There are 3× 4
2(4− 1) = 2× 32 = 18 unknown functions of (x, τ, u, y) on

the left-hand side. We can partially fix them by active transformations:

Ka
π7→ (ra, 0)

eεLrKa
π7→ (eεLrra, 0)

φ∗εKa
π7→ (Sab(ε)rb, 0)

⇒ Ka|φε(p) = Sεa
bφ−ε

∗ Kb|p .

The right action acts transitively on y-constant surfaces.

⇒ 18 functions of y.
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CKY in the NHEK

Fixing K Part 2

y

y = ct.

p

p′ = φε(p)

At any point p of a slice y we have 18 coefficients. At any other point of
the same slice, K is given by:

Ka = θb(ra)
(
H(y)bc

1
2ε

c
deθ̂

d ∧ θ̂e +G(y)bcdy ∧ θ̂c
)
,

where θ̂a are right-invariant.
Hab and Gab are 2× 32 = 18 functions of y alone: easy to solve.
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CKY in the NHEK

Equations to solve

The defining equation

∇µKνρ = gµνBρ − gµρBν

becomes first-order differential equations in y. The y-dependence is solved
and we get 9 linear equations for the 4 non-zero Hab and Gab, e.g.

H22 +H00
1
2Λ +G00Ω̇F−1 = −Ω2

−H11 −H00

(
1− 1

2Λ2
)
−G00(Ω̇ + Λ̇)F−1 = Ω2Λ

...

⇒ Unless the NHEK solution is precisely AdS4, there is no solution.
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CKY in the NHEK

Summary

We saw:
definition, usefulness, and properties of conformal Killing-Yano
p-forms
the near-horizon limit and a motivation to study it
when there is enough isometries, how to reduce the CKY equation

In the work with Y.Mitsuka:
we derived the connection D of CKY p-forms in d dimensions
commented on the near-horizon: the limit (periodicities) is not
well-defined for non-zero NUT
introduced a polar extremal limit
for the NHEK and polar limit geometry: either one and only one
Killing-Yano two-form, or AdS4 in which case 2× 5

2(5− 1) = 20 CKY
2-forms
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Outlook

Not the end

Possible extensions:
adding flux to Einstein7

higher dimensions and degrees
quest for non-trivial CKY algebra∗

How do the hidden spacetime symmetries realize in supergravity?

7Cariglia et al. 1102.4501
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Outlook

Geometric Killing spinors
Spinor inner product, e.g. in d = 4

ε̄1ε2 = −ε̄2ε1 and γ̄µ = −γµ

Geometric Killing spinor
∇µε = λγµε

so that
∇µ

(
ε̄1γν1···νpε2

)
= λε̄1[γν1···νp , γµ]ε2

is antisymmetric for p odd
Freund-Rubin backgrounds, e.g. AdS4 × S7, have supergravity Killing
spinors the tensor of geometric Killing spinors

ε = εAdS ⊗ εS

However, symmetric square of supergravity field variations only gives the
Killing vector plus trivial gauge shifts. Consistent reductions?
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