動的距離
$$d_N = \frac{D_2 - D_1}{25.4}$$
 。

18. 改變微米旋鈕的變化量為 10、15、20、25 個單位,重複步驟 13~15,完成表(一)的記錄與計算。

【註一】

雷射光束的準直,可利用一白紙屏幕垂直置放於光路中,標示雷射光束的高度於 白紙上。再將該白紙屏幕移至光路其他位置,檢視雷射光束是否等高。

【註二】

旋鈕改變轉動方向時,將造成機械齒隙(mechanical backlash) ,若計算亮環次數前,先轉動一整圈,並保持轉動方向,將可消除齒隙造成的誤差。

<u></u>	【實驗記錄	1
万	首 殿 記跡	1

教師簽名	٠	
叙	•	

表(一) 雷射光波長量測 (雷射光波長 λ_0 =632.8 nm)

項目次數	D_1	D_2	$d_{\scriptscriptstyle N}$	N	λ	d_{i}
1						
2						
3						
4						
5						
單位						

_		
$\lambda =$	$\sigma_{\scriptscriptstyle \lambda} = $	

五【實驗記錄】

教師簽名:_____

(表二) 玻璃折射率量測 (玻璃片厚度 $t=4.9~\mathrm{mm}$,雷射光波長 $\lambda_0=632.8~\mathrm{nm}$)

項目次數	θ	N	n_{g}	d_{i}
1				
2				
3				

$$\overline{n} = \underline{\hspace{1cm}} \overline{\sigma}_n = \underline{\hspace{1cm}}$$